
HAL Id: hal-00484024
https://hal.science/hal-00484024v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C3: A Metamodel for Architecture Description
Language Based on First-Order Connector Types

Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. C3: A Metamodel for Architecture Description Language Based
on First-Order Connector Types. 11th International Conference on Enterprise Information Systems
(ICEIS 2009), May 2009, Milan, Italy. pp.76-81. �hal-00484024�

https://hal.science/hal-00484024v1
https://hal.archives-ouvertes.fr

 1

C3: A METAMODEL FOR ARCHITECTURE DESCRIPTION

LANGUAGE BASED ON FIRST-ORDER CONNECTOR TYPES

Abdelkrim Amirat and Mourad Oussalah
LINA Laboratoy LINA CNRS UMR 6241

University of Nantes, France

{abdelkrim.amirat ; mourad.oussalah}@univ-nantes.fr

Keywords: Logical architecture, Physical architecture, First class connector, Connection manager, Modeling software

architecture, C3 Metamodel.

Abstract: To provide hierarchical description from different software architectural viewpoints we need more than one

abstraction hierarchy and connection mechanisms to support the interactions among components. Also,

these mechanisms will support the refinement and traceability of architectural elements through the

different levels of each hierarchy. Current methods and tools provide poor support for the challenge posed

by developing system using hierarchical description. This paper describes an architecture-centric approach

allowing the user to describe the logical architecture view where a physical architecture view is generated

automatically for all application instances of the logical architecture.

1. INTRODUCTION

Modeling and representation of software

architectures are the main phases of the development

process of complex software systems [Szyperski,

2002]. The representation of architecture is based on

the concepts of component (loci of computation),

connector (loci of communication), and

configuration (arrangement of components and

connectors, and properties of that arrangement) in

order to describe the structure of the system at a

higher level of abstraction than objects or lines of

code. This representation provides several

advantages over the life cycle of a software [Garlan

et al., 2000].

Component have always been considered to be

the fundamental building blocks of software

systems, the ways the components of a system

interact are determinant for establishing the global

system properties that emerge from the way the

individual components are interconnected. Hence,

component interactions have been promoted to first

class design entities as well, and architectural

connectors have emerged as a powerful tool for

supporting the design of these interactions [Perry

and Wolf 1992; Shaw 1993].

Although the use of connectors is widely

accepted at the conceptual level, their explicit

representation at the implementation level is not

always left to be necessary. For example, the Darwin

[Magee et al. 1999] architecture description

language does not include connectors. However, we

feel that distinct conceptual entities should

correspond to distinct implementation entities, so

that they can truly become first-class and be

manipulated as such. In fact, as argued in [Mehta et

al. 2000], the current level of support that ADLs

provide for connector building is still far from the

one awarded to components. For instance, although

a considerable amount of work can be found on

several aspects of connectors [Mehta et al. 2000;

Shaw et al. 1995; Allen and Garlan 1997; Spitznagel

and Garlan 2001], further steps are still necessary to

achieve a systematic way of constructing new

connectors from existing ones. Yet, the ability to

manipulate connectors in a systematic and controlled

way is essential for promoting reuse and incremental

development, and to make it easier to address

complex interactions.

Certainly, having a representation of the software

architecture allows an easy exchange between the

architect and programmer. Also, during the phases

of maintenance and evolution, this representation

helps to locate defects and reduces the risk of

improper assembly of a new feature in the system. In

addition, the distinction which exists between

components and connectors allows a more explicit

 2

representation between the functional aspects and

these of communication and therefore, makes the

system easier to understand and to change. Finally,

architecture-based components are also useful to

facilitate the reuse of certain parts of the system

represented by configurations [Allen, 1997].

In contrast the industrial world, which offers

components strongly linked to servers, systems or

models owners [Pinto, 2005], the academic approach

is interested in formalizing the notion of software

architecture (ADL). The ADLs provide a high level

of abstraction for the specification and development

of software systems. Today, several ADLs are

defined, to help in the development of component-

based systems, such as Rapide [Luckham, 1996],

SADL [Moriconi and Riemenschneider, 1997],

UniCon [Shaw, 1996], C2 [Taylor et al. 1996],

Darwin [Magee, 2005], MetaH [Binns et al., 1996],

Wright [Allen, 1997], and ACME [Garlan et al.

1997; Garlan et al. 2000] from the “first generation”

of ADLs and UML 2.0 [Booch et al., 2005] , AADL

[Allen et al., 2002], Koala [Ommering et al., 2000],

and xADL 2.0 [Dashofy et al., 2005] from the

“second generation” of ADLs. The classification of

ADLs in generations is recently introduced by

Medvidovic [Medvidovic et al., 2007].

In this article, we take a step towards this goal by

proposing a metamodel for the description of

software architecture called C3 (three “C” for

Component, Connector, and Configuration). The

specificities of this metamodel are: First, proposing

a new structure and new types of connectors,

second, definition and manipulation of

configurations as first classes entities and third,

description of architectures from two different

views, a model architecture view (logical

architecture) created by the architect and an

application architecture view (physical architecture

instances of the logical architecture) generated

automatically which serves as support to maintain

the consistency and the evolution of the application

architectures.

