
HAL Id: hal-00484040
https://hal.science/hal-00484040v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

REPRESENTATION AND REASONING MODELS
FOR C3 ARCHITECTURE DESCRIPTION

LANGUAGE
Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. REPRESENTATION AND REASONING MODELS FOR
C3 ARCHITECTURE DESCRIPTION LANGUAGE. Tenth International Conference on Enterprise
Information Systems (ICEIS’08), Jun 2008, Barcelona, Spain. pp.207-212. �hal-00484040�

https://hal.science/hal-00484040v1
https://hal.archives-ouvertes.fr

REPRESENTATION AND REASONING MODELS

FOR C3 ARCHITECTURE DESCRIPTION LANGUAGE

Abdelkrim Amirat and Mourad Oussalah
Laboratoire LINA CNRS UMR 6241, Université de Nantes

2, Rue de la Houssinière, BP 92208,

44322 Nantes Cedex 03, France

{abdelkrim.amirat, mourad.oussalah}@Univ-Nantes.fr

Keywords: Model, Representation, Hierarchy, Connector, Architecture.

Abstract: Component-based development is a proven approach to manage the complexity of software and its need for

customization. At an architectural level, one describes the principal system components and their pathways

of interaction. So, Architecture is considered to be the driving aspect of the development process; it allows

specifying which aspects and models in each level needed according to the software architecture design.

Early Architecture description languages (ADLs), nearly exclusive, focus on structural abstraction hierarchy

ignoring behavioural description hierarchy, conceptual hierarchy, and metamodeling hierarchy. In this paper

we focus on those four hierarchies which represent views to appropriately “reason about” software

architectures described using our C3 metamodel which is a minimal and complete architecture description

language. In this paper we provide a set of mechanisms to deal with different levels of each hierarchy, also

we introduce our proper structural definition for connector’s elements deployed in C3 Architectures.

1 INTRODUCTION

Nowadays, there is a completely new approach to

building more reliable software systems which

consist to decompose large and complex systems

into smaller and well-defined units called software

components. A component-based application is a

collection of individual components, which are

interconnected via well-defined connectors between

their interfaces.

Component that have no externally observable

internal structure, while having real implementation

in certain programming language, are called

primitive components. Components containing

nested subcomponents, i.e. components with

observable internal structure, are called

configurations. So, components, connectors and

configurations commonly referred to as core

elements, are typically defined in an Architecture

Description Language (ADL) (Allen, 1997).

Software architecture researchers need

extensible, flexible architecture descriptions

languages and equally clear and flexible

mechanisms to manipulate these core elements at the

architecture level.

There is not today, nor has there ever been, a

clear consensus on a definition of software

architecture. Recently Medvidovic (Medvidovic,

2007) gives the following definition for software

architecture “A software system’s architecture is the

set of design decisions about the system”. So, if

those decisions are made incorrectly, they may cause

your project to be cancelled. However, these design

decisions encompass every aspect of the system

under development, including: design decisions

related to system structure, design decisions related

to behaviour also referred to as functional, design

decisions related to the system’s non functional

properties. Also, we can elicit other design decisions

related to the development process or the business

position (product-line).

The “first-generation” ADLs all shared certain

traits. They all modeled the structural and, with the

exception of Acme (Garlan, 2000), functional

characteristics of software systems. They invariably

took a single, limited perspective on software

architecture. In this paper we introduce further

perspectives which are complementary to the

structural one. The majority of ADLs proposes, like

reasoning model, only sub-typing as a mechanism

for specialization (e.g. Acme, C2). Otherwise, for

the rest of ADLs, they propose their own ad hoc

mechanisms based on algorithms and methods

designed specially for them. Based on a bread

survey of architecture description notations and

approaches, we identified that ADLs capture aspects

of software design centred around a system’s

Component, connectors, and configurations. The

core elements of our model are basically defined

around these tree elements. So, from this we derive

the name of our model C3 for Component,

Connector, and Configuration. The rest of the paper

is organized as fellows. In section 2 presents our

research motivations. Section 3 describes the C3

metamodel. The last section presents a conclusion

about this work.

