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Retrieving information from subordination

Jean Bertoin∗ Marc Yor †‡

Abstract

We show that if (Xs, s ≥ 0) is a right-continuous process, Yt =
∫ t
0 dsXs its integral

process and τ = (τℓ, ℓ ≥ 0) a subordinator, then the time-changed process (Yτℓ , ℓ ≥ 0)

allows to retrieve the information about (Xτℓ , ℓ ≥ 0) when τ is stable, but not when τ is

a gamma subordinator. This question has been motivated by a striking identity in law

involving the Bessel clock taken at an independent inverse Gaussian variable.
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1 Introduction and main statements

1.1 Motivation

In Dufresne and Yor [4], it was remarked that by combining Bougerol’s identity in law (see,

e.g. Bougerol [3] and Alili et al. [1]) and the symmetry principle of Désiré André, there is the

identity in distribution for every fixed ℓ ≥ 0

Hτℓ

(law)
= τa(ℓ), (1)

where a(ℓ) = Argsinh(ℓ) = log
(

ℓ+
√
1 + ℓ2

)

,

Ht =

∫ t

0

dsR−2
s , t ≥ 0 ,

is the Bessel clock constructed from a two-dimensional Bessel process (Rs, s ≥ 0) issued from

1, and (τℓ, ℓ ≥ 0) is a stable (1/2) subordinator independent from (Rs, s ≥ 0).
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In [4], the authors wondered whether (1) extends at the level of processes indexed by ℓ ≥ 0, or

equivalently whether (Hτℓ , ℓ ≥ 0) has independent increments. Our main result entails that this

is not the case. Indeed, Theorem 1 below implies that for every ℓ ≥ 0, the filtration (Ĥℓ, ℓ ≥ 0)

generated by (Hτℓ , ℓ ≥ 0) contains the filtration generated by (Rτℓ , ℓ ≥ 0). On the other hand,

((Rs, Hs), s ≥ 0) is a Markov (additive) process, and since subordination by an independent

stable subordinator preserves the Markov property, ((Rτℓ , Hτℓ), ℓ ≥ 0) is Markovian in its own

filtration, which coincides with
(

Ĥℓ, ℓ ≥ 0
)

by Theorem 1. It is immediately seen that for any

ℓ′ > 0, the conditional distribution of Hτ
ℓ+ℓ′

given (Rτℓ , Hτℓ) does not only depend on Hτℓ ,

but on Rτℓ as well. Consequently the process (Hτℓ , ℓ ≥ 0) is not even an autonomous Markov

process. We point out that the process (Rτℓ , ℓ ≥ 0) is Markov (by subordination), and refer to

a forthcoming paper [2] for details on the semigroup of (Rτℓ , Hτℓ).

1.2 Main results

More generally, we consider in this work an Rd-valued process (Xs, s ≥ 0) with right-continuous

sample paths, and (τℓ, ℓ ≥ 0) a stable subordinator with index α ∈ (0, 1). We stress that we do

not require X and τ to be independent. Introduce

Yu =

∫ u

0

dsXs , u ≥ 0 ,

and the right-continuous time-changed processes

X̂ℓ = Xτℓ and Ŷℓ = Yτℓ , ℓ ≥ 0 .

We are interested in comparing the information embedded in the processes X̂ and Ŷ , respec-

tively. We state our main result.

Theorem 1 The right-continuous filtration (Ŷℓ, ℓ ≥ 0) generated by the process
(

Ŷℓ, ℓ ≥ 0
)

contains the right-continuous filtration (X̂ℓ, ℓ ≥ 0) generated by
(

X̂ℓ, ℓ ≥ 0
)

.

A perusal of the proof (given below in Section 2) shows that Theorem 1 can be extended to

the case when it is only assumed that τ is a subordinator such that the tail of its Lévy measure

is regularly varying at 0 with index −α, which suggests that this result might hold for more

general subordinators. On the other hand, if (Nℓ, ℓ ≥ 0) is any increasing step-process issued

from 0, such as for instance a Poisson process, then the time-changed process (YNℓ
, ℓ ≥ 0) stays

at 0 until the first jump time of N which is strictly positive a.s. This readily implies that the

germ-σ-field
⋂

ℓ>0

σ(YNλ
, λ ≤ ℓ)
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is trivial, in the sense that every event of this field has probability either 0 or 1. Focussing

on subordinators with infinite activity, it is interesting to point out that Theorem 1 fails when

one replaces the stable subordinator τ by a gamma subordinator, as it can be seen from the

following observation.

Proposition 1 Let γ = (γt, t ≥ 0) be a gamma-subordinator and ξ a random variable with

values in (0,∞) which is independent of γ. Then the germ-σ-field

⋂

t>0

σ(ξγs, s ≤ t)

is trivial.

