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Human Crowds and Groups Interactions:

A Mean Field Games Approach

Aimé Lachapelle

Abstract— This paper is devoted to some Mean
Field Games (hereafter MFG) modeling of hu-
man crowds behavior. More precisely, we study 2-
population dynamics (each of whom consisting of
a continuum of individuals) with opposit interests.
We focus on the crowd aversion case inside the
group and also onto the other group (xenophobia in
some cases). We write a macro-Nash problem between
the two populations, then we give an existence and
uniqueness result and characterize optimal points as
MFG solutions. Finally we provide a simple gradient
descent method to approximate the solutions and
show some simulations.

I. INTRODUCTION

MFG have been recently introduced by Lasry &

Lions ([9], [10], [11]) and seem to be very useful

to model big groups interactions with ”intelligent”

individuals (control aspects). To the best of our

knowledge there exist very few papers on the topic

(MFG and human crowds), e.g. the works of the

author (see [6]) or Guéant (see [4]). The present

paper is based on [7] and is mainly motivated by

the macroscopic crowd motion models (see the

recent work of Buttazzo, Jimenez & Oudet ([2]),

Carlier & Salomon ([3]), Hughes ([5]), or Maury,

Roudneff-Chupin & Santambrogio ([12]) for a gra-

dient flow setting). Nevertheless, in our case, the

MFG use corresponds to discrete-continuous fun-

daments. We adopt, as in [8], the optimal control

point of view of MFG and take fully advantage of

it to prove existence and to approximate solutions,

in particular using the transformation originally

due to Benamou & Brenier (see [1]). But the main

point of this work is that we particularly focus on

the modeling of interactions between two groups

in some xenophobia situation.

The paper is organized as follows. In section II we

briefly motivate the use of MFG for human crowds

and present the problem we consider. Section III

is devoted to the study of optimality conditions

(that is in fact the link between MFG and optimal
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control) and existence. In the next part (section IV)

we provide a numerical strategy to approximate the

solutions, based on a gradient descent method. Fi-

nally, in section V we close with some simulations.

II. TWO-GROUP DYNAMICS: THE

PROBLEM

A. MFG & human crowds

As mentioned in the introduction, it seems to

be very natural to think of MFG to model human

crowds. The MFG setting is well adapted for

several reasons. First it is a micro-macro approach,

being an approximation of N -player differential

games when N tends to infinity (huge systems of

individuals). Secondly it is useful to model interac-

tions between ”intelligent” individuals (or agents),

that is: they are rational players with rational

expectations. The next reason is that MFG describe

non-cooperative equilibrium configurations (Nash

point asymptotics). Note also that since MFG deal

with atomized and anonymous agents (this last

assumption is quite natural in human crowds),

the mathematical framework (optimal control of

Fokker-planck, MFG system) enables numerical

simulations. To fix ideas, we now turn to recall

briefly what are MFG in our crowd motion setting.

We work on the d-dimensional Torus Ω := T
d to

avoid boundary difficulties (note that they could be

treated, as in [8] for instance). In the present work,

we focus on the finite horizon framework. Define

then the time-space domain, Q = [0, T ] × Ω. To

simplify, we consider in this paragraph a unique

group (or population) composed with a continuum

of individuals. It is fully characterized during the

time period by the evolutive measure (mt)0≤t≤T

(we will abusively refer to it as a density) with

initial situation m0 given. Then, the agent starting

at x ∈ Ω at the beginning of the period evolves

controlling the drift of the following stochastic

process

dXx
t = αtdt + σdWt , Xx

0 = x,

where αt is the control parameter, Wt a standard

Brownian motion and σ the given noise.