2 MOTIVATION

Our motivation in this work is to develop a generic

model for the description of software architectures

which must be minimal and complete. It is minimal

because we are only interested by the core concepts

in each ADL. And complete because with this

minimum of concepts the architect will be able to

describe any required structure he needs to realize

using those concepts and a set of predefined

mechanisms. However, describing only the

architecture structure is not sufficient to provide

correct and reliable software systems. In this paper

we are going to focus more on representation

architecture model and to reason about its elements

following four different types of hierarchies. Each of

those hierarchies provides a particular view on the

architecture. We expect from our approach to

provide more explicit and better clarified software

architecture. Mainly the approach is developed to:

� Make explicit the possible types of hierarchies

being used as support to reason about the

architecture, with the different possible levels in

each hierarchy.

� Show semantics conveyed by every type of

hierarchy by providing the necessary mechanisms

used to connect elements of in the same

hierarchical level and the mechanisms used to

connect elements of every level with the elements

of the adjacent levels.

� Allow introducing various mechanisms of

reasoning within the same architecture according

to the requirements of the system in a specific

application domain.

� Establish the position of existing mechanisms

developed for reasoning with regard to our

referential.

3 THE C3 METAMODEL

In order to have a complete C3 metamodel, we have

defined mainly two complementary models to

describe and reason about system’s architecture. We

use a representation model to describe architectures

based on C3 elements and we use a reasoning model

to understand and analyse the representation model.

3.1 Representation Model

The core elements of the C3 representation model

are components, connectors, and configurations,

each of these elements have an interface to interact

with its environment like depicted in Figure 1.

Configuration

+name: String

Component

+name: String

1

1..*

Connector

+name: String

1

0..*

Inter face

1

1..*

Port Service

ProvidedPortRequiredPort ProvidedServiceRequiredService

Figure 1: Basic elements of C3 metamodel

Components represent the primary computational

elements and data stores of a software system.

Intuitively, they correspond to the boxes in box-and-

line descriptions of software architecture. In C3,

each component can have one or more ports. Ports

are the interaction points between components and

their environments.

Connectors are very important entities that

unfortunately are not dealt with by all conventional

component-based models. In C3, connectors

represent interconnections among components to

support their interaction and they are defined

explicitly and considered as first class entities by

separating their interfaces from their imple-

mentation. Figure 2 illustrates our contribution at

this level which consists in enhancing the structure

of a connector by encapsulating the attachment links

inside its definition. So, the application builder will

have to spend no effort in connecting connectors

with their compatible components or configurations.

Consequently, the task of the developer consists

only to select the suitable type of connector which is

compatible with the types of components and/or

configurations which are expected to be connected

by it this last one (Amirat, 2007).

Figure 2: The new structure of a connector

So, by encapsulating attachments links inside the

connector, we can give the following connector

definition.

Configuration. In C3 each component or connector

is perceived and handled from the outside as a

primitive element. But their inside can be real

primitive elements or composite with a

configuration encapsulating all the internal elements.

So, in C3 we define configurations as first-class

entities. They represent graphs of components and

connectors to describe how they are interconnected

to each other. A configuration may have an interface

specified by a set of ports and services. Each port is

perceived like a bridge between the internal

environment of the configuration and the external

one. So, the different elements of the architecture

are connected through their interfaces. Thus the

interface types of are checked if they are compatible

or not (interface matching). Consequently, the

consistency of elements assembly is controlled

syntactically.

3.2 Reasoning Model

In our approach we plan to analyze the software

architecture by using different hierarchy views

where each hierarchy is investigated at different

levels of representations. C3 reasoning model is

defined by four hierarchies. Each hierarchy

represents a specific view on the C3 representation

model different from the others.

Those four hierarchies are: 1- The structural

hierarchy used to explicit the different nested levels

of abstraction that the system’s architecture can

have. 2- The behavioural hierarchy to describe the

different levels of system’s behaviour hierarchy

generally represented by protocols. 3- The

conceptual hierarchy to provide the libraries of

element types corresponding to structural or

behavioural element at each level of the architecture

description. 4- The metamodeling hierarchy to locate

from where our metamodel is coming and what we

can do with it. Obviously those two sides will

belong to the pyramid of abstraction hierarchies

defined by Object Management Group (OMG,

2007).