We point out that Proposition 1 holds more generally when γ is replaced by a subordinator

with logarithmic singularity, also called of class (L), in the sense that the drift coefficient is zero

and the Lévy measure is absolutely continuous with density g such that g(x) = g0x
−1 + G(x)

where g0 is some strictly positive constant and G : (0,∞) → R a measurable function such that

∫ 1

0

|G(x)|dx < ∞ , g(x) ≥ 0 , and

∫ ∞

1

g(x)dx < ∞ .

Indeed, it has been shown by von Renesse et al. [5] that such subordinators enjoy a quasi-

invariance property analogous to that of the gamma subordinator, and this is the key to

Proposition 1.

It is natural to investigate a similar question in the framework of stochastic integration.

For the sake of simplicity, we shall focus on the one-dimensional case. We thus consider a

real valued Brownian motion (Bt, t ≥ 0) in some filtration(Ft, t ≥ 0) and an (Ft)-adapted

continuous process (Xt, t ≥ 0), and consider the stochastic integral

It =

∫ t

0

XsdBs , t ≥ 0 .

We claim the following.

Proposition 2 Fix η > 0 and assume that the sample paths of (Xt, t ≥ 0) are Hölder-

continuous with exponent η a.s. Suppose also that (τℓ, ℓ ≥ 0) is a stable subordinator of in-

dex α ∈ (0, 1), which is independent of F∞. Then the right-continuous filtration (Îℓ, ℓ ≥ 0)

generated by the subordinate stochastic integral
(

Îℓ = Iτℓ , ℓ ≥ 0
)

contains the right-continuous

filtration generated by (|Xτℓ|, ℓ ≥ 0).

The proofs of these statements are given in the next section.
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2 Proofs

2.1 Proof of Theorem 1.

We first observe that the proof can be reduced to showing that the germ-σ-field Ŷ0 contains

the σ-field generated by X̂0 = X0. Indeed, let us take this for granted, fix ℓ > 0 and define

τ ′u = τℓ+u − τℓ and X ′
v = Xv+τℓ . Then τ ′ is again a stable(α) subordinator and X ′ a right-

continuous process, and

Ŷℓ+u − Ŷℓ =

∫ τ ′u

0

dvX ′
v .

Hence X ′
0 = X̂ℓ is measurable with respect to Ŷℓ, and our claim follows.

Thus we only need to verify that X0 is Ŷ0-measurable. In this direction, we shall use the

following version of the Law of Large Numbers for the jumps ∆τs = τs − τs− of a stable

subordinator. Fix any m > 2/α and introduce for any given b ∈ R and ε > 0

Nε,b = Card{s ≤ ε : b∆τs > εm} .

Note that Nε,b ≡ 0 for b ≤ 0. For the sake of simplicity, we henceforth suppose that the tail of

the Lévy measure of τ is x 7→ x−α, which induces no loss of generality. So for b > 0, Nε,b is a

Poisson variable with parameter

ε(εm/b)−α = bαε1−mα .

Combining a standard argument based on the Borel-Cantelli lemma and Chebychev’s inequality

with monotonicity, we get that for ε = 1/n

lim
n→∞

n1−αmN1/n,b = bα for all b > 0, almost-surely. (2)

Let us assume that the process X is real-valued as the case of higher dimensions will then

follow by considering coordinates. Set

Jε = Card{s ≤ ε : ∆Ŷs > εm} ,

where as usual ∆Ŷs = Ŷs − Ŷs−. We note that

∆Ŷs −X0∆τs =

∫ τs

τs−

du(Xu −X0) .
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Hence if we set aε = sup0≤u≤τε |Xu −X0|, then

(X0 − aε)∆τs ≤ ∆Ŷs ≤ (X0 + aε)∆τs ,

from which we deduce

Nε,X0−aε ≤ Jε ≤ Nε,X0+aε .

Since X has right-continuous sample paths a.s., we have limε→0 aε = 0 a.s., and taking ε = 1/n,

we now deduce from (2) that

lim
n→∞

n1−mαJε = (X+
0 )

α .

Hence X+
0 is Ŷ0-measurable, and the same argument also shows that X−

0 is Ŷ0-measurable.

This completes the proof of our claim. �

2.2 Proof of Proposition 1.

Let Ω denote the space of càdlàg paths ω : [0,∞) → R+ endowed with the right-continuous

filtration (At, t ≥ 0) generated by the canonical process ωt = ω(t), and write Q for the law on

Ω of the process (ξγt, t ≥ 0).

It is well known that for every x > 0 and t > 0, the distribution of the process (xγs, 0 ≤ s ≤ t)

is absolutely continuous with respect to that of the gamma process (γs, 0 ≤ s ≤ t) with density

x−t exp ((1− 1/x)γt) .