Her individual problem is then to minimize (over

a certain class of controls α) the quantity

E

[

∫ T

0

L(Xx
t , αt) + V [mt](X

x
t )dt + Ψ(Xx

T )

]

,

where the Lagrangian L stands for a control

and position cost. In what follows we take the

quadratic cost L(x, α) := |α|2

2 (note that it does

not depend on the position). Function Ψ is a final

cost (incentive to reach a certain area) and V is

a state cost (that is a criteria depending on the

mean field created by the others, the density of

agents). This last cost is the key point of the

MFG modeling: individuals anticipate the crowd

evolution (mt)0≤t≤T and take it into account in

their optimization problem. It can be found in

[10], [11], that the solution of the continuum of

individual problems satisfies the so called MFG

system

∂tm − σ2

2 ∆m + div(m∂pH(x,∇v)) = 0

∂tv + σ2

2 ∆v + H(x,∇v) = V [m],

with in the one hand initial and transversality

conditions: m|t=0 = m0 and v|t=T = Ψ, in the

other hand α := −∇v and H is the Legendre

transform of L. It is well known (see [7], [8], [10])

that when V is the derivative (e.g. the Gâteaux

derivative) of a potential Φ on bounded measures

on Ω, i.e. V = Φ′, then the critical points of the

optimal control problem of Fokker-Planck
{

inf
α

∫

Q
|α|2

2 m +
∫ T

0
Φ(mt)dt +

∫

Ω
Ψm(T )

∂tm − σ2

2 ∆m = −div(αm), m(0) = m0,
(1)

are solutions of the MFG system. Note also that it

is a sufficient condition as soon as Φ is convex,

which is the case in this paper. The convexity

corresponds in fact to the crowd aversion (contrary

to attraction situations, see for instance [7], [8]).

In what follows, we call problem (1) a global

optimization problem of a MFG.

B. Writing the Nash problem

Let us focus on the case where two populations

interact inside Ω. We want to study equilibria

between the two groups (typically Nash points as

suggested by Lasry and Lions in [10]). Before

giving the problem of group i, i = 1, 2, let us recall

a classical notation. For any point x = (x1, x2) ∈
R

2, and for a fixed coordinate i, we denote by

x−i the element of R, x−i := {x1, x2} − {xi}.

Formally, the global optimization problem (linked

to a continuum of individual problems) of group

i, given the control and the mass evolution of the

other group (i.e. (α−i
t , m−i

t )), reads as:

inf
αi

J i
λ(α)

where

J i
λ(α) :=

∫

Q

|αi|2

2
mi +

∫ T

0

Φi
λ(m1

t , m
2
t )

+

∫

Ω

Ψimi(T ). (2)

From now on, mi depends on αi, more precisely

it is viewed as a bounded nonegative measure (i.e.

belonging to the set Mb(Q, R+)) which is a weak

solution of the Fokker-Planck equation:

∂tm
i −

σ2

2
∆mi = −div(αimi), mi(0) = mi

0.

(3)

We distinguish the populations by considering dif-

ferent initial densities mi
0(.) and different final

incentive costs Ψi. However we study the simple

case where the Brownian motion and the noise are

similar for both groups. In the definition of the

criterion (2), the coupling cost we consider is

Φi
λ(mt) :=

∫

Ω

(mi
t)

2 + λm1
t m

2
t ,

for a nonnegative real constant λ. This models

of a situation involving individual’s aversion to

the members of her own group and onto the

other group, so that λ stands for a ”xenophobia”

parameter. To see that, note that the individual

mean field criterion is:

Vi[mt](x) = 2mi
t(x) + λm−i

t (x).

In fact we consider that xenophobia is significant

when the aversion λ to the other group is higher

than the one to the own group (equal to 2). The

Nash problem between the groups is then:

Find α = (α1, α2) such that:

(N ) J i
λ(α) = inf

αi∈Mb(Q,Rd)
J i

λ(αi, α−i),

for i = 1, 2.

III. EXISTENCE & OPTIMALITY

A. Optimality conditions

In this part we present a characterization of the

Nash equilibria. To do so, let us introduce the MFG

system for two groups: for i = 1, 2,

∂tm
i −

σ2

2
∆mi +div(mi∇vi) = 0, mi(0) = mi

0,

(4)

∂tv
i +

σ2

2
∆vi +

|∇vi|2

2
= Φi

λ(m)′, vi(T ) = Ψi,

(5)



and the joint minimization problem (for the two

groups)

(Q) inf
α=(α1,α2)

Jλ(α) := J1
λ/2(α) + J2

λ/2(α),

under the constraints: mi is a solution of (3), for

i = 1, 2. Note that Jλ is convex if the xenophobia

parameter is not too large, that is λ ≤ 2.

We are now in the position to give the optimality

conditions.