After this introduction, the remainder of this

article is organized as follows: Section 2 provides

the motivations of our research. In section 3 presents

the concept of a logical architecture with the key

elements of the proposed metamodel. The physical

architecture is defined in section 4. The last section

concludes this work with a summary of our ongoing

research.

2. MOTIVATIONS

Our main motivation is to propose a metamodel to

maintain the consistency of an architecture using

new types of connectors with a richer semantics.

Using these connectors, systems are built like a Lego

Blocks (Puzzle) by assembling components and

connectors, where each element can only placed in

the right place in the architecture puzzle. We find in

most existing ADLs and notation languages that:

� The definition and instantiation of connectors are

often merged in a single operation.

� The management of connectors does not take into

account the semantic composition hierarchies

when positioning and establishing links between

components and their composites.

� Few models allow reuse connectors (for example

through inheritance) and to define new connectors

by their reuse.

� There is no direct and automatic correspondence

between architectures (models) and applications

built following these architectures (instances).

In order to overcome these shortcomings we are

propose in this paper, a metamodel (C3) for

describing hierarchical software architecture, based

on the definition of two types of architecture. A

logical architecture defined by the user and a

physical architecture built by the system and

conforms to the logical architecture. The metamodel

will make its contribution towards the following

objectives:

O1: Provide a higher abstraction level for connectors

in order to make them more generic and more

reusable.

O2: Take into account the semantics of several types

of relationships. In our case; we explore the

association relationship between components, the

composition relationship among architectural

elements, and the propagation relationship to

describe software systems at different levels of

details.

O3: Promote the maintenance and the evolution of

architectures by the possibility of adding, deleting

and substitution of different elements in the

architectural.

O4: The principle of reuse should be widely

exploited. New components and connectors can be

defined by combining already existing elements

through inheritance and/or composition mechanisms.

 3

O5: Explicit connectors must be preserved through a

declarative interface that hides the management

mechanism of the inside glue-protocol.

O6: Using the physical and the logical architecture,

we can separate the functional aspects of

architectural elements and the non-functional aspects

related to the management of their consistency.

3. LOGICAL ARCHITECTURE

Our approach is based on the description of software

architecture following two architectural views. The

first one is a logic view defined by the architect by

assembling the compatible elements available in the

library of element types and the second one is a

physical view constructed automatically by the

system and serves as a support for user applications

built in accordance with the logical architecture.

The large majority of ADLs consider

components as entities of first class. So, they make

distinction between component-types and

component-instances. However, this is not the case

with other concepts such as connectors and

configurations. In our metamodel we consider each

concept recognized by the C3 metamodel as

architectural element of the first class citizen. So,

each architectural element maybe positioned on one

of the three abstraction levels defined in the

following section. We believe that it is necessary to

reify the core architectural elements in order to be

able to represent and manipulate them and let them

evolve easily.

3.1. Abstraction levels

In our approach, software architectures are described

in accordance to the first three levels of modelling

defined by the OMG [OMG, 2006; OMG, 2007].

The application level (A0) which represents the real

word application (an instance of the architecture),

the architecture level (A1) which represents the

architecture model and meta-architecture level (A2)

which represents the meta-language for the

description of the architecture. The three abstraction

levels are defined as follows (Figure 1):

3.1.1. Meta-architecture level (A2)

In this level we find the standard definition of any

architectural element proposed by a large set of

ADLs to describe software architectures. We

consider the most common elements namely

components, connectors, and configurations. Section

3.2 will summarize the description of the core

elements of the C3 metamodel.

3.1.2. Architecture level (A1)

This level is used to describe any architecture model

using one or more instances of architectural building

blocks defined at the meta-architecture level (A2).

Figure 1 shows a client/server architecture

configuration (CSconfig) type with is defined using

the following three components types: client

component type, server component type and data

base component type; and two variants RPC

connector types: N1 between the client type and the

server one, and N2 between the server type and the

data base type.

Legend: Required Port, Provided Port.

Figure 1. Architecture abstraction levels.

3.1.3. Application level (A0)

At this level (implementation level) one or more

applications can be built according to the

architecture described at the above level (A1). Each

architectural element of the implementation level is

an instance of an element-type of the architecture

model. For example we can build from the previous

client/server architecture the application SCapp

(Figure1) with is an instance of the CSconfig

configuration assembled from C1 and C2 instances

C1

Client

Configuration

Component Connector
…

Server

A2

DataBase

CSconfig

S1 DBOracle

CSapp

C2

Instance-Of

Instance-Of

…

N1 N2

N11
N21

N12

A1

A0

C3

Metamodel

 4

of the client component; DBOracle instance the Data

base component; S1 instance of the server

component; N11 and N12 instances of connector

type N1 and finally N21 instance of connector type

N2. This figure shows only one application

architecture (CSapp), more application architectures

could be instantiated.

We have presented in this section the concept

software architecture through its core concepts and

its various abstraction levels. We have focused on

the important concepts to address the key issue of

connectors in software architecture description.

3.2. Basic concepts of C3 metamodel

3.2.1. Architectural elements

In our metamodel described in Figure 2, an

architectural element may be a component, a

connector or architectural configuration
1
. A

configuration represents a graph of components and

connectors. A component or a connector is a

composite when it is composed of other internal

architectural elements. A component or connector is

primitive when it is atomic (without internal

structure).

