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Abstract:  To provide hierarchical description from different software architectural viewpoints we need more than one 

abstraction hierarchy and connection mechanisms to support the interactions among components. Also, 

these mechanisms will support the refinement   and traceability of architectural elements through the 

different levels of each hierarchy. Current methods and tools provide poor support for the challenge posed 

by developing system using hierarchical description. This paper describes an architecture-centric approach 

allowing the user to describe the logical architecture view where a physical architecture view is generated 

automatically for all application instances of the logical architecture.  

1. INTRODUCTION 

Modeling and representation of software 

architectures are the main phases of the development 

process of complex software systems [Szyperski, 

2002]. The representation of architecture is based on 

the concepts of component (loci of computation), 

connector (loci of communication), and 

configuration (arrangement of components and 

connectors, and properties of that arrangement) in 

order to describe the structure of the system at a 

higher level of abstraction than objects or lines of 

code. This representation provides several 

advantages over the life cycle of a software [Garlan 

et al., 2000].  

Component have always been considered to be 

the fundamental building blocks of software 

systems, the ways the components of a system 

interact are determinant for establishing the global 

system properties that emerge from the way the 

individual components are interconnected. Hence, 

component interactions have been promoted to first 

class design entities as well, and architectural 

connectors have emerged as a powerful tool for 

supporting the design of these interactions [Perry 

and Wolf 1992; Shaw 1993]. 

Although the use of connectors is widely 

accepted at the conceptual level, their explicit 

representation at the implementation level is not 

always left to be necessary. For example, the Darwin 

[Magee et al. 1999] architecture description 

language does not include connectors. However, we 

feel that distinct conceptual entities should 

correspond to distinct implementation entities, so 

that they can truly become first-class and be 

manipulated as such. In fact, as argued in [Mehta et 

al. 2000], the current level of support that ADLs 

provide for connector building is still far from the 

one awarded to components. For instance, although 

a considerable amount of work can be found on 

several aspects of connectors [Mehta et al. 2000; 

Shaw et al. 1995; Allen and Garlan 1997; Spitznagel 

and Garlan 2001], further steps are still necessary to 

achieve a systematic way of constructing new 

connectors from existing ones. Yet, the ability to 

manipulate connectors in a systematic and controlled 

way is essential for promoting reuse and incremental 

development, and to make it easier to address 

complex interactions. 

Certainly, having a representation of the software 

architecture allows an easy exchange between the 

architect and programmer. Also, during the phases 

of maintenance and evolution, this representation 

helps to locate defects and reduces the risk of 

improper assembly of a new feature in the system. In 

addition, the distinction which exists between 

components and connectors allows a more explicit 
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representation between the functional aspects and 

these of communication and therefore, makes the 

system easier to understand and to change.  Finally, 

architecture-based components are also useful to 

facilitate the reuse of certain parts of the system 

represented by configurations [Allen, 1997]. 

In contrast the industrial world, which offers 

components strongly linked to servers, systems or 

models owners [Pinto, 2005], the academic approach 

is interested in formalizing the notion of software 

architecture (ADL). The ADLs provide a high level 

of abstraction for the specification and development 

of software systems. Today, several ADLs are 

defined, to help in the development of component-

based systems, such as Rapide [Luckham, 1996], 

SADL [Moriconi and Riemenschneider, 1997], 

UniCon [Shaw, 1996], C2 [Taylor et al. 1996], 

Darwin [Magee, 2005], MetaH [Binns et al., 1996], 

Wright [Allen, 1997], and ACME [Garlan et al. 

1997; Garlan et al. 2000] from the “first generation” 

of ADLs and UML 2.0 [Booch et al., 2005] , AADL 

[Allen et al., 2002], Koala [Ommering et al., 2000], 

and xADL 2.0 [Dashofy et al., 2005] from the 

“second generation” of ADLs. The classification of 

ADLs in generations is recently introduced by 

Medvidovic [Medvidovic et al., 2007]. 

In this article, we take a step towards this goal by 

proposing a metamodel for the description of 

software architecture called C3 (three “C” for 

Component, Connector, and Configuration). The 

specificities of this metamodel are: First, proposing 

a new structure and new types of connectors, 

second, definition and manipulation of 

configurations as first classes entities and third, 

description of architectures from two different 

views, a model architecture view (logical 

architecture) created by the architect and an 

application architecture view (physical architecture 

instances of the logical architecture) generated 

automatically which serves as support to maintain 

the consistency and the evolution of the application 

architectures. 