Proposition 1: If λ ≤ 2 then the following

assertions are equivalent:

1) α ∈ Mb(Q, Rd) is a solution of (N ) and m

satisfies (3) for α = α,

2) α ∈ Mb(Q, Rd) is a solution of (Q) and m

satisfies (3) for α = α,

3) (m, v) is a solution of the MFG system (4)-

(5), with α = α = ∇v.

If λ > 2 then it is only necessary i.e. 2. ⇒ 1.,3.

A proof of this statement is based on classical

arguments of differential calculus and can be found

in [7].

B. Existence

If there exists a solution of problem (Q), then

proposition 1 ensures the existence of a Nash

point between the two groups. Before giving an

existence result, we may reformulate the problem

in a more rigorous way, following [1], [2], [8].

We adopt a vectorial point of view, and use the

following notations:

• Mb(Q, Rd) is the set of bounded d-vectorial

measures on Ω.

• m = (m1, m2) ∈ Mb(Q, R2
+), and for all

x = (x1, x2) ∈ R
2
+∗, 1

x := ( 1
x1 , 1

x2 ),
• q = (q1, q2) ∈ Mb(Q, R2d), and for all y =

(y1, y2) ∈ R
d × R

d, |y|2 := (|y1|2, |y2|2),
• A := {(q, m) ∈ Mb(Q, R2d) ×

Mb(Q, R2
+) :

∫

Q
(∂tu + σ2

2 ∆u)dmi +
∫

Q
∇u.dqi =

∫

Ω
Ψimi(T ) − u0m

i
0 , ∀u ∈

C∞(Q) , pour i = 1, 2}.

Let us introduce the (q = αm,m) formulation, i.e.

following [2], the functions

ϕ1(a, b) :=

{

|a|2

2b if (a, b) ∈ R
2d × R

2
+∗

+∞ else,

ϕ2(b) :=

{

|b|2 + λb1b2 if b ∈ R
2
+∗

+∞ else,

and

K(q, m) := K1(q, m) + K2(m),

K1(q, m) :=

∫

Q

ϕ1(
dq

dLd+1
,

dm

dLd+1
)dLd+1,

K2(m) :=

∫

Q

ϕ2(
dm

dLd+1
)dLd+1 +

∫

Ω

Ψ.dm|t=T ,

where Ld+1 denotes the Lebesgue measure in

R
d+1. Then we can rewrite K in a simpler form:

K(q, m) =

{

Jλ(α), if q << m and q = αm

+∞ else.

In this setting, a rigorous formulation of (Q) is

inf
(q,m)∈A

K(q, m), (6)

and we can give the result as announced before.

Proposition 2: If λ ≤ 2 and m1
0, m2

0 ∈ L2(Q),
then problem (Q) possesses a solution (which is

unique as soon as λ < 2). Moreover there exists a

Nash point i.e. a solution of (N ).

Remark 1: Note that existence does not fail

when adding a constraint of the type m ≤ constant

as in [12].

Given the reformulation (6), the proof is a sim-

ple adaptation of the one obtained by Buttazzo,

Jimenez and Oudet in [2]. A complete proof of this

proposition is provided in [7]. In the next section

we deal with defining a numerical procedure to

approximate the solution.

IV. NUMERICAL SETTING

In this part we introduce the discretization and

a gradient descent method in order to approximate

the solution(s) of problem (N ). More precisely,

we distinguish the cases when the joint problem

(Q) is convex from when it is not. In the convex

setting (i.e. when λ ≤ 2) we describe the gradient

descent that we apply to the joint functional. The

non-convex case λ > 2 (in which the xenophobia

is significant) is more involved but interesting

(we expect non-uniqueness). We then provide an

alternating directions method taking advantage of

the convexity of group i’s problem, given group

(−i)’s evolution.

Gradient First of all, let us write the gradient

formula of the functional. We look at the reformu-

lated problem given by (6). We slightly modify the

point of view considering that the density m is an

affine function of the momentum q. To fix ideas,



the joint problem reads as:

inf
q

F (q) :=
∑

i=1,2

(
∫

Q

|qi
t|

2

2mi
t

+Φi
λ/2(mt)+

∫

Ω

Ψimi
T

)

,

(7)

where mi, i = 1, 2 solves :

∂tm
i −

σ2

2
∆mi = −div(qi) , mi(0, .) = mi

0(.).

