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Abstract 

 
Large and complex software systems require 

expressive notations for representing their software 
architecture. In this context Architecture Description 
Languages (ADLs) can be used for describing 
architectures of components-based software systems. 
Typical ADLs provide explicit support for specifying 
components, connectors, and configuration as well as 
for building hierarchical systems configurations. All of 
them allow structural dependencies among components 
to be specified to define static configurations. This may 
be sufficient for an initial system composition, but does 
not provide enough information for reasoning about 
the different kind of connections among elements. 
Physical and logical connections are defined in this 
paper. Four kinds of hierarchies are also presented. 
Each one is used to provide special-purpose view 
about the architecture. 
 
 
1. Introduction 
 

One of the key goals of software architecture 
research is to understand and to manipulate a system at 
a higher level of granularity than modules or lines of 
code. Generally, software architectures are composed 
of components, connectors and configurations, 
constraints on the arrangement and behaviour of 
components and connectors. The architecture of a 
software system is a model, or abstraction of that 
system. Software architecture researchers need 
extensible, flexible architecture descriptions languages 
(ADLs) and equally clear and flexible mechanisms to 
manipulate these core elements of the architecture. 

Recently Medvidovic [5] gives the following 
definition for software architecture “A software 
system’s architecture is the set of design decisions 
about the system which, if made incorrectly, may cause 
your project to be cancelled”. However, these design 

decisions encompass every aspect of the system under 
development, including: 

• Design decisions related to system structure – for 
example, “there should be exactly three 
components in the system, the data store, the 
business logic and the user interface component;” 

• Design decisions related to behaviour (also 
referred to as functional) – for example, “data 
processing, storage, and visualisation will be 
handled separately;” 

• Design decisions related to the system’s non 
functional properties – for example, “the system 
dependability will be ensured by replicated 
processing modules;” 

• Also, we can elicit other design decisions related 
to the development process or the business 
position (product-line). 

 
We note that in the description languages 

architectures (ADLs) that currently exist, there is no 
standard about architectural concepts or standards in 
terms of mechanisms for manipulating those concepts 
(i.g. in the ADLs defining explicit connectors, we see 
that each one gives its proper definition for connectors, 
some ADLs define the concept of configuration while 
others do not). 

For the reasoning model, the majority of ADLs 
proposes only sub-typing (inheritance) as a mechanism 
for specialization (e.g. Acme, C2). Otherwise, for the 
rest of ADLs, they propose their own ad hoc 
mechanisms based on methods designed specially for 
these ADLs. 

Based on a bread survey of architecture description 
notations and approaches, we identified that ADLs 
capture aspects of software design centred around a 
system’s Component, connectors, and configurations. 
The core elements of our model are basically defined 
around these tree elements. So, from this we derive the 
name of our model C3 for Component, Connector, and 



 

Configuration. Taking into consideration that our C3 
have no relationship with C2 defined by Taylor [14] 
nor with C3 with is an extension of C2 defined by 
Pérez-Martínez [10].  

The rest of the paper is organized as follows. In 
section 2 presents our research motivations. Section 3 
describes the C3 metamodel C3. The last section 
presents our conclusion and the different perspectives 
of our work. 
 
2. Motivation 
 

In this work the goal is to develop a generic model 
for the description of software architectures which 
must be minimal and complete. It is minimal because 
we are only interested by the core concepts in each 
ADL. And complete because with this minimum of 
concepts the architect can be able to describe any 
required structures he need to realize. 

However, describing only the architecture structure 
is not sufficient to provide correct and reliable software 
systems. In this paper we are even more going to focus 
on representation architecture model and to reason 
about its elements following four different types of 
hierarchies. Each of these hierarchies provides a 
particular view on the architecture. In the following 
sections we present more details about these 
hierarchies. 

 
Using our approach software architecture is more 

explicit and clarified by: 
 

• Make explicit the possible types of hierarchies 
being used as support of reasoning on the 
architectures, with the different possible levels in 
each hierarchy. 

 
• Show semantics convey by every type of hierarchy 

by providing the necessary mechanisms used to 
connect elements of in the same level of hierarchy 
and the mechanisms used to connect elements of 
every level with the elements of the super and 
lower levels. 

 
• Allows introducing various mechanisms of 

reasoning within the same architecture according 
to the requirement problem in a specific domain 
space. 

 
• Establish the position of existing mechanisms 

developed for reasoning with regard to our 
referential. 

 
 

3.  The metamodel of C3 
 

In order to have a complete C3 model, we define 
mainly two models to describe and reason about 
software architectures. A representation model to 
describe any architecture based on C3 elements and a 
reasoning model to understand and analyse the 
representation model. 
 