After this introduction, the remainder of this 

article is organized as follows: Section 2 provides 

the motivations of our research. In section 3 presents 

the concept of a logical architecture with the key 

elements of the proposed metamodel. The physical 

architecture is defined in section 4. The last section 

concludes this work with a summary of our ongoing 

research.  

2. MOTIVATIONS  

Our main motivation is to propose a metamodel to 

maintain the consistency of an architecture using 

new types of connectors with a richer semantics. 

Using these connectors, systems are built like a Lego 

Blocks (Puzzle) by assembling components and 

connectors, where each element can only placed in 

the right place in the architecture puzzle. We find in 

most existing ADLs and notation languages that:  

� The definition and instantiation of connectors are 

often merged in a single operation. 

� The management of connectors does not take into 

account the semantic composition hierarchies 

when positioning and establishing links between 

components and their composites. 

� Few models allow reuse connectors (for example 

through inheritance) and to define new connectors 

by their reuse. 

� There is no direct and automatic correspondence 

between architectures (models) and applications 

built following these architectures (instances). 

In order to overcome these shortcomings we are 

propose in this paper, a metamodel (C3) for 

describing hierarchical software architecture, based 

on the definition of two types of architecture. A 

logical architecture defined by the user and a 

physical architecture built by the system and 

conforms to the logical architecture. The metamodel 

will make its contribution towards the following 

objectives: 

O1: Provide a higher abstraction level for connectors 

in order to make them more generic and more 

reusable. 

O2: Take into account the semantics of several types 

of relationships. In our case; we explore the 

association relationship between components, the 

composition relationship among architectural 

elements, and the propagation relationship to 

describe software systems at different levels of 

details.  

O3: Promote the maintenance and the evolution of 

architectures by the possibility of adding, deleting 

and substitution of different elements in the 

architectural. 

O4: The principle of reuse should be widely 

exploited. New components and connectors can be 

defined by combining already existing elements 

through inheritance and/or composition mechanisms. 
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O5: Explicit connectors must be preserved through a 

declarative interface that hides the management 

mechanism of the inside glue-protocol.  

O6: Using the physical and the logical architecture, 

we can separate the functional aspects of 

architectural elements and the non-functional aspects 

related to the management of their consistency. 

3. LOGICAL ARCHITECTURE 

Our approach is based on the description of software 

architecture following two architectural views. The 

first one is a logic view defined by the architect by 

assembling the compatible elements available in the 

library of element types and the second one is a 

physical view constructed automatically by the 

system and serves as a support for user applications 

built in accordance with the logical architecture. 

The large majority of ADLs consider 

components as entities of first class. So, they make 

distinction between component-types and 

component-instances. However, this is not the case 

with other concepts such as connectors and 

configurations. In our metamodel we consider each 

concept recognized by the C3 metamodel as 

architectural element of the first class citizen. So, 

each architectural element maybe positioned on one 

of the three abstraction levels defined in the 

following section. We believe that it is necessary to 

reify the core architectural elements in order to be 

able to represent and manipulate them and let them 

evolve easily. 

3.1. Abstraction levels 

In our approach, software architectures are described 

in accordance to the first three levels of modelling 

defined by the OMG [OMG, 2006; OMG, 2007]. 

The application level (A0) which represents the real 

word application (an instance of the architecture), 

the architecture level (A1) which represents the 

architecture model and meta-architecture level (A2) 

which represents the meta-language for the 

description of the architecture. The three abstraction 

levels are defined as follows (Figure 1): 

3.1.1. Meta-architecture level (A2) 

In this level we find the standard definition of any 

architectural element proposed by a large set of 

ADLs to describe software architectures. We 

consider the most common elements namely 

components, connectors, and configurations. Section 

3.2 will summarize the description of the core 

elements of the C3 metamodel. 

3.1.2. Architecture level (A1) 

This level is used to describe any architecture model 

using one or more instances of architectural building 

blocks defined at the meta-architecture level (A2). 

Figure 1 shows a client/server architecture 

configuration (CSconfig) type with is defined using 

the following three components types: client 

component type, server component type and data 

base component type; and two variants RPC 

connector types: N1 between the client type and the 

server one, and N2 between the server type and the 

data base type. 

