
HAL Id: hal-00484034
https://hal.science/hal-00484034

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Model to Develop Component-Based
Systems

Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. Hierarchical Model to Develop Component-Based Systems.
15th IEEE International Conference on Engineering of Computer-Based Systems (ECBS’08), Mar
2008, Belfast, Ireland. pp.337-345. �hal-00484034�

https://hal.science/hal-00484034
https://hal.archives-ouvertes.fr

Hierarchical Model to Develop Component-Based Systems

Abdelkrim Amirat and Mourad Oussalah
Laboratoire LINA CNRS FRE 2729, Université de Nantes

2, Rue de la Houssinière, BP 92208,
44322 Nantes Cedex 03, France

{Abdelkrim.Amirat, Mourad.Oussalah} @Univ-Nantes.fr

Abstract

Large and complex software systems require

expressive notations for representing their software
architecture. In this context Architecture Description
Languages (ADLs) can be used for describing
architectures of components-based software systems.
Typical ADLs provide explicit support for specifying
components, connectors, and configuration as well as
for building hierarchical systems configurations. All of
them allow structural dependencies among components
to be specified to define static configurations. This may
be sufficient for an initial system composition, but does
not provide enough information for reasoning about
the different kind of connections among elements.
Physical and logical connections are defined in this
paper. Four kinds of hierarchies are also presented.
Each one is used to provide special-purpose view
about the architecture.

1. Introduction

One of the key goals of software architecture
research is to understand and to manipulate a system at
a higher level of granularity than modules or lines of
code. Generally, software architectures are composed
of components, connectors and configurations,
constraints on the arrangement and behaviour of
components and connectors. The architecture of a
software system is a model, or abstraction of that
system. Software architecture researchers need
extensible, flexible architecture descriptions languages
(ADLs) and equally clear and flexible mechanisms to
manipulate these core elements of the architecture.

Recently Medvidovic [5] gives the following
definition for software architecture “A software
system’s architecture is the set of design decisions
about the system which, if made incorrectly, may cause
your project to be cancelled”. However, these design

decisions encompass every aspect of the system under
development, including:

• Design decisions related to system structure – for
example, “there should be exactly three
components in the system, the data store, the
business logic and the user interface component;”

• Design decisions related to behaviour (also
referred to as functional) – for example, “data
processing, storage, and visualisation will be
handled separately;”

• Design decisions related to the system’s non
functional properties – for example, “the system
dependability will be ensured by replicated
processing modules;”

• Also, we can elicit other design decisions related
to the development process or the business
position (product-line).

We note that in the description languages

architectures (ADLs) that currently exist, there is no
standard about architectural concepts or standards in
terms of mechanisms for manipulating those concepts
(i.g. in the ADLs defining explicit connectors, we see
that each one gives its proper definition for connectors,
some ADLs define the concept of configuration while
others do not).

For the reasoning model, the majority of ADLs
proposes only sub-typing (inheritance) as a mechanism
for specialization (e.g. Acme, C2). Otherwise, for the
rest of ADLs, they propose their own ad hoc
mechanisms based on methods designed specially for
these ADLs.

Based on a bread survey of architecture description
notations and approaches, we identified that ADLs
capture aspects of software design centred around a
system’s Component, connectors, and configurations.
The core elements of our model are basically defined
around these tree elements. So, from this we derive the
name of our model C3 for Component, Connector, and

Configuration. Taking into consideration that our C3
have no relationship with C2 defined by Taylor [14]
nor with C3 with is an extension of C2 defined by
Pérez-Martínez [10].

The rest of the paper is organized as follows. In
section 2 presents our research motivations. Section 3
describes the C3 metamodel C3. The last section
presents our conclusion and the different perspectives
of our work.

2. Motivation

In this work the goal is to develop a generic model
for the description of software architectures which
must be minimal and complete. It is minimal because
we are only interested by the core concepts in each
ADL. And complete because with this minimum of
concepts the architect can be able to describe any
required structures he need to realize.