3.1. Representation model  
 

The core elements of the C3 representation model 
are components, connectors, and configurations, each 
of these elements have an interface to interact with its 
environment. Figure 1 depicts the core elements of the 
metamodel C3.  
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Figure 1. Basic elements of C3 metamodel 

 
 
3.1.1. Components   
 

A component is a unit of computation or data 
storage. Therefore, components are loci of computation 
and state. A component in an architecture may be as 
small as a single procedure or as entire application. It 
may require its own data and/or execution space, or it 
may share them with other components [6]. 

In order to be able to adequately reason about a 
component and the architecture that includes it, C3 
should also provides facilities for specifying 
component needs, i.e., services required of other 
components in the architecture. An interface thus 
defines computational commitments a component can 
make and constraints on its usage.  

Each interaction in C3 is a port. Ports are named 
and typed. We distinguish between required and 



 

provided ports. Each port is used by one or more 
services.  

Component semantics are modeled to enable 
evolution, analysis, enforcement of constraints and 
consistent mappings of architectures from one level of 
abstraction to another. 

The structure of component is the specification of 
its required and provided ports. The behaviour of a 
component is the specification of its required and 
provided services. 
 
3.1.2. Connectors  
 

Connectors are architectural building blocks used to 
model interactions among components and rules that 
govern those interactions. In order to enable proper 
connectivity of components and their communication 
in an architecture, a connector should export as its 
interface those services it expects.  

C3 refer to connector interaction points as roles. 
Explicit connection (attachments) of component ports 
and connector roles is required in an architecture 
configuration. Roles are named and typed and are in 
many ways similar to component ports. Connector 
services are described inside the glue code [13]. 
Therefore, a connector’s interface is a set of interaction 
points between it and the components attached to it. It 
enables reasoning about the well-formedness of an 
architectural configuration. 

Our contribution at this level consists in enhancing 
the structure connectors by encapsulating the 
attachment links (Figure 2.a). So, the application 
builder will have to spend no effort in connecting 
connectors with its compatible components and 
configuration. Consequently, the task of the developer 
consists only in choosing a suitable type of connector 
which is compatible with the types of 
components/configurations which are expected to be 
connected.  

 
 

Figure 2.a.  The new structure of connector 
 

We have given the following definition (Figure 2.b) 
for connectors in a previous work  [1]. 

 

 
 

Figure 2.b. Syntax of the connector 
 

So, by encapsulating attachment inside connectors 
and having well defined connector interfaces with 
previously known elements to be connected by this 
connectors, consequently components/configurations 
and connectors are assembled in an easy and coherent 
way in the form of an architectural puzzle (Lego 
Blocks) without any effort to describe links among 
components and connectors or between configurations 
and connectors. Consequently, this approach 
accelerates the development of components, improves 
testability, coherence, maintainability and promotes 
component markets [1]. 
 
3.1.3. Configuration  
 

Architecture configurations, or topologies, are 
connected graphs of components and connectors that 
describe architectural structure. This information is 
needed to determine whether: appropriate components 
are connected, their interfaces match, connectors 
enables proper communication, and their combined 
semantics result in desired behaviour.  

The goal of configuration is to abstract away the 
details of individual components and connectors. They 
depict the system at a high level that can potentially be 
understood by people with various levels of technical 
expertise and familiarity with the problem at hand. 

For more clarity, in our model C3 each component 
or connector is perceived and handled from the outside 
as primitive element. But their inside can be real 
primitive elements, or composite with a configuration 
which encapsulates all the internal elements of this 
composite. These Configurations are first-class entities. 
They represent a graph of components and connectors 
and describe how they are fastened to each other. A 
configuration may have ports, and each port is bound 
to one or more ports of the internal components. In 
general, configurations can be hierarchical where 
components and connectors represent sub-

Connector_TypeName (List of element interfaces) 
{ 
      Roles {List of roles} 
      Services {List of services} 
      Properties {List of properties} 
      Constraints {List of constraints} 
      Glue {The communication protocol}    
      Attachments {List of attachments} 
} 
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configurations that have internal architectures (Figure 
2). 
 
3.1.4. Interface 
 

Every architectural element has an interface. Each 
interface is associated with a type which corresponds 
to a set of operations which it defines. Via this 
interface the element publish to the outside 
environment it needs in term of required services as 
well as the services which it provides (messages, 
operations, and variables). However, elements are 
selected and connected from their published interface. 
So, the interface is though as a contract with the 
environment that the element should honour. 