 
Legend:       Required Port,        Provided Port. 

Figure 1. Architecture abstraction levels.  

3.1.3. Application level (A0) 

At this level (implementation level) one or more 

applications can be built according to the 

architecture described at the above level (A1). Each 

architectural element of the implementation level is 

an instance of an element-type of the architecture 

model. For example we can build from the previous 

client/server architecture the application SCapp 

(Figure1) with is an instance of the CSconfig 

configuration assembled from C1 and C2 instances 

C1 

Client 

Configuration 

Component Connector 
… 

Server 

A2 

DataBase 

CSconfig 

S1 DBOracle 

CSapp 

C2 

Instance-Of 

Instance-Of 

… 

N1 N2 

N11 
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A1 

A0 

C3 

Metamodel   
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of the client component; DBOracle instance the Data 

base component; S1 instance of the server 

component; N11 and N12 instances of connector 

type N1 and finally N21 instance of connector type 

N2. This figure shows only one application 

architecture (CSapp), more application architectures 

could be instantiated. 

We have presented in this section the concept 

software architecture through its core concepts and 

its various abstraction levels. We have focused on 

the important concepts to address the key issue of 

connectors in software architecture description. 

3.2. Basic concepts of C3 metamodel 

3.2.1. Architectural elements  

In our metamodel described in Figure 2, an 

architectural element may be a component, a 

connector or architectural configuration
1
. A 

configuration represents a graph of components and 

connectors. A component or a connector is a 

composite when it is composed of other internal 

architectural elements. A component or connector is 

primitive when it is atomic (without internal 

structure).  

An architectural element may have several 

properties as well as constraints on these properties, 

as it may have one or more possible 

implementations. The interaction points of each 

architectural element with its environment are the 

interfaces. Each architectural element is defined by 

its interfaces through which they publish its required 

and provided services to and from its environment. 

Each service may use one or more ports. We 

approach in the following sections with more detail 

the most important concepts of our C3 metamodel. 

3.2.2. Component  

A generally accepted view of a software component 

is that it is a software unit with provided services 

and required services. The provided services are 

operations performed by the component. The 

required services are the services needed by the 

component to produce the provided services. The 

interface of a component consists of the 

specifications of its provided and required services. 

It should specify any dependencies between its 

provided and required services. To specify these 

dependencies precisely, it is necessary to match the 

                                                
1 “Architectural configuration” will, at various times in this paper, 
be referred to simply as “graph” or “topology”. 

 

required services to the corresponding provided 

services. Services are carried using ports. Thus, we 

can define a generic interface of a component type 

as follows: 

Component typeName ( requiredInterf , provideInterf); 

3.2.3. Connector  
 
Connectors are architectural building blocks used to 

model the interactions between components and 

rules that govern these interactions. They correspond 

to lines in box-line descriptions. Examples are pipes, 

procedure call, method in-vocation, client-server 

protocol, and SQL link between database and 

application. Unlike components, connectors may not 

correspond to compilation entities. However, the 

specifications of connectors in an ADL may also 

contain rules to implement a specific type of 

connectors. Current ADLs can be classified into 

three different kinds: 1- ADLs without connectors, 

ADLs with predefined set of connectors, and ADLs 

with explicit connector types.  

� ADLs with implicit connectors. There are 

ADLs that prefer the absence of connector because 

they distort the compositional nature of software 

architectures. Some ADLs, such as Darwin [Magee et 

al. 1996], Leda [Canal et al., 1999], and Radipe 

[Luckham, 1996] do not consider connectors as first 

class citizens. However these ADLs make difficult 

the reusability of components because they have the 

coordination process tangled with the compotation 

inside them, and they are aware of the coordination 

process that has to happen in order to communicate 

with the rest. The notion of connector emerges from 

the need to separate the interaction from the 

computation in order to obtain more reusable and 

modularized components and to improve the level of 

abstraction of software architecture description 

[Medvidovic 2000]. May Shaw [Shaw, 1993] 

presents the need for connectors due to the fact that 

the specification of software systems with complex 

coordination protocols is very difficult without the 

notion of connector. Hence, connector provides not 

only a high level of abstraction and modularity to 

software architectures, but also an architectural view 

of the system instead of the object-oriented view of 

compositional approaches. So, it is important to 

defend the idea of considering connectors as first-

order citizens of ADLs.  