However, describing only the architecture structure
is not sufficient to provide correct and reliable software
systems. In this paper we are even more going to focus
on representation architecture model and to reason
about its elements following four different types of
hierarchies. Each of these hierarchies provides a
particular view on the architecture. In the following
sections we present more details about these
hierarchies.

Using our approach software architecture is more

explicit and clarified by:

• Make explicit the possible types of hierarchies
being used as support of reasoning on the
architectures, with the different possible levels in
each hierarchy.

• Show semantics convey by every type of hierarchy

by providing the necessary mechanisms used to
connect elements of in the same level of hierarchy
and the mechanisms used to connect elements of
every level with the elements of the super and
lower levels.

• Allows introducing various mechanisms of

reasoning within the same architecture according
to the requirement problem in a specific domain
space.

• Establish the position of existing mechanisms

developed for reasoning with regard to our
referential.

3. The metamodel of C3

In order to have a complete C3 model, we define
mainly two models to describe and reason about
software architectures. A representation model to
describe any architecture based on C3 elements and a
reasoning model to understand and analyse the
representation model.

3.1. Representation model

The core elements of the C3 representation model
are components, connectors, and configurations, each
of these elements have an interface to interact with its
environment. Figure 1 depicts the core elements of the
metamodel C3.

Configuration

+name: String

Component

+name: String

1

0..*

Connector

+name: String

1

1..*

Interface

RolePort Service

ProvidePortRequirePort ProvideRoleRequireRole ProvideServiceRequireService

Figure 1. Basic elements of C3 metamodel

3.1.1. Components

A component is a unit of computation or data
storage. Therefore, components are loci of computation
and state. A component in an architecture may be as
small as a single procedure or as entire application. It
may require its own data and/or execution space, or it
may share them with other components [6].

In order to be able to adequately reason about a
component and the architecture that includes it, C3
should also provides facilities for specifying
component needs, i.e., services required of other
components in the architecture. An interface thus
defines computational commitments a component can
make and constraints on its usage.

Each interaction in C3 is a port. Ports are named
and typed. We distinguish between required and

provided ports. Each port is used by one or more
services.

Component semantics are modeled to enable
evolution, analysis, enforcement of constraints and
consistent mappings of architectures from one level of
abstraction to another.

The structure of component is the specification of
its required and provided ports. The behaviour of a
component is the specification of its required and
provided services.

3.1.2. Connectors

Connectors are architectural building blocks used to
model interactions among components and rules that
govern those interactions. In order to enable proper
connectivity of components and their communication
in an architecture, a connector should export as its
interface those services it expects.

C3 refer to connector interaction points as roles.
Explicit connection (attachments) of component ports
and connector roles is required in an architecture
configuration. Roles are named and typed and are in
many ways similar to component ports. Connector
services are described inside the glue code [13].
Therefore, a connector’s interface is a set of interaction
points between it and the components attached to it. It
enables reasoning about the well-formedness of an
architectural configuration.

Our contribution at this level consists in enhancing
the structure connectors by encapsulating the
attachment links (Figure 2.a). So, the application
builder will have to spend no effort in connecting
connectors with its compatible components and
configuration. Consequently, the task of the developer
consists only in choosing a suitable type of connector
which is compatible with the types of
components/configurations which are expected to be
connected.

Figure 2.a. The new structure of connector

We have given the following definition (Figure 2.b)
for connectors in a previous work [1].

Figure 2.b. Syntax of the connector

So, by encapsulating attachment inside connectors
and having well defined connector interfaces with
previously known elements to be connected by this
connectors, consequently components/configurations
and connectors are assembled in an easy and coherent
way in the form of an architectural puzzle (Lego
Blocks) without any effort to describe links among
components and connectors or between configurations
and connectors. Consequently, this approach
accelerates the development of components, improves
testability, coherence, maintainability and promotes
component markets [1].

3.1.3. Configuration

Architecture configurations, or topologies, are
connected graphs of components and connectors that
describe architectural structure. This information is
needed to determine whether: appropriate components
are connected, their interfaces match, connectors
enables proper communication, and their combined
semantics result in desired behaviour.