An architectural element may have several

properties as well as constraints on these properties,

as it may have one or more possible

implementations. The interaction points of each

architectural element with its environment are the

interfaces. Each architectural element is defined by

its interfaces through which they publish its required

and provided services to and from its environment.

Each service may use one or more ports. We

approach in the following sections with more detail

the most important concepts of our C3 metamodel.

3.2.2. Component

A generally accepted view of a software component

is that it is a software unit with provided services

and required services. The provided services are

operations performed by the component. The

required services are the services needed by the

component to produce the provided services. The

interface of a component consists of the

specifications of its provided and required services.

It should specify any dependencies between its

provided and required services. To specify these

dependencies precisely, it is necessary to match the

1 “Architectural configuration” will, at various times in this paper,
be referred to simply as “graph” or “topology”.

required services to the corresponding provided

services. Services are carried using ports. Thus, we

can define a generic interface of a component type

as follows:

Component typeName (requiredInterf , provideInterf);

3.2.3. Connector

Connectors are architectural building blocks used to

model the interactions between components and

rules that govern these interactions. They correspond

to lines in box-line descriptions. Examples are pipes,

procedure call, method in-vocation, client-server

protocol, and SQL link between database and

application. Unlike components, connectors may not

correspond to compilation entities. However, the

specifications of connectors in an ADL may also

contain rules to implement a specific type of

connectors. Current ADLs can be classified into

three different kinds: 1- ADLs without connectors,

ADLs with predefined set of connectors, and ADLs

with explicit connector types.

� ADLs with implicit connectors. There are

ADLs that prefer the absence of connector because

they distort the compositional nature of software

architectures. Some ADLs, such as Darwin [Magee et

al. 1996], Leda [Canal et al., 1999], and Radipe

[Luckham, 1996] do not consider connectors as first

class citizens. However these ADLs make difficult

the reusability of components because they have the

coordination process tangled with the compotation

inside them, and they are aware of the coordination

process that has to happen in order to communicate

with the rest. The notion of connector emerges from

the need to separate the interaction from the

computation in order to obtain more reusable and

modularized components and to improve the level of

abstraction of software architecture description

[Medvidovic 2000]. May Shaw [Shaw, 1993]

presents the need for connectors due to the fact that

the specification of software systems with complex

coordination protocols is very difficult without the

notion of connector. Hence, connector provides not

only a high level of abstraction and modularity to

software architectures, but also an architectural view

of the system instead of the object-oriented view of

compositional approaches. So, it is important to

defend the idea of considering connectors as first-

order citizens of ADLs.

� ADLs with predefined set of connectors.
UniCon [Shaw et al. 1995; Shaw et al. 1996] is a

typical representative of ADLs supporting a

 5

predefined set of built-in connector types only. The

semantics of built-in connector types are defined as

part of the language, and are intended to correspond

to the usual interaction primitives supported by

underlaying operating system or programming

language. A connector in the UniCon language is

specified by its protocol. A connector’s protocol

consists of the connector’s type, specific set of

properties, and a list of typed roles. Each role serves

as a point through which the connector is connected

to a component. UniCon currently supports seven

built-in connector types which represent the basic

classes of interactions among components: Pipe,

FileIO, Procedure Call, Remote Procedure Call,

Data Access, RT Scheduler, and PL Bundler. These

connectors cannot be instantiated nor evolved.

Composite connectors are composed only from

connectors.

� ADLs with explicit connector types. Most

ADLs provide connectors as first order citizens of

the language such as: ACME [Garlan, 2000], Aesop

[Garlan, 1994] , C2 [Medvidovic et al., 1996;

Medvidovic et al., 1999; Medvidovic 1999]], SADL

[Moriconi, 1995], Wright [Allen, 1997], ArchWare’s

π-ADL [Oquendo, 2004; Oquendo et al., 2004], etc.

All of these languages go a step forward with regard

to the previous kind of ADLs. They improve the

reusability of components and connectors by

separating computation from coordination.

In our approach we opt for first class connector’s

category. So, in the C3 metamodel we present some

explicit and generic types of connectors that the user

can specialize following her/his needs in each

application field. We will focus with details on this

concept in section 3.3.

3.2.4. Configuration

A configuration represents a graph of components

and connectors. Configuration specifies how

components are connected with connectors (Figure

3). This concept is needed to determine if the

components are well connected, whether their

interfaces agree, and so on. A configuration is

described by an interface which enables the

communication between: the configuration and its

external environment, and the configuration and its

internal components.

Configuration typeName (requiredInterf , provideInterf);

The following UML diagrams (Figure 2 and 3)

represent the main elements of C3 metamodel. For

clarity raisons, these diagrams present a simplified

version of our metamodel. In the rest of this article

we will only deal with connectors with more detail

as they represent the mainstream of our research

topic in this paper. In addition, the relationship

connector-configuration and connector-component

will be highlighted in the text.