3.2.1 Structural Hierarchy (SH)

Structural hierarchy has to provide the structure of

particular system architecture in terms of the

architectural elements. The majority of academic

ADLs like Aesop, MetaH, Rapide, SADL, and

others (Matevska-Mayer, 2004) or the industrial

ones like CCM, EJB or .Net (Pinto, 2005) allow

only a flat description of software architectures.

Using those ADLs architecture is described only in

terms of components connected by connectors

without any nested elements. This design choice was

made in order to simplify the structure and also by

lack of concepts and mechanisms that respectively

define and manipulate configurations of components

and connectors.

In our metamodel the structure of an architecture

is described using components, connectors, and

configurations, where configurations are composite

elements. Each element in this configuration can be

a primitive (with a basic behaviour scenario) or a

new configuration which contains another set of

components and connectors, which in their turn can

be primitive or composite material, and so on.

However, C3 allows the representation of

architecture with the necessary number of

abstraction levels (Ln, Ln-1… L0), where n depends

on the complexity of the system. Practically all

architectural solutions for domain problems have a

nested hierarchical nature. Thus, real software

architecture can be viewed as a graph where each

internal node of this graph represents a configuration

and each leaf-node represents a primitive component

arcs between nodes represent connectors.

As a simple illustrative example, Figure 3 depicts

the client-server (CS) architecture. We analyse this

example from the provided view of each type of

hierarchy introduced in this paper. In the following

figures we use numbers to represent architecture

elements.

Connector_NewRPC (C.P1 , S.P2) {

 Roles R1, R2;
 Services sendRequest , receiveRequest;

 Properties {List of properties}

 Constraints maxClient = 3 ;

 Glue R1=R2 // simple mapping function

 Connexions {RPC.R1 to C.P1, RPC.R2 to S. P2} }

portRequis, portFourni, roleRequis , roleFourni

Connector (NewRPC)

Client (C) Server (S) RPC

Attachment New structure

of a connector

Old structure

of a connector

Legend:

P1 R1 P2 R2

Figure 3: CS architecture

To describe the structural hierarchy we use the

following three types of connectors.

Composition/Decomposition Connector (CDC)
used to link each configuration to its underling

elements. Therefore, this type of connector allows

the propagation of information among elements of

the structural hierarchy. And we can determine the

child’s or the configuration, if it is the case, of each

element deployed in the architecture. Figure 4

illustrates how to use CDC connector to represent

composition/decomposition relationships in the

client-server example.

Figure 4: Structural hierarchy with CDC connector

Attachment Connector (AC) we use this type of

connector to establish service-connections between

architectural elements1 deployed in the same level of

abstraction as illustrated in Figure 5. In some ADLs

this type of connector in called assembly connector

and represented by first class entity e.g. Acme

(Garlan, 2000). Inside the AC connector the glue

code specifies the interaction protocol among

communicating elements.

1 From now on, we use the term architectural element to mean a

component or a configuration.

Figure 5: Structural Hierarchy with AC connectors

The description of the RPC connector (AC1) used to

connect the client (node 2) to the server (node 3) is

the following:

At each level, in the structural hierarchy, we use

a different set of mechanisms to deal with the input

interfaces and the output interfaces. For this reason

inputs are generally expended when we shift from

(Li) to (Li-1) and outputs are compressed when we

shift from (Li-1) to (Li). The data format will change

when we change the level. So, it is necessary that

mechanisms used at each level are not the same.

From this observation we will define, in the

following, a connector for expansion of inputs and

compression of outputs.

Expansion-Compression Connector (ECC) we use

this type of connectors to establish service-

connections between configurations and their

underling elements (Figure 6). In some ADLs this

type of link is called binding like in Acme or

delegation like in UML but they don’t define it as a

first class entity.