(8)

Thanks to a classical differential calculus (see for

instance [7]), it is easy to get the explicit formula

of the gradient

∀(q, m) ∈ A,∀w = (w1, w2) ∈ Mb(R
2d),

∇F (q).w =

(
∫

Q

( qi

mi
+ ∇θi

)

.dwi

)

i=1,2

, (9)

where θi satisfies, for i = 1, 2,

−∂tθ
i −

σ2

2
∆θi = −

|qi|2

2(mi)2
+(2mi +λm−i),

θi|t=T = Ψi. (10)

Algorithm for the convex case Since problem

(7) is convex when λ ≤ 2, we decide to apply

a gradient descent method. We focus on the 2D-

case (d = 2) and take Ω = [0, 1]2 with periodic

boundary conditions.

Let M and N be two positive integers, we define

the time and space steps by dt = 1
N and dx = 1

M .

For (i, j, k) ∈ A := {0, ..., N} × {0, ...,M}2, for

a given function f defined on Q, f i
j,k denotes

the numerical approximation of f(idt, jdx, kdy).
Equations (8) and (10) are iteratively solved by us-

ing finite differences, after initializations (m0
j,k =

m0(jdx, kdy) and θN
j,k = Ψ(jdx, kdy)), using the

following approximations

∂tf(idt, jdx, kdy) =
f i+1

j,k − f i
j,k

dt
,

∆f(idt, jdx, kdy) =
f i

j+1,k − 2f i
j,k + f i

j−1,k

(dx)2

+
f i

j,k+1 − 2f i
j,k + f i

j,k−1

(dy)2
.

At step n, let f (n) :=
(

f
i,(n)
j,k

)

(i,j,k)∈A
. Then the

gradient descent method (hereafter GDM) is the

following:

1) Initialization:

Choose q(0) then compute m(0) by solving (8)

with the finite difference scheme.

2) Step n:

• Compute θ(n) by solving numerically

(10) with q(n−1) and m(n−1), then com-

pute the discretized gradient ∇F (q(n−1))
(formula (9)), using θ(n).

• Compute the descent: q(n) = q(n−1) −
ρn∇F (q(n−1)).

• If ||q(n) − q(n−1)|| <Tol1, then stop the

algorithm (Tol1 is a tolerance threshold

defined by the user).

Else, n = n + 1.

Note that ρn above is the descent step size, it

is chosen optimal, i.e. minimizing the following:

ρ ∈ [0, 1] → F (q(n−1) − ρ∇F (q(n−1))).

Alternating directions method for the non-

convex problem The case where aversion to the

other group is significant (λ > 2), for which we

have less theoretical results, also seems interesting.

One of the main goal of the present work is

to obtain numerical simulations in this situation.

Consequently, it is convenient to describe the way

we try to approximate the Nash points between the

groups when λ > 2. To do so we choose an alter-

nating directions method, provided the convexity

of both group i’s problem, given group (−i)’s
evolution:

inf
qi

F i(q) :=

∫ T

0

∫

Ω

|qi
t|

2

mi
t

+ Φi
λ(mt)dt +

∫

Ω

Ψimi
T ,

where mi solves (8) for qi, i = 1, 2. One can easily

get the formula of the gradient of F i looking at the

joint case (9)-(10).

In what follows, by writing that we compute q we

also mean that we compute the corresponding m

solution of the discretized versions of the Fokker-

Planck equations (8), for i = 1, 2.

The strategy to approximate the Nash points is to

apply GDM successively to each group. Note that

above, the upper index refers to the group number

and the lower one to the iteration.

1) Initialization:

Choose q1
0 then compute q2

1 with GDM and

q1
0 .

2) Step k > 1:

We know q2
k.

• Compute q1
k then q2

k+1 by using GDM

(with, respectively, q2
k and q1

k).

• If ||qi
k − qi

k−1|| <Tol2 for i = 1, 2, then

stop the procedure.

Else, k = k + 1.

V. SIMULATIONS

The GDM shows good convergence results when

the initials densities of individuals are significantly



positive (i.e. mi
0 > constant > 0). This last section

is devoted to the exhibition of some very first tests.

In the next simulations we take T = 1 and σ2

2 =
0.01.