ArchitecturalElement

+name

implementation

realised by

1

1..*

Constraintes

1
0..*

Properties
1 0..*

composed of

0..*

1

Interface

1

1..*

Port Service

RequiredService ProvidedService

Use

RequiredPort ProvidedPort

Figure 2. Structure of an architectural element in C3

 6

CC

ArchitecturalElement

Component

+name

Configuration

+name

Connector

+nom

CDC ECC

*

1..*

*

1..*

Figure 3. Component, connector, and configuration in C3

3.3. Connector in C3

A connector is mainly represented by an interface

and a glue specification [Oussalah, 2004]. Basically,

the interface shows the necessary information of the

connector, including the number of interaction

points, service type that a connector provides

(communication, conversion, coordination,

facilitation), connection mode (synchronous,

asynchronous), transfer mode (parallel, serial) etc. In

C3 interaction points of an interface are called Ports.

A port is the interface of a connector intended to be

tied to a component interface (a component’s port).

In the context of the frame, a port is either a

provided port or a required port. A provide port

serves as entry point to a component interaction

represented by a connector type instance and it is

intended to be connected to the require port of a

component (or to the require port of another

connector). Similarly, a require port serves as the

outlet point of a component interaction represented

by a connector type instance and it is intended to be

connected to the provide port of a component (or to

the provide role of another connector). The number

of ports within a connector denotes the degree of a

connector type. For example, in client-server

architecture a connector type representing procedure

call interaction between client and server entities is a

connector with degree two. More complex

interactions among three or more components are

typically represented by connector types of higher

degrees. Consequently, the interface is the visible

part of connector; hence it must contain enough

information regarding the service and the type of

this connector. By doing this, one can decide

whether or not a given connector suits its

qualifications by examining its interface only.

The glue specification describes the functionality

that is expected from a connector. It represents the

hidden part of a connector. The glue could be just a

simple protocol links ports or it could be a complex

protocol that does various operations including

linking, conversion of data format, transferring,

adapting, etc. in general the glue of a connector

represents the connection type of that connector.

Connectors can also have an internal architecture

that includes computation and information storage.

For example a connector would execute an

algorithm for converting data from format A to

format B or an algorithm for compressing data

before it transmits them. Hence, the service provided

by connectors is defined by its glue; the services of a

connector could be either communication service,

conversion service, coordination service, or

facilitation service.

In case of composite connectors the sub-

connectors and sub-components of the composite

connector must be defined in the glue, as well as the

binding among the sub-connectors and sub-

components.

The general signature form of the connector

interface is a follows:

Connector typeName (requiredInterf , provideInterf);

3.3.1. Connector structure

Our contribution at this level consists in enhancing

the structure of connectors by encapsulating the

attachment links (figure 4). So, the application

builder will have to spend no effort in connecting

connectors with its compatible components and/or

 7

configurations. Consequently, the task of the

developer consists only in choosing from the library

the suitable type of connectors where its interfaces

are compatible with the interfaces of

component/configuration types of which are

expected to be assembled.

Connector

Interface Connection Glue

PortService Role

Figure 4. Connector structure

In order to illustrate the properties of C3

metamodel and the associated connector

definition, a case study is going to be used

throughout the paper. The case study is a client-

server configuration (CS-config) organized around

a client-server relationship. In this configuration

we have a client and a server. The server

component itself is defined by a configuration (S-

config) whose internal components are

Coordinator (Coor.), securityManager (SM) and

dataBase (DB). These elements are interconnected

via connector services that determine the

interactions that can occur between the server and

client on one hand and between the server and its

internal elements on the other hand. These

connectors are represented in Figure 5 by solid-

lines.

Figure 5. Client–Server Architecture

In Figure 6.a we describe the structure of the RPC

connector used to connect the client component (C)

with the server component (S). In this new structure

the RPC connector encapsulates attachments that

represent links between the client and server.

Figure 6.a. Connecteur structure in C3

Figure 6.b. Connector description in C3

Figure 6.b represents the signature specification of

the connector PRC. Inside this connector type we

have the glue code which describes how the

activities of the client and server are coordinated. It

must indicate that the activities should be sequenced

in a well defined order: the customer asks for a

service, the server processes the request, the server

provides the result and the customer gets the result.

So, by encapsulating attachments inside

connectors and having well defined connector

interfaces with previously known element types to

be connected by each connector type components

and/or configurations are assembled in an easy and

coherent way in the form of an architectural puzzle

(Lego Blocks) without any effort to describe links

among components and connectors or between

configurations and connectors. Consequently, this

approach accelerates the development of

component-based systems, improves their evolution,

coherence, maintainability and promotes component

markets [Amirat, 2007].

CS-Config.

S-Config.

Client

DB SM

Coor.

Server

 Connector (RPC)

Glue
Server (S) Client (C)

R1 R2

Attachment
New structure

of a connector

Old structure of

a connector

Legend: Required Port Provided Port

 Required Role Provided Role

P1
P1

Link

Connector RPC (C.P1, S.P1) // Connector interface

{
 Proprieties = { List of properties };

 Constraints = { List of constraints };

 Services = { List of services };

 //decomposition level

 HierarchicalLevel = (C.Level = S.Level);

 // simple case of a glue

 Glue = {Roles ={{R1 , R2}; R1 = R2 }};
 Attachments = { R1 to C.P1, R2 to S.P1 }; //attachments

}

 8

3.3.2. Connector taxonomy

In C3 metamodel we have defined three connector

types as illustrated in Figure 3: the connection

connector type (CC), the composition decomposition

connector type (CDC), and expansion compression

connector type. Each type has its own semantic and

has the following signature form:

Connector typeName (requiredInterf, providedInterf);

Where requiredInterf represents all required ports

and services and providedInterf represents all

provided ports and services of a connector.