The goal of configuration is to abstract away the
details of individual components and connectors. They
depict the system at a high level that can potentially be
understood by people with various levels of technical
expertise and familiarity with the problem at hand.

For more clarity, in our model C3 each component
or connector is perceived and handled from the outside
as primitive element. But their inside can be real
primitive elements, or composite with a configuration
which encapsulates all the internal elements of this
composite. These Configurations are first-class entities.
They represent a graph of components and connectors
and describe how they are fastened to each other. A
configuration may have ports, and each port is bound
to one or more ports of the internal components. In
general, configurations can be hierarchical where
components and connectors represent sub-

Connector_TypeName (List of element interfaces)
{
 Roles {List of roles}
 Services {List of services}
 Properties {List of properties}
 Constraints {List of constraints}
 Glue {The communication protocol}
 Attachments {List of attachments}
}

Glue Component
B

Component
A

P1

P2
R2

R1 P4

P5 R4

R3

Attachment New structure
of a connector

Old structure
of a connector

Legend: Pi : Port i ; Rj : Role j

configurations that have internal architectures (Figure
2).

3.1.4. Interface

Every architectural element has an interface. Each
interface is associated with a type which corresponds
to a set of operations which it defines. Via this
interface the element publish to the outside
environment it needs in term of required services as
well as the services which it provides (messages,
operations, and variables). However, elements are
selected and connected from their published interface.
So, the interface is though as a contract with the
environment that the element should honour.

To establish connections between elements we use
ports for components and configurations and roles for
connectors and we assign the services to each port and
role with a necessary set of constraints to be respected
during the connections. From conceptual view ports
and roles are concrete classes inherited from the
interface abstract class as shown in Figure 1.

Also, in modelling level we use cardinality to
describe the multiplicity of each relation (connection)
between architectural elements. This cardinality
express the number of ports associated with
components and configurations and the number of
roles associated with connectors. Each port or role is
considered as a channel to carry in/out
required/provided services exchanged with element
environment.

The previous architectural elements are manipulated
and used via predefined mechanisms in the reasoning
model. Essentially, we are going to study the
instantiation, specialization, composition,
decomposition, and connections mechanisms. In the
following section, we define the using context of each
mechanism. Some details about the structure of these
architectural elements are presented in our previous
works [1] and [9].

3.2. Reasoning model

In our approach we intended to analyze the software
architecture by using different hierarchies where each
hierarchy is investigated at different levels of
representations. The Figure 3 illustrates the C3
reasoning model of C3. This model is defined by four
types of hierarchies and each type represents a specific
view on the C3 representation model different from the
others. In the following sections, we present those
types of hierarchy and we investigate the possible
levels of each hierarchy.

Figure 3. C3 metamodel and reasoning models

In Figure 3 we represent the different reasoning
hierarchies based on an external view (perceived by
user). In the following sections we present: 1- The
abstraction hierarchy used to explicit the different
nested levels of structural hierarchies that software
architecture can have. 2- The behavioural description
hierarchy to explicit the different levels of system
behaviour hierarchies represented by protocols. 3- The
conceptual hierarchy to describe the library of element
types at the architecture level. 4- The metamodeling
hierarchy to locate our model in the pyramid of
hierarchies defined in our previous work. All those
external views are associated with an internal views
generated automatically using the reasoning tools [1].

3.2.1. Structural hierarchy (SH)

Structural hierarchy also called abstraction
hierarchy has to provide the structure of a particular
architecture in terms of the architectural elements
defined by the ADL. The majority of academic ADLs
like Aesop, MetaH, Rapide, SADL, and others [4] or
the industrials like CORBA, CCM/CORBA, EJB/J2EE
[11] allow only a flat description of software
architectures.

Using those ADLs architecture is described only in
terms of components connected by connectors without
any nested elements - without any structural hierarchy.
This design choice was made in order to simplify the
structure and also by lack of concepts and mechanisms
that respectively define and manipulate configurations
of components and connectors.