� ADLs with predefined set of connectors. 
UniCon [Shaw et al. 1995; Shaw et al. 1996] is a 

typical representative of ADLs supporting a 
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predefined set of built-in connector types only. The 

semantics of built-in connector types are defined as 

part of the language, and are intended to correspond 

to the usual interaction primitives supported by 

underlaying operating system or programming 

language. A connector in the UniCon language is 

specified by its protocol. A connector’s protocol 

consists of the connector’s type, specific set of 

properties, and a list of typed roles. Each role serves 

as a point through which the connector is connected 

to a component. UniCon currently supports seven 

built-in connector types which represent the basic 

classes of interactions among components: Pipe, 

FileIO, Procedure Call, Remote Procedure Call, 

Data Access, RT Scheduler, and PL Bundler. These 

connectors cannot be instantiated nor evolved. 

Composite connectors are composed only from 

connectors. 

� ADLs with explicit connector types. Most 

ADLs provide connectors as first order citizens of 

the language such as: ACME [Garlan, 2000], Aesop 

[Garlan, 1994] , C2 [Medvidovic et al., 1996; 

Medvidovic et al., 1999; Medvidovic 1999]], SADL 

[Moriconi, 1995], Wright [Allen, 1997], ArchWare’s 

π-ADL [Oquendo, 2004; Oquendo et al., 2004], etc. 

All of these languages go a step forward with regard 

to the previous kind of ADLs. They improve the 

reusability of components and connectors by 

separating computation from coordination.  

In our approach we opt for first class connector’s 

category. So, in the C3 metamodel we present some 

explicit and generic types of connectors that the user 

can specialize following her/his needs in each 

application field. We will focus with details on this 

concept in section 3.3. 

3.2.4. Configuration  

A configuration represents a graph of components 

and connectors. Configuration specifies how 

components are connected with connectors (Figure 

3). This concept is needed to determine if the 

components are well connected, whether their 

interfaces agree, and so on. A configuration is 

described by an interface which enables the 

communication between: the configuration and its 

external environment, and the configuration and its 

internal components. 

Configuration typeName ( requiredInterf , provideInterf); 

The following UML diagrams (Figure 2 and 3) 

represent the main elements of C3 metamodel. For 

clarity raisons, these diagrams present a simplified 

version of our metamodel. In the rest of this article 

we will only deal with connectors with more detail 

as they represent the mainstream of our research 

topic in this paper. In addition, the relationship 

connector-configuration and connector-component 

will be highlighted in the text. 

 

ArchitecturalElement

+name

implementation

realised by

1

1..*

Constraintes

1
0..*

Properties
1 0..*

composed of

0..*

1

Interface

1

1..*

Port Service

RequiredService ProvidedService

Use

RequiredPort ProvidedPort

 

Figure 2.  Structure of an architectural element in C3 
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+name
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*

1..*

*

1..*

 
Figure 3. Component, connector, and configuration in C3 

 

3.3. Connector in C3 

A connector is mainly represented by an interface 

and a glue specification [Oussalah, 2004]. Basically, 

the interface shows the necessary information of the 

connector, including the number of interaction 

points, service type that a connector provides 

(communication, conversion, coordination, 

facilitation), connection mode (synchronous, 

asynchronous), transfer mode (parallel, serial) etc. In 

C3 interaction points of an interface are called Ports. 

A port is the interface of a connector intended to be 

tied to a component interface (a component’s port). 

In the context of the frame, a port is either a 

provided port or a required port. A provide port 

serves as entry point to a component interaction 

represented by a connector type instance and it is 

intended to be connected to the require port of a 

component (or to the require port of another 

connector). Similarly, a require port serves as the 

outlet point of a component interaction represented 

by a connector type instance and it is intended to be 

connected to the provide port of a component (or to 

the provide role of another connector). The number 

of ports within a connector denotes the degree of a 

connector type. For example, in client-server 

architecture a connector type representing procedure 

call interaction between client and server entities is a 

connector with degree two. More complex 

interactions among three or more components are 

typically represented by connector types of higher 

degrees. Consequently, the interface is the visible 

part of connector; hence it must contain enough 

information regarding the service and the type of 

this connector. By doing this, one can decide 

whether or not a given connector suits its 

qualifications by examining its interface only. 