To establish connections between elements we use 
ports for components and configurations and roles for 
connectors and we assign the services to each port and 
role with a necessary set of constraints to be respected 
during the connections. From conceptual view ports 
and roles are concrete classes inherited from the 
interface abstract class as shown in Figure 1. 

Also, in modelling level we use cardinality to 
describe the multiplicity of each relation (connection) 
between architectural elements. This cardinality 
express the number of ports associated with 
components and configurations and the number of 
roles associated with connectors. Each port or role is 
considered as a channel to carry in/out 
required/provided services exchanged with element 
environment. 

The previous architectural elements are manipulated 
and used via predefined mechanisms in the reasoning 
model. Essentially, we are going to study the 
instantiation, specialization, composition, 
decomposition, and connections mechanisms. In the 
following section, we define the using context of each 
mechanism. Some details about the structure of these 
architectural elements are presented in our previous 
works [1] and [9]. 
 
3.2. Reasoning model  
 

In our approach we intended to analyze the software 
architecture by using different hierarchies where each 
hierarchy is investigated at different levels of 
representations. The Figure 3 illustrates the C3 
reasoning model of C3. This model is defined by four 
types of hierarchies and each type represents a specific 
view on the C3 representation model different from the 
others. In the following sections, we present those 
types of hierarchy and we investigate the possible 
levels of each hierarchy. 

 
Figure 3. C3 metamodel and reasoning models 
 

In Figure 3 we represent the different reasoning 
hierarchies based on an external view (perceived by 
user). In the following sections we present: 1- The 
abstraction hierarchy used to explicit the different 
nested levels of structural hierarchies that software 
architecture can have. 2- The behavioural description 
hierarchy to explicit the different levels of system 
behaviour hierarchies represented by protocols. 3- The 
conceptual hierarchy to describe the library of element 
types at the architecture level. 4- The metamodeling 
hierarchy to locate our model in the pyramid of 
hierarchies defined in our previous work. All those 
external views are associated with an internal views 
generated automatically using the reasoning tools [1]. 
 
3.2.1. Structural hierarchy (SH) 
 

Structural hierarchy also called abstraction 
hierarchy has to provide the structure of a particular 
architecture in terms of the architectural elements 
defined by the ADL. The majority of academic ADLs 
like Aesop, MetaH, Rapide, SADL, and others [4] or 
the industrials like CORBA, CCM/CORBA, EJB/J2EE 
[11] allow only a flat description of software 
architectures. 

Using those ADLs architecture is described only in 
terms of components connected by connectors without 
any nested elements - without any structural hierarchy. 
This design choice was made in order to simplify the 
structure and also by lack of concepts and mechanisms 
that respectively define and manipulate configurations 
of components and connectors.  

In our C3 model the structure of architectures is 
described using components, and connectors, and 
configurations where configurations are composite 
elements. Each element in this configuration 
(component or connector) can be a primitive (with a 
basic behaviour scenario) or configuration which 
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contains another set of components and connectors, 
which in their turn can be primitive or composite 
material, and so on. However, the metamodel C3 
allows the representation of architecture with a real 
hierarchy (with an arbitrary n abstraction levels). It 
should be noted that practically all architectural 
solutions for domain problems, have a nested 
hierarchical nature. Thus, software architecture can be 
viewed as a graph where each internal node of this 
graph represents a configuration and each end-node 
represents a primitive component arcs between nodes 
are connectors. 

In Figure 4.a, we represent the logical view of the 
structural hierarchy where the root node is the first 
level of abstraction; it is also the configuration which 
encapsulates all elements of the architecture. The small 
white circles represent primitive components and small 
black circles represent sub-configurations (composites) 
in the system architecture. These configurations 
contain other elements inside. Thus, the configurations 
will never be end-nodes in the hierarchy tree of 
abstractions. The node with double circles represents 
the global configuration of the architecture. The arcs 
represent the bonds of hierarchy - the father/child 
relationship. This relationship does not necessarily 
imply a service-connection between the father node 
and the child one. To navigate among abstraction 
hierarchy levels we define the following type of 
connector:  

 
• Composition-Decomposition Abstraction Connector 

(CDAC) used to link each configuration to its 
underling elements. Therefore, this type of connector 
allows the navigation among levels of the abstraction 
hierarchy. Also, we can determine the children or the 
father, if it is the case, of each element deployed in 
the architecture. Figure 4.b represents the notation 
adopted. 