Obviously each interface also contains services, but

in the following definitions we focus only on

structural aspect of the interface (ports). The

functional aspect (services) will not be addressed in

this paper and therefore they will not be specified in

the descriptions that follow. Consider that each

service can use one or more ports of the same

interface. In the following we give the exact function

of each type of connector in C3 metamodel.

Connection Connector (CC)

CC connector type is used to connect components

and / or configurations belonging to the same level

of decomposition or hierarchy. The ports of this type

of connector can be “required” or “provided”. Thus,

through these ports elements can exchange services

between them.

Connector CC ({Xi.requiredPort}, {Yj.providedPort})

where Xi , Yj ⊂ {component, configuration},

Xi , Yj ⊂ Lk ; // the same hierarchical level (Lk),

Xi.Level = Yj.Level,

i = 1, 2, .., M ; j = 1, 2, .., N,

and Lk represents the decomposition level (k= 1,2, ..,R)

Where (M+N) is the maximum number of

elements which can be linked by CC connector.

Hence, CC may have to (M+N) ports. The mapping

between the inputs and outputs is described by an

exchange protocol called glue defined inside of the

connector. The various possibilities of links that a

connection connector can have are depicted in

Figure 7.a where the component, the configuration

and the CC connector belong to same hierarchical

level.

Figure 7.b represents CC1 a connection

connector type used to link a client component with

s-config configuration of the previous example. This

type connector has two ports: portC1 in client side

CC

ConfigurationComponent

from1
to2

to1

from3/to4 from4/to3

from2

Figure 7.a. Possible links of CC Connector

and portS1 in server side. Hence, the interface CC1

will be defined as follows:

Connector AC1 (portC1, portS1);

Figure 7.b. Connector CC1 in client-server architecture

Composition / Decomposition Connector (CDC)

CDC connector type is used to realize a top-down

refinement (i.e. to link a configuration with its

internal elements) also we call this relationship a

decomposition model. Likewise CDC connector can

be used to realize bottom-up abstraction (i.e. to link

a set of elements to their container or configuration

also we call this relationship a composition model.

However, this type of connectors can play two

semantic roles with two different glue protocols.

// decomposition of a configuration X to its internals

Connector CDC (X.requiredPort , { Yi .providedPort});

// composition of Yi elements to constitute a configuration X

Connector CDC ({Yi.requiredPort} , X.providedPort);

where X is a configuration,

Y ⊂ {component, configuration}, and

i =1,2,..,N ;

X ⊂ Lk and Yi ⊂ Lk-j (i.e. X.Level > Yi.Level)

L is the hierarchical level.

Thus, a CDC connector will have (N+1) ports,

where N is the number of internal elements in the

corresponding configuration. This type of connector

has the following interests: first it allows us to shape

the genealogical tree of the different elements

deployed in an architecture, second it enables a

configuration to spread information to all these

internal elements without exception (to-down

CC1 Client S-Config

portS1 portC1

 9

propagation) and inversely (i.e. it allows any internal

element to send information to its configuration.

Therefore, when designing this type of connector

we can choose to define the glue corresponding to

the decomposition function or that corresponding to

the composition function. Also, we can define glue

corresponding to the two functions together in the

same connector type. Figure 8.a represents the

possible links that a CDC connector type may have

in a given architecture.

CDC

Component

Configuration1

to1

from2
from1

Configuration2

to2

Figure 8.a. Possible links of CDC Connector

Figure 8.b represents CDC1 a decomposition

composition connector type used to link client-

server configuration (CS-config) defined at the

hierarchical level (L2) with its internals namely

client component (Client) and server configuration

(s-config) defined at the lower hierarchical level

(L1). Consequently, the interface of CDC1 connector

type will be specified as follows:

Connector CDC1 (portCS, portC2, portS2);

Where portC2, portS2, and portCS are

respectively used to connect CDC1 with the client

component, the server configuration, and client-

server configuration (CS-config).

Figure 8.b. Possible links of CDC1 connector

Expansion/compression connector (ECC)

The ECC is used to establish a service link between

a configuration and its internal elements. Also, ECC

can be used as an expansion operator of services to

several sub-services and it can be used in reverse as

a compression operator of set of services to a global

service. The CDC may have an interface for

expansion and another for compression. So, these

interfaces are defined as follows:

// expansion
Connector ECC (X.requiredPort , { Yi.providedPort }) ;

// compression

Connector ECC ({ Yi.requiredPort } , X.providedPort) ;

Where X is a configuration,

Y ⊂ {component, configuration},

i =1,2,..,N, and N ≤ number of internal elements.

X ⊂ Lk et Yi ⊂ Lk-1 ; (i.e. X.Level > Yi.Level)

L is the hierarchical level.

ECC connector type can be implemented using

either single glue for one function (expansion or

compression) or using two separate glues for

expansion and compression functions. This will

depend on the design decision.