In our C3 model the structure of architectures is
described using components, and connectors, and
configurations where configurations are composite
elements. Each element in this configuration
(component or connector) can be a primitive (with a
basic behaviour scenario) or configuration which

Behavioural
Hierarchy

-II-

-III-

Conceptual

Hierarchy

 -IV-

Metamodeling
Hierarchy

Structural
Hierarchy

 -I- C3

Representation
Metamodel

contains another set of components and connectors,
which in their turn can be primitive or composite
material, and so on. However, the metamodel C3
allows the representation of architecture with a real
hierarchy (with an arbitrary n abstraction levels). It
should be noted that practically all architectural
solutions for domain problems, have a nested
hierarchical nature. Thus, software architecture can be
viewed as a graph where each internal node of this
graph represents a configuration and each end-node
represents a primitive component arcs between nodes
are connectors.

In Figure 4.a, we represent the logical view of the
structural hierarchy where the root node is the first
level of abstraction; it is also the configuration which
encapsulates all elements of the architecture. The small
white circles represent primitive components and small
black circles represent sub-configurations (composites)
in the system architecture. These configurations
contain other elements inside. Thus, the configurations
will never be end-nodes in the hierarchy tree of
abstractions. The node with double circles represents
the global configuration of the architecture. The arcs
represent the bonds of hierarchy - the father/child
relationship. This relationship does not necessarily
imply a service-connection between the father node
and the child one. To navigate among abstraction
hierarchy levels we define the following type of
connector:

• Composition-Decomposition Abstraction Connector

(CDAC) used to link each configuration to its
underling elements. Therefore, this type of connector
allows the navigation among levels of the abstraction
hierarchy. Also, we can determine the children or the
father, if it is the case, of each element deployed in
the architecture. Figure 4.b represents the notation
adopted.

Figure 4.a. Logical view of the SH (1)

Figure 4.b. CDAC connector

Figures 5.a illustrates the physical view of the

structural hierarchy with two service-connection types
of connector; the fist one is generally represented by an
implicit link called Binding and the second one is
defined by several ADLs as Attachment link. In our
model those two types of link are explicated as first
class entities and are defined as follows:

• Expansion-Compression Connector (ECC) is

represented by discontinuous arc. We use this type of
connectors to establish service-connections between
each configuration and the underling elements
(Figure 5.b). In some ADLs this type of link is called
binding or delegation but not defined as a first class
entity.

• Structural Attachment Connector (SAC) is

represented by full arc. We use this type of
connectors to establish service-connections between
components and configurations deployed in the same
level of abstraction (Figure 5.c). In some ADLs this
type of connector in called assembling connector and
represented by first class entity (e.g. Acme) [2].

Figure 5.a. Physical view of the SH (2)

2 3 4

7 8 9

14

5 6

15 1713 1610 11 12

1

e1

e1.1 e1.2

s2 s4

s3

s1

s9

s16 s17

Attachment Connector
Expansion-Compression Connector

Legend

{ei , si } = {Required, Provided} Interfaces

2 3 4

7 8 9

14

5 6

15 1713 1610 11 12

1 Level n

Level n-3

Level n-2

Level n-1

Root Legend

1 Configuration

Primitive Component

CDAC

C
om

po
si

tio
n

D
ecom

position

4

7 8 9

Figure 5.b. ECC connector

Figure 5.c. SAC connector

Inside the connector the glue define the mapping between
elements.

• The provided service (s1) of “a” is required by “x”

• The provided service (s2) of “b” is required by “z”

• The provided service (s3) of “c” is required by “y”

Attachments are also defined inside the connector.

The different elements of the architecture are

connected through their interfaces. Thus the types of
interfaces are checked if they are compatible or not
(interface matching). Consequently, in the abstraction
hierarchy, the consistency of elements assembly is
controlled syntactically.