Because ξ and γ are independent, this implies that for any event Λ ∈ Ar with r < t

Q (Λ) = E
(

ξ−t exp ((1− 1/ξ)γt) 1{γ∈Λ}

)

.

Observe that

lim
t→0+

ξ−t exp ((1− 1/ξ)γt) = 1 a.s.

and the convergence also holds in L1(P) by an application of Scheffé’s lemma (alternatively, one

may also invoke the convergence of backwards martingales). We deduce that for every Λ ∈ F0,

we have

Q(Λ) = P(γ ∈ Λ)

and the right-hand-side must be 0 or 1 because the gamma process fulfills the Blumenthal’s 0-1

law. �
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2.3 Proof of Proposition 2.

The guiding line is similar to that of the proof of Theorem 1. In particular it suffices to verify

that |X0| is measurable with respect to the germ-σ-field Î0.

Because B and τ are independent, the subordinate Brownian motion (B̂ℓ = Bτℓ , ℓ ≥ 0) is a

symmetric stable Lévy process with index 2α. With no loss of generality, we may suppose that

the tail of its Lévy measure Π is given by Π(R\[−x, x]) = x−2α. As a consequence, for every

m > 2/α and ε > 0 and b ∈ R, if define

Nε,b = Card{s ≤ ε : |b∆B̂s|2 > εm} ,

then Nε,b is a Poisson variable with parameter |b|2αε1−mα, and this readily yields

lim
n→∞

n1−αmN1/n,b = |b|2α for all b ∈ R, almost-surely. (3)

Next set

Jε = Card{s ≤ ε : |∆Îs|2 > εm} ,

where as usual Îs = Iτs , and observe that

∆Îs = X0∆B̂s + (Xτs− −X0)∆B̂s +

∫ τs

τs−

(Xu −Xτs−)dBu . (4)

Recall the assumption that the paths of X are Hölder-continuous with exponent η > 0, so the

(Ft)-stopping time

T = inf

{

u > 0 : sup
0≤v<u

(u− v)−η|Xu −Xv|2 > 1

}

is strictly positive a.s. In particular, if we write Λε = {τε < T}, then P(Λε) tends to 1 as

ε → 0+.

We fix a > 0, consider

Kε,a = Card

{

s ≤ ε :

∣

∣

∣

∣

∫ τs

τs−

(Xu −Xτs−)dBu

∣

∣

∣

∣

2

> aεm

}

,

and claim that

lim
ε→0

εαm−1E(Kε,a,Λε) = 0 . (5)

If we take (5) for granted, then we can complete the proof by an easy adaptation of the argument

in Theorem 1. Indeed, we can then find a strictly increasing sequence of integers (n(k), k ∈ N)
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such that with probability one, for all rational numbers a > 0

lim
k→∞

n(k)1−αmK1/n(k),a = 0 . (6)

We observe from (4) that for any a ∈ (0, 1/2), if |∆Îs|2 > εm, then necessarily either

|X0∆B̂s|2 > (1− 2a)2εm ,

or

|(Xτs− −X0)∆B̂s|2 > a2εm ,

or
∣

∣

∣

∣

∫ τs

τs−

(Xu −Xτs−)dBu

∣

∣

∣

∣

2

> a2εm .

As

lim
ε→0+

sup
0≤s≤ε

|Xτs− −X0| = 0 ,

this easily entails, using (3) and (6), that

lim sup
k→∞

n(k)1−αmJ1/n(k) ≤ lim
k→∞

n(k)1−αmN1/n(k),(1−2a)−1 |X0|

= (1− 2a)−2α|X0|2α , a.s.

where the identity in the second line stems from (3). A similar argument also gives

lim inf
k→∞

n(k)1−αmJ1/n(k) ≥ (1 + 2a)−2α|X0|2α , a.s.,

and as a can be chosen arbitrarily close to 0, we conclude that

lim
k→∞

n(k)1−αmJ1/n(k) = |X0|2α , a.s.

Hence |X0| is Î0-measurable.

Thus we need to establish (5). As τ is independent of F∞, we have by an application of

Markov’s inequality that for every s ≤ ε

P

(

∣

∣

∣

∣

∫ τs

τs−

(Xu −Xτs−)dBu

∣

∣

∣

∣

2

> aεm,Λε | τ
)

≤ 1

aεm

∫ ∆τs

0

dvvη ≤ (∆τs)
1+η

aεm
.
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It follows that

E(Kε,a,Λε) ≤ E

(

∑

s≤ε

(

(∆τs)
1+η

aεm
∧ 1

)

)

= εc

∫

(0,∞)

dxx−1−α

(

x1+η

aεm
∧ 1

)

= O(ε1−αm/(1+η)) ,

where for the second line we used the fact that the Lévy measure of τ is cx−1−αdx for some

unimportant constant c > 0. This establishes (5) and hence completes the proof of our claim.
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