Figure 9.a represents the various possibilities of

connections that an ECC connector type can have in

a given architecture.

ECC

Component

Configuration1

to1

from2
from1

Configuration2

to2

Figure 9.a. Possible links of ECC connector

Figure 9.b illustrates the connector type ECC1

which allows exchange of information between the

server configuration (s-config) and the coordinator

component (Coor.). Thus, to achieve a bidirectional

communication between the server and coordinator,

ECC1 must have the following ports:

• portS3 and portCo1 are used to ensure the

expansion function from the server to coordinator.

• portCo2 and portS4 are used to ensure

compression function. The interface of this ECC1

type will be as follows:

CS-Config

S-Config Client

CDC1

L2

L1

portCS2

portS2 portC2

Li

Li-1

Li

Li-1

 10

Connector ECC1 (portS3, portCo1, portS4, portCo2) ;

Figure 9.b. Possible links of ECC1 connector in

 client-server architecture

4. PHYSICAL ARCHITECTURE

The physical architecture is a memory image of the

application instance of the logical architecture. This

image is built in the form of a graph whose nodes

are instances of a connections manager. Each

instance created corresponds to a component or a

configuration instanced to construct the real

application. Nodes of this graph are connected by

arcs. We have three types of arcs. Each type of arc

corresponds to specific type of connector. The

physical architecture is built to serve as support for

updating and evolution operations of the application

instance like addition, removal, and replacement of

elements in the application instance.

4.1. Connections Manager (CM)

The physical architecture is described using only

two levels of abstractions; model or type level and

level instance level as illustrated in Figure 9. In the

type level we have the connections manager type

represented by a class that encapsulates all different

link of information on the links that a component or

a configuration may have with its environment.

Figure 10.a. Abstraction levels in physical architecture

Each CM is identified by a name and has for

attributes as indicated in Figure 10.

Figure 10.b. Structure of a connections manager

� ElementName: represents the name of the

architectural element associated with this CM

(i.e. the name of the component or the

configuration corresponding);

� CC_Links: list of connection connector names

connected to the element associated with this

CM;

� CDC_link: the name of the composition

decomposition connector connected to the

element associated with this CM;

� ECC_Link: the name of the expansion

compression connector connected to the

element associated with this CM;

4.2. Operations on Connections Manager

The possible operations on the connections manager

are:

� Instantiation: the connection manager is

instantiated at the instance level (A0) of the physical

architecture. Whenever an architectural element is

instantiated at the application level the associated

CM is automatically created in the physical

architecture.

� Installation: each time a connector is

installed at the application level between a set of

element instances, so the attributes of the associated

CMs are updated with the necessary information

about this connector instance.

� Propagation: the mechanism of

propagation is used to update information about

links needed between CMs. These links are

published by the interface of the connector installed

at the application level.

The physical architecture corresponding to the

application instance of client-server architecture is

illustrated in Figure 11. In this application we

Instance level

Type level

(A)

Link

Instance-Of

Connections

Manager

CM1 CM2

 ConnectorManager Name

 {

 ElementName : string ;

 CDC_Link : list_of_CMs ;

 CC_Links : list_of_CMs ;

 ECC_Link : list_of_CMs ;

 }

ECC1

S-Config

Coor.

portS3

portCo1
portS4

portCo2

Compression

Expansion

Expansion

Compression

 11

assume having two clients connected to a single

server.

Figure 11. Physique architecture of client-serveur

application

Once the application is built by the user, the

corresponding physical architecture is also built in

parallel. Thereafter if we need to intervene on the

application to maintain or evolve it we must locate

the concerned elements on the physical architecture

using graph searching routines and graph updating

operations like add (node), delete (node) or replace

(node).

Finally we can represent the logical architecture

and the physical architecture and the relationship

between them by an architecture model described in

S3 metamodel where the logical architecture and the

physical one are represented by two components and

the relationship between the by a connection

connector. Any action performed at the logical

architecture causes a sending a message from first

architecture type to the second architecture type.

This message will interpreted as an action to be

performed by the physical architecture.

Exchanged services (operations) between the

types of architectures are:

� A component instantiation at the logical

architecture level causes sending a message

“CM_creation” from LAInterface to PAInterface.

When this message is received by the physical

architecture a connection manager instance will be

created to represent this component at the physical

architecture level.

� A connector instantiation at the logical

architecture level causes sending a message

“CM_connection” from LAInterface to PAInterface.

When this message is received by the physical

architecture a set links are created to link connection

manager instances corresponding to all components

connected by this connector instance.

� Any updating action (replacement or

deleting of a component or a connector) at the

logical architecture causes sending a message

“CM_update” from LAinterface to PAinterface.

When this message is received by the physical

architecture a set of updating operations are

performed to rearrange links among the

corresponding CMs.

Legend: LAInterface: logical architecture interface,

 PAInterface: physical architecture interface.

Figure 12. Architectural representation of the relationship

between the logical and physical architectures

5. CONCLUSION

In this article we have presented the core elements of

C3 metamodel and how to describe software

architecture using C3. The elements defined by C3

are assembled through their interfaces to build

software architectures. So, we must ensure syntactic

checks by checking the compatibility of interfaces

types of various elements assembled in the

architecture and are in interaction with each other.