A. Test 1: crowd aversion in a single group

In the first example we focus on a case involving

only one population (m2
0 = 0), i.e. a similar

framework as the one studied by Buttazzo, Jimenez

and Oudet in [2]. Fig. 1 shows the initial density

of agents (centralized around the point (0.1, 0.1))
and the final cost, modeling a strong incentive

for individuals to be in some neighborhood of

(0.5, 0.8) and (0.8, 0.5) at instant T .

(a) Initial density (b) Final cost Ψ

Fig. 1. Data

(a) Density at instant t = 0.06 (b) Density at instant t = 0.5

Fig. 2. Spreading over during the first half

(a) Density at instant t = 0.9 (b) Density at instant T = 1

Fig. 3. Splitting and centralization during the second half

Fig. 2 and Fig. 3 present the mass evolution at

some chosen instants in [0, T ]. More precisely, we

may observe on Fig. 2 a first step corresponding to

a spreading over of m (explained by the aversion

term and the diffusion parameter). Note that the

running time of dispersion is greater than one

half. We then observe in Fig. 3 a split inside the

population so that individuals can converge to the

two attractive areas. Finally, the discrete energy

Fig. 4. Value of F for each iteration

seems to reach quickly the minimum (5 iterations),

see Fig. 4.

B. Test 2: groups interactions

Let us now look at the more interesting case

with two populations. Recall that we look for

Nash equilibria between two groups whose global

optimization problem is (6). We use the procedure

detailed before (starting with group 2). In order

to emphasize the xenophobia behavior we choose

λ = 20 in the definition Φi
λ(m1, m2) =

∫

Ω
(mi)2+

λm1m2. We consider a symmetric configuration

and represent the graphs of the initial densities

(mi
0, i = 1, 2) and final costs (Ψi, i = 1, 2)

in Fig. 5. Group 1 is initially centralized around

(0.35, 0.5), group 2 around (0.5, 0.35). Concerning

the final costs the situation is still symmetric since

they model incentives to reach positions in the

neighborhood of (respectively for group 1 and 2)

(0.65, 0.5) and (0.65, 0.5).
With such a situation we are interested in crossing

phenomenon.

(a) Initial densities (b) Final costs Ψ
i

Fig. 5. Data

(a) Densities at instant t = 0.1 (b) Densities at instant t = 0.4

Fig. 6. Spreading over of m
1 and m

2



(a) Densities contour lines at
instant t = 0.65

(b) Densities at instant t =

0.75

Fig. 7. Group 2 go through the middle of the domain as some
agents of group 1, nevertheless most of group 2 individuals
transit by the border (periodic conditions)

(a) Densities at instant t = 0.9 (b) Densities at instant T=1

Fig. 8. End of the period evolution

The graphs of both densities are depicted in

Fig. 6. We can notice the same spreading over we

observed in Test 1. However, the most interesting

evolution period is described in Fig. 7. Indeed, we

can see that group 1 gives the priority to group

2 to go to its attractive area passing through the

center of the domain (the shortest road for the

euclidian metric). Some of the individuals of group

1 wait, some others go through the border (periodic

conditions), and the lasts go through the center

(the most congested area). Anyway we note that

group 2 reaches quicker than group 2 its goal.

Looking at Fig. 8, we can check that both group

are finally centralized around the points (0.65, 0.5)
and (0.5, 0.65).
The last remark is that we obtain the opposite (or

symmetric) situation when starting to optimize on

group 1. Then, the symmetry break seems to be a

consequence of this starting choice.

VI. CONCLUSIONS AND FUTURE

WORKS

A. Conclusions

In this work we provide a macroscopic model

for human crowds and groups interactions for intel-

ligent individuals. It is a MFG model also inspired

by [2]. We take advantage of the optimal control

point of view of MFG in order to prove existence

and to develop a numerical approach which con-

sists of a simple gradient descent method. We also

test the algorithm in a case involving xenophobia

between two groups.

B. Future works

To the best of our knowledge this paper is one

of the first works exploring both theoretically and

numerically a MFG approach to model groups in-

teractions and human crowds, so that many things

remain to be done. For instance we think of:

proving the gradient method convergence, testing

its robustness when σ → 0, or taking into account

congestion effects (i.e. considering moving cost of

the type L = |α|2mb with b > 0).
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