The glue specification describes the functionality 

that is expected from a connector. It represents the 

hidden part of a connector. The glue could be just a 

simple protocol links ports or it could be a complex 

protocol that does various operations including 

linking, conversion of data format, transferring, 

adapting, etc. in general the glue of a connector 

represents the connection type of that connector. 

Connectors can also have an internal architecture 

that includes computation and information storage. 

For example a connector would execute an 

algorithm for converting data from format A to 

format B or an algorithm for compressing data 

before it transmits them. Hence, the service provided 

by connectors is defined by its glue; the services of a 

connector could be either communication service, 

conversion service, coordination service, or 

facilitation service.  

In case of composite connectors the sub-

connectors and sub-components of the composite 

connector must be defined in the glue, as well as the 

binding among the sub-connectors and sub-

components.  

The general signature form of the connector 

interface is a follows: 

Connector typeName ( requiredInterf , provideInterf); 

3.3.1. Connector structure 

Our contribution at this level consists in enhancing 

the structure of connectors by encapsulating the 

attachment links (figure 4). So, the application 

builder will have to spend no effort in connecting 

connectors with its compatible components and/or 
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configurations. Consequently, the task of the 

developer consists only in choosing from the library 

the suitable type of connectors where its interfaces 

are compatible with the interfaces of 

component/configuration types of which are 

expected to be assembled.  

Connector

Interface Connection Glue

PortService Role

 
Figure 4. Connector structure 

In order to illustrate the properties of C3 

metamodel and the associated connector 

definition, a case study is going to be used 

throughout the paper. The case study is a client-

server configuration (CS-config) organized around 

a client-server relationship. In this configuration 

we have a client and a server. The server 

component itself is defined by a configuration (S-

config) whose internal components are 

Coordinator (Coor.), securityManager (SM) and 

dataBase (DB). These elements are interconnected 

via connector services that determine the 

interactions that can occur between the server and 

client on one hand and between the server and its 

internal elements on the other hand. These 

connectors are represented in Figure 5 by solid-

lines. 

 
Figure 5. Client–Server Architecture  

In Figure 6.a we describe the structure of the RPC 

connector used to connect the client component (C) 

with the server component (S). In this new structure 

the RPC connector encapsulates attachments that 

represent links between the client and server. 

 

 

Figure 6.a.  Connecteur structure in C3 

 

Figure 6.b.  Connector description in C3 

Figure 6.b represents the signature specification of 

the connector PRC. Inside this connector type we 

have the glue code which describes how the 

activities of the client and server are coordinated. It 

must indicate that the activities should be sequenced 

in a well defined order: the customer asks for a 

service, the server processes the request, the server 

provides the result and the customer gets the result.  

So, by encapsulating attachments inside 

connectors and having well defined connector 

interfaces with previously known element types to 

be connected by each connector type components 

and/or configurations are assembled in an easy and 

coherent way in the form of an architectural puzzle 

(Lego Blocks) without any effort to describe links 

among components and connectors or between 

configurations and connectors. Consequently, this 

approach accelerates the development of 

component-based systems, improves their evolution, 

coherence, maintainability and promotes component 

markets [Amirat, 2007]. 

 

 
 

 

 
 

 

 
 

 

 

 

CS-Config. 

 

 

 

 
 

S-Config. 

Client 

DB SM 

Coor. 

Server 

        Connector (RPC) 

Glue 
Server (S) Client (C) 

R1 R2 

Attachment 
New structure    

of a connector 

Old structure of 

a connector 

Legend:         Required Port        Provided Port  

                       Required Role        Provided Role  

P1 
P1 

Link 

Connector  RPC ( C.P1, S.P1  )     // Connector interface 

{    
    Proprieties = { List of  properties }; 

    Constraints = { List of  constraints };   

    Services = { List of  services }; 

    //decomposition level 

    HierarchicalLevel = (C.Level = S.Level); 

   // simple case of a glue 

    Glue = {Roles ={{R1 , R2}; R1 = R2 }};   
    Attachments = { R1 to C.P1, R2 to S.P1 }; //attachments  

} 
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3.3.2. Connector taxonomy 

In C3 metamodel we have defined three connector 

types as illustrated in Figure 3: the connection 

connector type (CC), the composition decomposition 

connector type (CDC), and expansion compression 

connector type. Each type has its own semantic and 

has the following signature form: 

Connector typeName (requiredInterf, providedInterf); 

Where requiredInterf represents all required ports 

and services and providedInterf represents all 

provided ports and services of a connector. 