Mainly, our approach is defined by two types of

architectures. A logical architecture described by the

architect. And a physical architecture generated

automatically by the system. The logical architecture

uses architectural concepts most commonly accepted

by all ADLs namely components, connectors and

configurations.

We found interesting to give a new structure for

connectors in which attachments are encapsulated

within the definition of connectors. Hence, the

interface connector is now a set of services and

ports. This new structure allows us to assemble

Logical Architecture

Physical Architecture

M0

Instance Level

M0
Instance Level M1

Architecture

M2
MetaArchitecture

Level

M3 Meta

MetaArchitecture

level
M1

System Level
Architecture

Connector

L
A

In

te
rf

ac
e

P
A

In

te
rf

ac
e

Legend : : CDC : ECC : AC

CM_CS

CMserver CMclient1

CM
coordinator

CM

securityManager

CM

dataBase

CMclient2

 12

connectors only with elements that are defined in its

interface.

We have identified three types of connectors.

Connection Connectors (CC) which refer to the links

among components belonging to the same level of

decomposition. Composition/Decomposition

Connectors (CDC) which refer to the links between

a configuration and its internal components and

connectors. Expansion/Compression connectors

(ECC) which refer to the links used to realize any

transformation of information or data exchanged

between a configuration and its internal components.
Also, we have defined a physical architecture as

a graph whose nodes are connections managers

associated with architectural elements and arcs

represent links that correspond to the connectors.

The physical architecture reflects the application

architecture which is an instance of the logical

architecture and serves as a support for maintenance

and evolution operations applied on architecture of

the application.

As extension for this work, we planned to define

more than one hierarchical view to describe

component-based architectures. Among those

hierarchies we will use a structural hierarchy to

develop the structural aspects of any architecture

described according to C3 metamodel, a behaviour

hierarchy to make explicit functional aspects of the

system, a conceptual hierarchy to clarify the

relationships between different elements types

developed by the architects and stored in libraries,

and metamodeling hierarchy of to define the core

elements of our C3 metamodel and locate its

position in the pyramid of abstraction levels defined

by OMG’s standards. Obviously, we will focus also

on the relationship between these hierarchies, and

the different connection mechanisms used to enable

interactions between elements from different

hierarchy views.

6. REFERENCES

Allen, R.J., “A Formal Approach to Software

Architecture”, PhD Thesis, School of Computer Science,

Carnegie Mellon University, 1997.

Allen, R., and Garlan, D., “A Formal Basis for

Architectural Connection”, ACM Transactions on

Software Engineering and Methodology, volume 6, issue

3, pages 213-249, July 1997.

Allen, R., Vestal, S., Lewis, B., Cornhill, D., “Using an

architecture description language for quantitative analysis

of real-time systems”, in Proceedings of the Third

International Workshop on Software and Performance,

ACM Press, Rome, Italy, pages 203–210, 2002.

Amirat, A., Oussalah, M., and Khammaci, T., “Towards

an Approach for Building Reliable Architectures”, In

Proceeding of IEEE IRI’07, Las Vegas, Nevada, USA,

pages 467-472, August 2007.

Binns, P., Englehart, M., Jackson, M., Vestal, S.,

“Domain-specific software architectures for guidance,

navigation and control”, International Journal of Software

Engineering and Knowledge Engineering volume 6, issue

2, pages 201–227, 1996.

Booch, G., Rumbaugh, J., Jacobson, I., “The Unified

Modeling Language User Guide”, Second Ed., Addison-

Wesley Object Technology Series, Addison-Wesley

Professional Reading, Massachusetts, 2005.

Canal, C., Pimentel, E., and Troya, J. M., “Specification

and Refinement of Dynamic Software Architectures”, In

Software Architecture, Kluwer Academic Publishing,

pages 107–126, San Antonio, Texas, February 1999.

Dashofy, E., Hoek, A.v.d., Taylor, R.N., “A

comprehensive approach for the development of XML-

based software architecture description languages”,

Transactions on Software Engineering Methodology

(TOSEM), volume 14, issue 2, pages 199–245, 2005.

Garlan, D., Allen, R., and Ockerbloom, J., ”Exploiting

Style in Architectural Design Environments”, In

SIGSOFT’94: Foundations of Software Engineering,

pages 175–188, New Orleans, December 1994.

D. Garlan, R.T. Monroe, D. Wile, ACME: An

Architecture Description Interchange Language, in:

Proceedings of the CASCON ’97, IBM Center for

Advanced Studies, pages 169–183,Toronto, Ontario,

Canada, November, 1997.

Garlan, D., Monroe, R.T., and Wile, D. “Acme:

Architectural Description Component-Based Systems,

Foundations of Component-Based Systems”. Cambridge

University Press, pages 47-68, 2000.

Luckham, D.C., “Rapide: A Language and Toolset for

Simulation of Distributed Systems by Partial Ordering of

Events”, in Proceedings of the DIMACS Partial Order

Methods Workshop IV, Princeton University, July, 1996.

Magee, J. N., Dulay, N., Eisenbach, S., and Kramer. J.,

“Specifying Distributed Software Architectures” Proc.