Figure 6: Structural hierarchy with one ECC connector

Component Client {Port {send-request}}

Configuration Server {Port {receive-request}}
Connector AC1 (Client, Server) {

 Roles {Caller, Callee}

 Services {List of services}

 Properties {maxRoles: integer = 2, Synchronous: Boolean = true}

 Constraints {List of constraints}

 Glue {caller = callee}
 Connections {Client.send-request to RPC.caller

 Server.receive-request to RPC.callee} }

2

L2

L1

L0

3

5 4 6

AC1

AC3 AC2

1

Client Server
RPC

Coordinator

Security

Manager
DataBase

sendRequest receiveRequest

caller callee

2 3

6 5

4

1 Client/Server Architecture

3

E
x
p
a
n

si
o
n
 C

o
m

p
re

ssio
n

4
6

ECC

2

5

3 L2

L1

L0

CDC1

C
o

m
p
o
si

ti
o
n

 D
ec

o
m

p
o

sitio

1

2 3

6 5 4

CDC2

L2

L1

L0

3.2.2 Behavioural hierarchy (BH)

The BH represents the description of the system’s

behaviour at different hierarchical levels. Each

primitive element of the architecture has its own

behaviour. The behaviour description associated

with the highest level of the hierarchy represents the

overall behaviour of the architecture (Lanoix, 2007).

This behaviour is described by a global protocol P1.

The system architecture at this level is perceived as a

black box with a set of required services and

provided services. At lower level each component

and configuration has its own protocol to describe its

functionality. So, a protocol is used to specify the

behaviour function of an architectural element by

defining the relationship among the possible states

of this element and its ability to produce coherent

results. Figure 7 sketches how to decompose the

client-server protocol P1 at level L2 into its sub-

protocols at level L1. This decomposition process

produces two other protocols (P2, P3). By the same

process P3 protocol is decomposed to produce an

other set of sub-protocols at the last level. The

protocol leaves represent a primitive function of

elements which are available in the library.

Figure 7: Plane representation of behavioural hierarchy

To explicit the different relationships among

elements of the behavioural hierarchy we use the

same set of connectors defined in the previous

structural hierarchy, namely the CDC connector to

compose and decompose behaviour elements, AC

connector to link behaviours belonging to the same

hierarchical level and ECC to expanse and compress

exchanged information between behaviours.

3.2.3 Conceptual hierarchy (CH)

Through the mechanism of specialization the

architect can create and classify element libraries

according to architecture development needs in each

target domain. The number of sub-type levels is

unlimited. But we must remain at reasonable levels

of specialization in order to keep compromise

between the use and the reuse of the architectural

elements. Those libraries represent the conceptual

hierarchy (Frakes, 2005). To implement the

conceptual hierarchy we use the following

connector.

Specialisation/Generalisation Connector (SGC) is

used to connect each element type to its super-type

in the same level of abstraction. The conceptual

hierarchy depicted in Figure 8 illustrates how to use

the SGC connector to generate the five meta-type

connectors from the first meta-connector defined by

C3. The SGC used at this level is the bootstrap for

the others meta-type connectors. Of course and by

the same way we can use the SGC connector to

specialise any architecture element.

Figure 8: Conceptual hierarchy with SGC connector

3.2.4 Metamodeling hierarchy (MH)

The metamodeling hierarchy is defined by 4

abstraction levels (A0,…,A3). Each level (Ai) must

conform to the description given above in A(i+1)

level. The level A3 conforms to itself.

Symmetrically, each level (Ai) describes the inferior

level A(i-1). A0 is the application level (OMG, 2007).

Application level (A0) is an instance of the

architecture model (level A1). At this level the

developer has the possibility to select and instantiate

elements any times as he needs to describe his

application. Instances are created from element types

defined at A1 level. Elements are created and

assembled with respect to the different constraints

defined at A1 Level.

Architecture level (A1) at this level architecture is

described using language constructions defined at A2

level (e.g. C3 metamodel, UML 2.0). Thus, each

CDC AC ECC

SGC

IOC

Connector G
en

era
lisatio

n

S
p
e
ci

al
is

a
ti

o
n

P1

P2

P3

P4

e1

e1

x

P5

P6

s1 e1

s2

s1

Legend: Pi : Protocol i ; e1 : Input ; s1 : Output ;

 x , y, z : intermediate results

L0

L1

L2

y z

architecture model is an instance of the metamodel

defined in the above level in the metamodeling

hierarchy.