3.2.2. Behavioural description hierarchy

The behavioural description hierarchy represents the
description of the system’s behaviour at different
levels. Each primitive element of the architecture has
its own behaviour. The behaviour description
associated with the highest level of the hierarchy -
level n in Figure 6.a - represents the overall behaviour
of the architecture. This behaviour is described by a
global protocol P0. The system architecture at this level
is perceived as a black box with inputs (required
services) and outputs (provided services). At lower
level each component, connector, configuration, port,
or role has its own protocol to describe its functionality

(e.g. glue code is the protocol describing the connector
behaviour, also the component behaviour can be
described by a state chart diagram). So, protocol is a
mechanism used specifying the behaviour of an
architectural element by defining the relationship
among the possible states of this element and its ability
to produce coherent results.

Figure 6.a sketches how to decompose the protocol
P0 at level n into its sub-protocols at level n-1. This
decomposition process produces a set of other
behaviours {P01, P02, P03}. By the same process each
protocol of the level n-1 is decomposed to produce an
other set of sub-protocols at the level n-2, and so on
until level 0. The last level of the hierarchy is a set of
protocols representing the behaviour of primitive
elements available in the library of the architect. The
total set of protocol levels represents the behaviour
hierarchy of the system architecture.

Figure 6.a. Logical view of behavioural

hierarchy

To navigate among behavioural description

hierarchy levels we define the following type of
connector:

• Composition-Decomposition Behavioural Connector

(CDBC) used to link each protocol to its possible
sub-protocols. Therefore, this type of connector
allows the navigation among levels of the
behavioural description hierarchy. Also, we can

e1

e1.2 e1.1

1

2 4

s9

s16

9

Ex
pa

ns
io

n

C
om

pression

16 17

s17

e1 s9

ECC ECC

SAC
a

y

x

z

b c e2

e1

e3

s2 s3

s1

P0
s1e1

s2
e2

Le
ve

l n
-2

Le
ve

l n
-1

Le
ve

l
n

P03
P01

P02

e1

e2

s1

s2

x

y

P01

P02

e1

e2

s1

s2

x

y

P031

P032

Legend: Pi : Protocol i ; ei : Input i ; si : Output i ; x,y : intermediate result

determine the children or the father, if it is the case,
of each protocol used in the architecture. Figure 6.b
represents the notation adopted.

Figure 6.b. CDBC connector

• Binding Identity Connector (BIC) used to keep the

identity and the traceability of inputs and outputs of
protocols. There is no expansion or compression of
respectively inputs and outputs of protocols like in
abstraction hierarchy. The identity of inputs and
output is preserved (Figure 6.c).

• Behaviour Attachment connector (BAC) used to

connect protocols belonging to the same level of
hierarchy. This connection is explicated by real
transition between the end-state of the first protocol
and the start-state of the second one (Figure 6.c)

Figure 6.c. BIC and BAC connectors

If we use, for example, transition-based system to
specify the behaviour protocol associated with each
element then connections between behaviours are
made by simple transitions between the end-state of the
fist protocol and the start-state of the second one.
Inputs and outputs of each protocol are respectively
required and provided services.

The syntactic correction (discussed before) of the
assembled elements cannot insure the validation of the
produced architecture. The syntactic correction checks
only the compatibility of interfaces types. So, elements
are compatible to exchange information, but fail to

check if their collaboration “the semantic of
connections” can produce a coherent result.
Consequently, the behavioural description can insure
the compatibility of protocols (protocol matching)
associated with elements at any level of the hierarchy
[3].

3.2.3. Conceptual hierarchy

The conceptual hierarchy allows the architect to
model the relationship among elements of the same
family as illustrated in Figure 7.a. The architectural
entities are represented by types (classes). Each type is
a class library and each class has its sub-classes in the
library. So, we can shape the graph representing
entities hierarchy of the same family. Each graph has
its proper number of levels (sub-type levels).

Figure 7.a. Logic view of the conceptual

hierarchy

At the highest level of hierarchy we have the basic

element types developed to be reused. The element
types of the intermediate levels are created by reusing
the previous ones. Those intermediate element types
are reused to produce others (development by reuse
and to be reused) or used as end-elements to describe
architectures, and so on. Element types at the last level
of the hierarchy are only created to be used in the
description of architectures.