Obviously each interface also contains services, but 

in the following definitions we focus only on 

structural aspect of the interface (ports). The 

functional aspect (services) will not be addressed in 

this paper and therefore they will not be specified in 

the descriptions that follow. Consider that each 

service can use one or more ports of the same 

interface. In the following we give the exact function 

of each type of connector in C3 metamodel. 

Connection Connector (CC) 

CC connector type is used to connect components 

and / or configurations belonging to the same level 

of decomposition or hierarchy. The ports of this type 

of connector can be “required” or “provided”. Thus, 

through these ports elements can exchange services 

between them. 

Connector CC ({Xi.requiredPort}, {Yj.providedPort}) 

where   Xi , Yj  ⊂  {component, configuration}, 

Xi , Yj  ⊂   Lk ;   //  the same hierarchical level (Lk), 

Xi.Level = Yj.Level, 

i = 1, 2, .., M ;   j = 1, 2, .., N, 

and Lk represents the decomposition level (k= 1,2, ..,R)   

Where (M+N) is the maximum number of 

elements which can be linked by CC connector. 

Hence, CC may have to (M+N) ports. The mapping 

between the inputs and outputs is described by an 

exchange protocol called glue defined inside of the 

connector. The various possibilities of links that a 

connection connector can have are depicted in 

Figure 7.a where the component, the configuration 

and the CC connector belong to same hierarchical 

level. 

Figure 7.b represents CC1 a connection 

connector type used to link a client component with 

s-config configuration of the previous example. This 

type connector has two ports: portC1 in client side  

CC

ConfigurationComponent

from1
to2

to1

from3/to4 from4/to3

from2

 
Figure 7.a.  Possible links of CC Connector 

and portS1 in server side. Hence, the interface CC1 

will be defined as follows: 

Connector AC1 (portC1, portS1); 

 

Figure 7.b.  Connector CC1 in client-server architecture 

Composition / Decomposition Connector (CDC)  

CDC connector type is used to realize a top-down 

refinement (i.e. to link a configuration with its 

internal elements) also we call this relationship a 

decomposition model.  Likewise CDC connector can 

be used to realize bottom-up abstraction (i.e. to link 

a set of elements to their container or configuration 

also we call this relationship a composition model. 

However, this type of connectors can play two 

semantic roles with two different glue protocols. 

// decomposition of a configuration X to its internals  

Connector  CDC ( X.requiredPort , { Yi .providedPort} );  

// composition of Yi elements to constitute a configuration X 

Connector  CDC ( {Yi.requiredPort} , X.providedPort );  

where   X is a configuration,  

Y ⊂ {component, configuration}, and 

i =1,2,..,N ;  

X  ⊂   Lk and Yi  ⊂   Lk-j (i.e. X.Level > Yi.Level) 

L is the hierarchical level. 

Thus, a CDC connector will have (N+1) ports, 

where N is the number of internal elements in the 

corresponding configuration. This type of connector 

has the following interests: first it allows us to shape 

the genealogical tree of the different elements 

deployed in an architecture, second it enables a 

configuration to spread information to all these 

internal elements without exception (to-down 

CC1 Client S-Config 

portS1 portC1
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propagation) and inversely (i.e. it allows any internal 

element to send information to its configuration. 

Therefore, when designing this type of connector 

we can choose to define the glue corresponding to 

the decomposition function or that corresponding to 

the composition function. Also, we can define glue 

corresponding to the two functions together in the 

same connector type. Figure 8.a represents the 

possible links that a CDC connector type may have 

in a given architecture. 

CDC

Component

Configuration1

to1

from2
from1

Configuration2

to2

 

Figure 8.a.  Possible links of CDC Connector 

Figure 8.b represents CDC1 a decomposition 

composition connector type used to link client-

server configuration (CS-config) defined at the 

hierarchical level (L2) with its internals namely 

client component (Client) and server configuration 

(s-config) defined at the lower hierarchical level 

(L1). Consequently, the interface of CDC1 connector 

type will be specified as follows: 

Connector CDC1 ( portCS, portC2, portS2); 

Where portC2, portS2, and portCS are 

respectively used to connect CDC1 with the client 

component, the server configuration, and client-

server configuration (CS-config).  