 
 

Figure 4.a. Logical view of the SH (1) 

 
Figure 4.b.  CDAC connector 

 
Figures 5.a illustrates the physical view of the 

structural hierarchy with two service-connection types 
of connector; the fist one is generally represented by an 
implicit link called Binding and the second one is 
defined by several ADLs as Attachment link. In our 
model those two types of link are explicated as first 
class entities and are defined as follows: 

 
• Expansion-Compression Connector (ECC) is 

represented by discontinuous arc. We use this type of 
connectors to establish service-connections between 
each configuration and the underling elements 
(Figure 5.b). In some ADLs this type of link is called 
binding or delegation but not defined as a first class 
entity. 

 
• Structural Attachment Connector (SAC) is 

represented by full arc. We use this type of 
connectors to establish service-connections between 
components and configurations deployed in the same 
level of abstraction (Figure 5.c). In some ADLs this 
type of connector in called assembling connector and 
represented by first class entity (e.g. Acme) [2]. 

 
 

 
 

Figure 5.a.  Physical view of the SH (2) 
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Figure 5.b.  ECC connector 

 
 

Figure 5.c.  SAC connector 
 

Inside the connector the glue define the mapping between 
elements. 

 
• The provided service (s1) of “a” is required by  “x” 

• The provided service (s2) of “b” is required by  “z” 

• The provided service (s3) of “c” is required by  “y” 
 

Attachments are also defined inside the connector. 
 
The different elements of the architecture are 

connected through their interfaces. Thus the types of 
interfaces are checked if they are compatible or not 
(interface matching). Consequently, in the abstraction 
hierarchy, the consistency of elements assembly is 
controlled syntactically. 
 
3.2.2. Behavioural description hierarchy 
 

The behavioural description hierarchy represents the 
description of the system’s behaviour at different 
levels. Each primitive element of the architecture has 
its own behaviour. The behaviour description 
associated with the highest level of the hierarchy - 
level n in Figure 6.a - represents the overall behaviour 
of the architecture. This behaviour is described by a 
global protocol P0. The system architecture at this level 
is perceived as a black box with inputs (required 
services) and outputs (provided services). At lower 
level each component, connector, configuration, port, 
or role has its own protocol to describe its functionality 

(e.g. glue code is the protocol describing the connector 
behaviour, also the component behaviour can be 
described by a state chart diagram). So, protocol is a 
mechanism used specifying the behaviour of an 
architectural element by defining the relationship 
among the possible states of this element and its ability 
to produce coherent results.  

Figure 6.a sketches how to decompose the protocol 
P0 at level n into its sub-protocols at level n-1. This 
decomposition process produces a set of other 
behaviours {P01, P02, P03}. By the same process each 
protocol of the level n-1 is decomposed to produce an 
other set of sub-protocols at the level n-2, and so on 
until level 0. The last level of the hierarchy is a set of 
protocols representing the behaviour of primitive 
elements available in the library of the architect. The 
total set of protocol levels represents the behaviour 
hierarchy of the system architecture.  

 

 
Figure 6.a.  Logical view of behavioural 

hierarchy 
 

  
To navigate among behavioural description 

hierarchy levels we define the following type of 
connector:  

 
• Composition-Decomposition Behavioural Connector 

(CDBC) used to link each protocol to its possible 
sub-protocols. Therefore, this type of connector 
allows the navigation among levels of the 
behavioural description hierarchy. Also, we can 
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determine the children or the father, if it is the case, 
of each protocol used in the architecture. Figure 6.b 
represents the notation adopted. 

 

 
 

Figure 6.b.  CDBC connector 
 
 
• Binding Identity Connector (BIC) used to keep the 

identity and the traceability of inputs and outputs of 
protocols. There is no expansion or compression of 
respectively inputs and outputs of protocols like in 
abstraction hierarchy. The identity of inputs and 
output is preserved (Figure 6.c). 

 
• Behaviour Attachment connector (BAC) used to 

connect protocols belonging to the same level of 
hierarchy. This connection is explicated by real 
transition between the end-state of the first protocol 
and the start-state of the second one (Figure 6.c) 

 

 
 

Figure 6.c.  BIC and BAC connectors 
 

If we use, for example, transition-based system to 
specify the behaviour protocol associated with each 
element then connections between behaviours are 
made by simple transitions between the end-state of the 
fist protocol and the start-state of the second one. 
Inputs and outputs of each protocol are respectively 
required and provided services. 

The syntactic correction (discussed before) of the 
assembled elements cannot insure the validation of the 
produced architecture. The syntactic correction checks 
only the compatibility of interfaces types. So, elements 
are compatible to exchange information, but fail to 

check if their collaboration “the semantic of 
connections” can produce a coherent result. 
Consequently, the behavioural description can insure 
the compatibility of protocols (protocol matching) 
associated with elements at any level of the hierarchy 
[3]. 