Fifth European Software Engineering Conference (ESEC),

Barcelona, 1995.

Magee, J., and Kramer, J., “Dynamic Structure in

Software Architectures”, In Proceedings of ACM

SIGSOFT’96: Fourth Symposium on the Foundations of

Software Engineering (FSE4), pages 3-14, San Francisco,

CA, October 1996.

Magee, J., Kramer, J., and Giannakopoulou, D.,

“Behaviour analysis of software architectures”, In

 13

Software Architecture, Kluwer Academic Publishers,

pages 35–50, 1999.

Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor, R.

N., “Using Object-Oriented Typing to Support

Architectural Design in the C2 Style” In ACM

SIGSOFTˇS96: Fourth Symposium on the Foundations of

Software Engineering (FSE4), pages 24–32, San

Francisco, 1996.

Medvidovic, N., Rosenblum, D. S., and Taylor, R. N. “A

Language and Environment for Architecture-Based

Software Development and Evolution. In 21st International

Conference on Software Engineering (ICSE’99), Los

Angeles, May 1999.

Medvidovic, N. “Architecture-Based Specification-Time

Software Evolution”, PhD Thesis, University of

California, Irvine, 1999.

Medvidovic, N. and. Taylor, R.N., "A Classification and

Comparison Framework for Software Architecture

Description Languages". IEEE Transactions on Software

Engineering, volume 26, issue 1, January 2000.

Medvidovic, N., Dashofy, E., and Taylor, R.N., “Moving

Architectural Description from Under the Technology

Lamppost”, Information and Software Technology,

volume 49, issue 1, pages 12-31.2007.

Mehta, N., Medvidovic, N., and Phadke, S., “Towards a

taxonomy of software connectors”, In Proceedings of the

22nd International Conference on Software Engineering.

ACM, New York, pages 178–187, 2000.

Moriconi, M., Qian, X., and Riemenschneider, R. A.,

“Correct Architecture Refinement”, IEEE Transactions on

Software Engineering, volume 21, issue 4, pages 356 –

372, April 1995.

Moriconi, M., Riemenschneider, R.A., “Introduction to

SADL 1.0, A Language for Specifying Software

Architecture Hierarchies”, Report SRI-CSL-97-01, 1997.

OMG: “Unified Modeling Language: Infrastructure” from

http://www.omg.org/docs/ formal/07-02-06.pdf, 2007.

OMG: “Unified Modeling Superstructure” from

http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

Ommering, R.V., Linden, F.V.D., Kramer, J., Magee, J.,

The Koala Component Model for Consumer Electronics

Software, IEEE Computer, volume 33, issue 3, pages 78–

85, 2000.

Oquendo, F., “π-ADL: An Architecture Description

Language based on the Higher-Order Typed π-Calculus

for Specifying Dynamic and Mobile Software

Architectures”, ACM Software Engineering Notes,

volume 29, issue 3, May 2004.

Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R.,

Gallo, F., Garavel, H., and Occhipinti, C., “ArchWARE:

Architecting Evolvable Software”, In Software

Achitecture (EWSA 2004), volume 3047 of Lecture Notes

in Computer Science, pages 257–271, St Andrews, 2004.

Oussalah, M., Smeda, A., and Khammaci, T., “An Explicit

Definition of Connectors for Component-Based Software

Architecture”, In Proceedings of the 11th IEEE

Conference on Engineering of Computer Based Systems

(ECBS 2004), Brno, Czech Republic, May 24-27, 2004.

Perry, D.E. and Wolf, A., “Foundations for the Study of

Software Architectures”, ACM SIGSOFT Software

Engineering Notes, volume 17, issue 4, pages 40–52,

1992.

Pinto, M., Fluentes, L., and Troya, M., “A Dynamic

Component and Aspect-Oriented Platform”, The

Computer Journal, volume 48, issue 4, pages 401-420,

2005.

Shaw, M., “Procedure Calls Are the Assembly Language

of System Interconnection: Connectors Deserve First-

Class Status”, Lecture Notes in Computer Science; volume

1078, pages 17–32, 1993.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young,

D. M., Zalesnik, G., “Abstractions for Software

Architecture and Tools to Support Them”, IEEE

Transactions on Software Engineering, volume 21, issue 4,

pages 314–335, April 1995.

Shaw, M., DeLine, R., Zelesnik, G., “Abstractions and

Implementations for Architectural Connections”,

Proceedings of the 3rd International Conference on

Configurable Distributed Systems, May 1996.

Spitznagel, B. and Garlan, D., “A compositional approach

for constructing connectors”. In The Working IEEE/IFIP

Conference on Software Architecture (WICSA’01). Royal

Netherlands Academy of Arts and Sciences Amsterdam,

Netherlands. 2001.

Szyperski, C., “Component Software: Beyond Object-

Oriented Programming”, 2nd Edition, Addison-Wesley,

January 2002.

Taylor, R. N., Medvidovic, N., Anderson, K. M.,

Whitehead, JR., Robbins, J. E., Nies, K. A., Oreizy, P.,

and Dubrow, D. L., “A component and message-based

architectural style for GUI software”, IEEE Transaction on

Software Engineering volume 22, issue 6, pages 390–406,

June, 1996.