Meta-architecture level (A2) defines the language

or the notation used to describe architectures at A1

level. Meta-architecture is also used to modify or

adapt the description language. All operations

undertaken at this level are always in conformance

with the top level of the pyramid.

Meta meta-architecture (A3) describes concepts

and elements used to define any new architecture

description language or new notation. In previous

work we have defined meta meta-architecture model

called MADL
2
 (Smeda, 2005). So, C3 metamodel is

defined in conformance with MADL. To connect

each architectural element instance to its type at the

above level we define the following connector:

Instance-Of Connector (IOC) is used to establish

connection between element instances and their

classifier defined in the above level. Figure 9

illustrates the connections between all components

instances used at the client-server application (A0)

and their component types at the architecture level

(A1) and the connections between all component

types at (A1) level with the C3 meta-component.

Those connections are realised using Instance-Of

connectors (IOC).

Figure 9: Internal view of IOC connector

4 CONCLUSION

In this work we have defined metamodel called C3

to describe software architecture and to reason about

from different perspective views. The core elements

of C3 are components, connectors and

configurations. Elements are assembled using their

2
 Meta Architecture Description Language

interfaces. Syntactic and semantic compatibility are

carried out using respectively interfaces-matching

and protocols-matching. In this metamodel we

mainly use structural hierarchy to describe the

structural decomposition of the system, behaviour

hierarchy to describe the behaviour decomposition,

conceptual hierarchy to describe elements type

libraries. Finally, we use the metamodeling

hierarchy to show how we can modify the

metamodel C3 and how to use it. Each hierarchy is

supported and tooled by explicit mechanisms to

provide the different form of connections. Contrary

to the usual ADLs, which define only the attachment

connectors, in C3 we define five types of connectors

to deal with different connection forms. Structural

and behavioural hierarchies use CDC, AC, and ECC

connectors. Conceptual hierarchy uses SGC

connector while metamodeling hierarchy uses the

IOC connector.

REFERENCES

Allen, R.J., 1997. A Formal Approach to Software

Architecture. PhD Thesis. School of Computer

Science, Carnegie Mellon University.

Amirat, A., Oussalah, M., Khammaci, T., 2007. Towards

an Approach for Building Reliable Architectures. In

Proceeding of IEEE IRI’07. Las Vegas, Nevada, USA,

pp. 467-472.

Frakes, W. B., Kang, K., 2005. Software Reuse Research:

Status and Future. IEEE Transactions on Software

Engineering. vol.31 n.7, pp.529-536.

Garlan, D., Monroe, R.T., Wile, D., 2000. Acme:

Architectural Description Component-Based Systems,

Foundations of Component-Based Systems.

Cambridge University Press, pp. 47-68.

Lanoix, A., Hatebur, D., Heisel, M., Souquières, J., 2007.

Enhancing Dependability of Component-Based

Systems. Ada-Europe’07, pp. 41-54.

Matevska-Meyer, J., Hasselbring, W., Reussner, R., 2004.

Software architecture description supporting

component deployment and system runtime

reconfiguration. WCOP’04, Oslo.

Medvidovic, N., Dashofy, E., Taylor, R.N., 2007. Moving

Architectural Description from Under the Technology

Lamppost. Information and Software Technology. pp.

12-31. Vol. 49, No. 1.

OMG, 2007. Unified Modeling Language: Infrastructure.

from http://www.omg.org/docs/formal/07-02-06.pdf.

Pinto, M., Fluentes, L., Troya, M., 2005. A Dynamic

Component and Aspect-Oriented Platform. The

Computer Journal. Vol.48 No. 4, pp. 401-420.

Smeda, A., Oussalah, M., Khammaci, T., 2005. MADL:

Meta Architecture Description Language. 3rd ACIS

International Conference SERA’05. Pleasant,

Michigan, USA, pp.152-159.

In
st

a
n
c
e-

O
f

C3 Meta

Component

Client

IOC

DataBase
Connection

Manager

IOC IOC IOC

CL2
DB1 CM1

 CL1 CL3

Meta

Architecture

(A2)

Architecture

(A1)

Instance

(A0)