 

Figure 8.b.  Possible links of CDC1 connector 

Expansion/compression connector (ECC) 

The ECC is used to establish a service link between 

a configuration and its internal elements. Also, ECC 

can be used as an expansion operator of services to 

several sub-services and it can be used in reverse as 

a compression operator of set of services to a global 

service. The CDC may have an interface for 

expansion and another for compression. So, these 

interfaces are defined as follows: 

// expansion    
Connector  ECC ( X.requiredPort , { Yi.providedPort } ) ;  

// compression 

Connector  ECC ({ Yi.requiredPort } , X.providedPort  ) ;  

Where X is a configuration,  

Y ⊂  {component, configuration},  

i =1,2,..,N,  and N ≤  number of internal elements. 

X  ⊂   Lk  et  Yi  ⊂   Lk-1 ; (i.e. X.Level > Yi.Level) 

L is the hierarchical level. 

ECC connector type can be implemented using 

either single glue for one function (expansion or 

compression) or using two separate glues for 

expansion and compression functions. This will 

depend on the design decision. 

Figure 9.a represents the various possibilities of 

connections that an ECC connector type can have in 

a given architecture. 

ECC

Component

Configuration1

to1

from2
from1

Configuration2

to2

 
Figure 9.a.  Possible links of ECC connector 

Figure 9.b illustrates the connector type ECC1 

which allows exchange of information between the 

server configuration (s-config) and the coordinator 

component (Coor.). Thus, to achieve a bidirectional 

communication between the server and coordinator, 

ECC1 must have the following ports:  

• portS3 and portCo1 are used to ensure the 

expansion function from the server to coordinator.  

• portCo2 and portS4 are used to ensure 

compression function. The interface of this ECC1 

type will be as follows: 

CS-Config 

S-Config Client 

CDC1 

L2 

L1 

portCS2

portS2 portC2

Li 

Li-1 

Li 

Li-1 
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Connector ECC1 (portS3, portCo1, portS4, portCo2) ; 

 

Figure 9.b.  Possible links of ECC1 connector in 

 client-server architecture 

4. PHYSICAL ARCHITECTURE  

The physical architecture is a memory image of the 

application instance of the logical architecture. This 

image is built in the form of a graph whose nodes 

are instances of a connections manager. Each 

instance created corresponds to a component or a 

configuration instanced to construct the real 

application. Nodes of this graph are connected by 

arcs. We have three types of arcs. Each type of arc 

corresponds to specific type of connector. The 

physical architecture is built to serve as support for 

updating and evolution operations of the application 

instance like addition, removal, and replacement of 

elements in the application instance.  

4.1. Connections Manager (CM) 

The physical architecture is described using only 

two levels of abstractions; model or type level and 

level instance level as illustrated in Figure 9. In the 

type level we have the connections manager type 

represented by a class that encapsulates all different 

link of information on the links that a component or 

a configuration may have with its environment. 

 

Figure 10.a. Abstraction levels in physical architecture 

Each CM is identified by a name and has for 

attributes as indicated in Figure 10. 

 

Figure 10.b. Structure of a connections manager 

� ElementName: represents the name of the 

architectural element associated with this CM 

(i.e. the name of the component or the 

configuration corresponding); 

� CC_Links: list of connection connector names 

connected to the element associated with this 

CM; 

� CDC_link: the name of the composition 

decomposition connector connected to the 

element associated with this CM; 

� ECC_Link: the name of the expansion 

compression connector connected to the 

element associated with this CM; 

4.2. Operations on Connections Manager  

The possible operations on the connections manager 

are: 

� Instantiation: the connection manager is 

instantiated at the instance level (A0) of the physical 

architecture. Whenever an architectural element is 

instantiated at the application level the associated 

CM is automatically created in the physical 

architecture.  

� Installation: each time a connector is 

installed at the application level between a set of 

element instances, so the attributes of the associated 

CMs are updated with the necessary information 

about this connector instance. 

� Propagation: the mechanism of 

propagation is used to update information about 

links needed between CMs. These links are 

published by the interface of the connector installed 

at the application level. 