Through the mechanism of specialization
(inheritance) the architect will classify the library of
elements according to architecture development needs

CDBC

C
om

po
si

tio
n

D
ecom

position

P0

P01 P02 P03

Component

Component
(Cpt2)

Component
(Cpt1)

Component
(Cpt3)

Component
(Cpt22)

Connector

Component
(Cpt221)

Component
(Cpt222)

Component
(Cpt223)

Taxonomy
of concepts

(Types)

Sub-
Types 1

Sub-
Types 2 Component

(Cpt23)
Component

(Cpt21)

Sub-
Types 3

Configuration

…..

…..

…..

P0

BIC

P01

e1

e1 BAC P03 s1

s1

BIC

in each target domain. The number of sub-class levels
is unlimited. But we must remain at reasonable levels
of specialization in order to keep compromise between
the use and the reuse of the architectural elements. To
navigate among levels of the conceptual hierarchy we
define the following type of connector:

• Specialisation-Generalisation Conceptual Connector

(CGCC) is used to connect element types coming
from the same type (implemented by inheritance
mechanism in Java). So, we can construct easily all
trees representing the classification library types.
Figure 7.b represents the notation adopted.

Figure 7.b. SGCC connector

3.2.4. Metamodeling hiérarchy

In the metamodeling hierarchy of we have only 4
architectural levels with instantiation mechanism.
Thus, according to Figure 8.a, each level (Ai) must
conforms with the description given above in A(i+1)
level (instance-of relationship). The level A3 conforms
to itself. Symmetrically, each level (Ai) describe the
inferior level A(i-1). A0 is the end-level (run-time
instance) [7] [8].

A0 Level is the real word level (application level)
which is an instance of the architecture model level A1.
At this level the developer has the possibility to select
and instantiate elements any times as he needed to
describe a complete application. Instances are created
from element types which are defined at A1. Elements
are created assembled with respect to the different
constraints defined at A1.

A1 Level is also called architecture level. At this level
we have models of architecture, possibly with a given
style, described using the language constructions or
notations defined at A2 level (e.g. C3 metamodel).
Thus, each architecture model is an instance of the
metamodel defined in the above level.

Figure 8.a. External view of the metamodeling
hierarchy

A2 Level (meta-architecture level) defines the language
or the notation used to describe architectures at A1.
This level is also used to modify or adapt the
description language. All operations are undertaken at
this level will always be in conformance with the last
level.

A3 Level (meta meta-architecture) has the top level
concepts and elements used when we want to define
any new architecture description language or new
notation. In our previous work we have defined our
proper meta meta-architecture model called MADL.
So, our C3 metamodel is defined in conformance with
MADL. MADL is similar to MOF but component-
oriented [12].

To connect architecture levels we define the
following connector:

• Instance-Of Connector (IOC) is used to establish

connection among elements of a given level
(model) with their classifier defined in the above
level (metamodel). Figure 8.b represents the
notation adopted.

Cpt2

Cpt21

Sp
ec

ia
lis

at
io

n

G
eneralisation

Cpt22 Cpt23

SGCC

Meta MetaArchitecture
e.g. MADL, MOF

(Meta component, Meta connector, Meta Attribute …)

Meta Architecture
e.g. C3, UML 2.0

(Component, Connector, Attribute …)

Model of Architecture
e.g. Client/Server, Pipe/Filter

(Client Component, RPC Connector, Server
Component …)

Architecture Instance
e.g. Application1

(Client1, Client2, RPC1, Server1, …)

A3-Level

A2-Level

A1-Level

A0-Level Instance_Of

Instance_Of

Instance_Of

Instance_Of

Type : Classifier
Name: Classifier

Type : Classifier
Name: Component
Feature: Attributes,
Services,
Connections,

Type : Component
Name: Client
Attribute: Name
Service: …..
Connetion : …….