 
3.2.3. Conceptual hierarchy  
 

The conceptual hierarchy allows the architect to 
model the relationship among elements of the same 
family as illustrated in Figure 7.a. The architectural 
entities are represented by types (classes). Each type is 
a class library and each class has its sub-classes in the 
library. So, we can shape the graph representing 
entities hierarchy of the same family. Each graph has 
its proper number of levels (sub-type levels). 

 
Figure 7.a. Logic view of the conceptual 

hierarchy 
 

 
At the highest level of hierarchy we have the basic 

element types developed to be reused. The element 
types of the intermediate levels are created by reusing 
the previous ones. Those intermediate element types 
are reused to produce others (development by reuse 
and to be reused) or used as end-elements to describe 
architectures, and so on. Element types at the last level 
of the hierarchy are only created to be used in the 
description of architectures. 

Through the mechanism of specialization 
(inheritance) the architect will classify the library of 
elements according to architecture development needs 
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in each target domain. The number of sub-class levels 
is unlimited. But we must remain at reasonable levels 
of specialization in order to keep compromise between 
the use and the reuse of the architectural elements. To 
navigate among levels of the conceptual hierarchy we 
define the following type of connector:  

 
• Specialisation-Generalisation Conceptual Connector 

(CGCC) is used to connect element types coming 
from the same type (implemented by inheritance 
mechanism in Java). So, we can construct easily all 
trees representing the classification library types. 
Figure 7.b represents the notation adopted. 

 

 
Figure 7.b.  SGCC connector 

 
 
3.2.4. Metamodeling hiérarchy 
 

In the metamodeling hierarchy of we have only 4 
architectural levels with instantiation mechanism. 
Thus, according to Figure 8.a, each level (Ai) must 
conforms with the description given above in A(i+1) 
level (instance-of relationship). The level A3 conforms 
to itself. Symmetrically, each level (Ai) describe the 
inferior level A(i-1). A0 is the end-level (run-time 
instance) [7] [8]. 
 
A0 Level is the real word level (application level) 
which is an instance of the architecture model level A1.  
At this level the developer has the possibility to select 
and instantiate elements any times as he needed to 
describe a complete application. Instances are created 
from element types which are defined at A1. Elements 
are created assembled with respect to the different 
constraints defined at A1. 
 
A1 Level is also called architecture level. At this level 
we have models of architecture, possibly with a given 
style, described using the language constructions or 
notations defined at A2 level (e.g. C3 metamodel). 
Thus, each architecture model is an instance of the 
metamodel defined in the above level. 
 

 
 

Figure 8.a. External view of the metamodeling 
hierarchy 

 
A2 Level (meta-architecture level) defines the language 
or the notation used to describe architectures at A1. 
This level is also used to modify or adapt the 
description language. All operations are undertaken at 
this level will always be in conformance with the last 
level. 
 
A3 Level (meta meta-architecture) has the top level 
concepts and elements used when we want to define 
any new architecture description language or new 
notation. In our previous work we have defined our 
proper meta meta-architecture model called MADL. 
So, our C3 metamodel is defined in conformance with 
MADL. MADL is similar to MOF but component-
oriented [12]. 
 

To connect architecture levels we define the 
following connector: 

 
• Instance-Of Connector (IOC) is used to establish 

connection among elements of a given level 
(model) with their classifier defined in the above 
level (metamodel). Figure 8.b represents the 
notation adopted. 
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Figure 8.b. IOC connector 
 
5. Conclusion 
 

The success of the component-construction 
paradigm in mechanical and electrical engineering has 
led to call its adoption in software development. To 
this end we have defined a minimal and a complete 
representation metamodel called C3 to describe 
software architecture and to reason about this 
architecture from different perspective view. The core 
elements of C3 are components, connectors and 
configurations. Elements are assembled using their 
interfaces. Syntactic and semantic corrections are 
carried out using respectively interfaces-matching and 
protocols-matching. Perspective views are defined by 
different kind hierarchies. Mainly, we use abstraction 
hierarchy to describe the structural decomposition 
hierarchy, behaviour description hierarchy to describe 
the behaviour decomposition, conceptual hierarchy to 
describe sub-classes of architectural elements and 
finally the metamodeling hierarchy to show how we 
can modify the metamodel C3 and how to use it.  Each 
hierarchy is supported and tooled by explicit 
connection mechanisms to provide the different form 
of connections required in each hierarchy. 
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