The physical architecture corresponding to the 

application instance of client-server architecture is 

illustrated in Figure 11. In this application we 

Instance level

Type level  

(A ) 

Link

Instance-Of 

Connections 

Manager 

CM1 CM2 

       ConnectorManager  Name  

       { 

              ElementName : string ;  

              CDC_Link : list_of_CMs ;  

              CC_Links : list_of_CMs ; 

              ECC_Link : list_of_CMs ; 

         } 

ECC1 

S-Config 

Coor. 

portS3

portCo1
portS4 

portCo2 

Compression 

Expansion 

Expansion 

Compression 
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assume having two clients connected to a single 

server. 

 

Figure 11. Physique architecture of  client-serveur 

application   

Once the application is built by the user, the 

corresponding physical architecture is also built in 

parallel. Thereafter if we need to intervene on the 

application to maintain or evolve it we must locate 

the concerned elements on the physical architecture 

using graph searching routines and graph updating 

operations like add (node), delete (node) or replace 

(node). 

Finally we can represent the logical architecture 

and the physical architecture and the relationship 

between them by an architecture model described in 

S3 metamodel where the logical architecture and the 

physical one are represented by two components and 

the relationship between the by a connection 

connector. Any action performed at the logical 

architecture causes a sending a message from first 

architecture type to the second architecture type. 

This message will interpreted as an action to be 

performed by the physical architecture.  

Exchanged services (operations) between the 

types of architectures are:  

� A component instantiation at the logical 

architecture level causes sending a message 

“CM_creation” from LAInterface to PAInterface. 

When this message is received by the physical 

architecture a connection manager instance will be 

created to represent this component at the physical 

architecture level.  

� A connector instantiation at the logical 

architecture level causes sending a message 

“CM_connection” from LAInterface to PAInterface. 

When this message is received by the physical 

architecture a set links are created to link connection 

manager instances corresponding to all components 

connected by this connector instance. 

� Any updating action (replacement or 

deleting of a component or a connector) at the 

logical architecture causes sending a message 

“CM_update” from LAinterface to PAinterface. 

When this message is received by the physical 

architecture a set of updating operations are 

performed to rearrange links among the 

corresponding CMs. 

 
Legend: LAInterface: logical architecture interface, 

            PAInterface: physical architecture interface. 

Figure 12. Architectural representation of the relationship 

between the logical and physical architectures  

5. CONCLUSION 

In this article we have presented the core elements of 

C3 metamodel and how to describe software 

architecture using C3. The elements defined by C3 

are assembled through their interfaces to build 

software architectures. So, we must ensure syntactic 

checks by checking the compatibility of interfaces 

types of various elements assembled in the 

architecture and are in interaction with each other.  

Mainly, our approach is defined by two types of 

architectures. A logical architecture described by the 

architect. And a physical architecture generated 

automatically by the system. The logical architecture 

uses architectural concepts most commonly accepted 

by all ADLs namely components, connectors and 

configurations.  

We found interesting to give a new structure for 

connectors in which attachments are encapsulated 

within the definition of connectors. Hence, the 

interface connector is now a set of services and 

ports. This new structure allows us to assemble 
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connectors only with elements that are defined in its 

interface. 

We have identified three types of connectors. 

Connection Connectors (CC) which refer to the links 

among components belonging to the same level of 

decomposition. Composition/Decomposition 

Connectors (CDC) which refer to the links between 

a configuration and its internal components and 

connectors. Expansion/Compression connectors 

(ECC) which refer to the links used to realize any 

transformation of information or data exchanged 

between a configuration and its internal components.  
Also, we have defined a physical architecture as 

a graph whose nodes are connections managers 

associated with architectural elements and arcs 

represent links that correspond to the connectors. 

The physical architecture reflects the application 

architecture which is an instance of the logical 

architecture and serves as a support for maintenance 

and evolution operations applied on architecture of 

the application. 

As extension for this work, we planned to define 

more than one hierarchical view to describe 

component-based architectures. Among those 

hierarchies we will use a structural hierarchy to 

develop the structural aspects of any architecture 

described according to C3 metamodel, a behaviour 

hierarchy to make explicit functional aspects of the 

system, a conceptual hierarchy to clarify the 

relationships between different elements types 

developed by the architects and stored in libraries, 

and metamodeling hierarchy of to define the core 

elements of our C3 metamodel and locate its 

position in the pyramid of abstraction levels defined 

by OMG’s standards. Obviously, we will focus also 

on the relationship between these hierarchies, and 

the different connection mechanisms used to enable 

interactions between elements from different 

hierarchy views. 
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