Type : Client
Name : Client1

Figure 8.b. IOC connector

5. Conclusion

The success of the component-construction
paradigm in mechanical and electrical engineering has
led to call its adoption in software development. To
this end we have defined a minimal and a complete
representation metamodel called C3 to describe
software architecture and to reason about this
architecture from different perspective view. The core
elements of C3 are components, connectors and
configurations. Elements are assembled using their
interfaces. Syntactic and semantic corrections are
carried out using respectively interfaces-matching and
protocols-matching. Perspective views are defined by
different kind hierarchies. Mainly, we use abstraction
hierarchy to describe the structural decomposition
hierarchy, behaviour description hierarchy to describe
the behaviour decomposition, conceptual hierarchy to
describe sub-classes of architectural elements and
finally the metamodeling hierarchy to show how we
can modify the metamodel C3 and how to use it. Each
hierarchy is supported and tooled by explicit
connection mechanisms to provide the different form
of connections required in each hierarchy.

6. References

[1] A. Amirat, M. Oussalah, and T. Khammaci, “Towards an
Approach for Building Reliable Architectures”, Proceedings
of IEEE IRI’07, Las Vegas, Nevada, USA, August 2007, pp
467-472.

[2] D. Garlan, R.T. Monroe, and D. Wile, “Acme:
Architectural Description Component-Based Systems,
Foundations of Component-Based Systems”. Cambridge
University Press, 2000, pp. 47-68.

[3] A. Lanoix, D. Hatebur, M. Heisel, and J. Souquières,
“Enhancing Dependability of Component-Based Systems”,
Proceedings of Ada-Europe, 2007, pp. 41-54.

[4] J. Matevska-Meyer, W. Hasselbring, and R. Reussner,
“Software architecture description supporting component
deployment and system runtime reconfiguration”,
Proceedings of Workshop on Component-Oriented
Programming WCOP’04, Oslo, Norway, June 2004.

[5] N. Medvidovic, E. Dashofy, and R.N. Taylor, “Moving
Architectural Description from Under the Technology
Lamppost”, Information and Software Technology Journal,
Vol. 49, No. 1, 2007, pp.12-31.

[6] N. Medvidovic, “Architecture-Based Specification-Time
Software Evolution”, PhD Thesis, University of California,
Irvine, 1999.

[7] OMG: “Unified Modeling Superstructure” [Electronic
Version] from http://www.omg.org/docs/ptc/06-04-02.pdf,
2006.

[8] OMG: “Unified Modeling Language: Infrastructure”
[Electronic Version] from
http://www.omg.org/docs/formal/07-02-06.pdf, 2007.

[9] M. Oussalah, A. Amirat, and T. Khammaci, “Software
Architecture Based Connection Manager”, In Proceedings of
SEDE’07, Las Vegas, Nevada, USA, July 2007, pp.194-199.

[10] J.E. Pérez-Martínez, “Heavyweight extensions to the
UML metamodel to describe the C3 architectural style”,
ACM SIGSOFT Software Engineering Notes, Vol.28 No.3,
May 2003.

[11] M. Pinto, L. Fluentes, and M. Troya, “A Dynamic
Component and Aspect-Oriented Platform”, The Computer
Journal, Vol.48 No. 4, 2005, pp. 401-420.

[12] A. Smeda, M. Oussalah, and T. Khammaci, “MADL:
Meta Architecture Description Language”, Proceeding of the
3rd ICIS International conference on Software Engineering
Research, Management & Applications, SERA’05, Pleasant,
Michigan, USA, August 2005, pp. 152-159.

[13] A. Smeda, M. Oussalah, and T. Khammaci, “Improving
Component-Based Software Architecture by Separating
Computations from Interactions”, First International
Workshop on Coordination and Adaptation Techniques for
Software Entities, WCAT'04, Oslo, Norway, 2004.

[14] R.N. Taylor, N. Medvidovic, K.M. Anderson, JR. E.J.
Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy, and D.L.
Dubrow, “A component- and message-based architectural
style for GUI software”, IEEE Transaction Software
Engineering, Vol. 22, No. 6, June, 1996, pp.390–406.

Component
Peer Client

Peer Client
C1

IOC

Peer Client
C2

Peer Client
C3

In
st

an
ce

-O
f

A1

A0

