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DYNAMIC CONSISTENCY FOR STOCHASTIC OPTIMAL

CONTROL PROBLEMS

PIERRE CARPENTIER, JEAN-PHILIPPE CHANCELIER, GUY COHEN,
MICHEL DE LARA, AND PIERRE GIRARDEAU

Abstract. For a sequence of dynamic optimization problems, we aim at dis-
cussing a notion of consistency over time. This notion can be informally intro-
duced as follows. At the very first time step t0, the decision maker formulates
an optimization problem that yields optimal decision rules for all the forth-
coming time step t0, t1, . . . , T ; at the next time step t1, he is able to formulate
a new optimization problem starting at time t1 that yields a new sequence
of optimal decision rules. This process can be continued until final time T is
reached. A family of optimization problems formulated in this way is said to
be time consistent if the optimal strategies obtained when solving the original
problem remain optimal for all subsequent problems. The notion of time con-
sistency, well-known in the field of Economics, has been recently introduced
in the context of risk measures, notably by Artzner et al. (2007) and studied
in the Stochastic Programming framework by Shapiro (2009) and for Markov
Decision Processes (MDP) by Ruszczynski (2009). We here link this notion
with the concept of “state variable” in MDP, and show that a significant class
of dynamic optimization problems are dynamically consistent, provided that
an adequate state variable is chosen.

1. Introduction

Stochastic Optimal Control (SOC) is concerned with sequential decision-making
under uncertainty. Consider a dynamical process that can be influenced by exoge-
nous noises as well as decisions one has to make at every time step. The deci-
sion maker wants to optimize the behavior of the dynamical system (for instance,
minimize a production cost) over a certain time horizon. As the system evolves,
observations of the system are made; we here suppose that the decision maker is
able to keep in memory all the past observations. Naturally, it is generally more
profitable for him to adapt its decisions to the observations he makes of the system.
He is hence looking for strategies rather than simple decisions. In other words,
he is looking for applications that map every possible history of the observations
to corresponding decisions. Because the number of time steps may be large, the
representation of such an object is in general numerically intractable.

However, an amount of information lighter than the whole history of the system
is often sufficient to make an optimal decision. In the seminal work of Bellman
(1957), the minimal information on the system that is necessary to make the optimal
decision plays a crucial role; it is called the state variable (see Whittle, 1982, for
a more formal definition). Moreover, the Dynamic Programming (DP) principle
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provides a way to compute the optimal strategies when the state space dimension
is not too large (see Bertsekas, 2000, for a broad overview on DP). The aim of this
paper is to establish a link between the concept of state variable and the notion of
time consistency1.

The notion of dynamic consistency is well-known in the field of economics (see
Hammond, 1989) and has been introduced in the context of risk measures (see
Artzner et al., 2007; Riedel, 2004; Detlefsen and Scandolo, 2005; Cheridito et al.,
2006, for definitions and properties of coherent and consistent dynamic risk mea-
sures). Dynamic consistency has then been studied in the stochastic programming
framework by Shapiro (2009) and for Markov Decision Processes by Ruszczynski
(2009). In this paper, we rather use the (almost equivalent) definition of time con-
sistency given by Ekeland and Lazrak (2006), which is more intuitive and seems
better suited in the framework of optimal control problems. In this context, the
property of time consistency is loosely stated as follows. The decision maker formu-
lates an optimization problem at time t0 that yields a sequence of optimal decision
rules for t0 and for the following time steps t1, . . . , tN = T . Then, at the next time
step t1, he formulates a new problem starting at t1 that yields a new sequence of
optimal decision rules from time steps t1 to T . Suppose the process continues until
time T is reached. The sequence of optimization problems is said to be dynamically
consistent if the optimal strategies obtained when solving the original problem at
time t0 remain optimal for all subsequent problems. In other words, time consis-
tency means that strategies obtained by solving the problem at the very first stage
do not have to be questioned later on.

The notion of information here plays a crucial role. Indeed, we show in this paper
that a sequence of problems may be consistent for some information structure while
inconsistent for a different one. Consider for example a standard stochastic opti-
mization problem solvable using DP. We will observe that the sequence of problems
formulated after the original one at the later time steps are time consistent. Add
now a probabilistic constraint involving the state at the final time T . We will show
that such a constraint brings time inconsistency in the sense that optimal strategies
based on the usual state variable have to be reconsidered at each time step. This
is because, roughly speaking, a probabilistic constraint involves not only the state
variable values but their probabilistic distributions. Hence the only knowledge of
the usual state variable of the system is insufficient to write consistent problems at
subsequent time steps. So, in addition to the usual technical difficulties regarding
probabilistic constraints (mainly related to the non-convexity of the feasible set of
strategies), an additional problem arises in the dynamic case. We will see that, in
fact, this new matter comes from the information on which the optimal decision
is based. Therefore, with a well-suited state variable, the sequence of problems
regains dynamic consistency.

In §2, we carefully examine the notion of time consistency in the context of a
deterministic optimal control problem. The main ideas of the paper are so explained
and then extended, in §3, to a sequence of SOC problems. Next, in §4, we show
that simply adding a probability constraint (or, equivalently in our context, an
expectation constraint) to the problem makes time consistency fall apart, when
using the original state variable. We then establish that time consistency can be
recovered provided an adequate state variable is chosen. We conclude that, for a
broad class of SOC problems, time consistency has to be considered with respect
to the notion of a state variable and of DP.

1We either use the term “dynamically consistent” or “time consistent” to refer to the same
notion.
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2. A first example

We introduce sequential deterministic optimal control problems, indexed by time,
and derive the notion of time consistency on this instance. We then illustrate the
fact that the decision making process may be time consistent or not, depending on
the information on which decisions are based. The discussion is informal, in the
sense that we do not enter technical details regarding existence of the solutions for
the problems we introduce.

Let us consider a discrete and finite time horizon t0, . . . , tN = T .2 The deci-
sion maker has to optimize (according to a cost function we introduce below) the
management of an amount of stock xt, which lies in some space Xt, at every time
step t = t0, . . . , T . Let Ut be some other space, for every time step t = t0, . . . , T −1.
At each time step t, a decision ut ∈ Ut has to be made. Then a cost Lt is incurred by
the system, depending on the values of the control and on the auxiliary variable xt
that we call the state of the system. This state variable is driven from time t to
time t + 1 by some dynamics ft : Xt × Ut → Xt+1. The aim of the decision maker
is to minimize the sum of the intermediate costs Lt at all time steps plus a final
cost K.

The problem hence reads:

min
x,u

T−1
∑

t=t0

Lt (xt, ut) +K (xT ) ,(1a)

subject to the initial condition:

xt0 given,(1b)

and dynamic constraints:

xt+1 = ft (xt, ut) , ∀t = t0, . . . , T − 1.(1c)

Note that here the decision at time t is taken knowing the current time step and
the initial condition (the decision is generally termed “open loop”). A priori, there
is no need for more information since the model is deterministic.

Suppose a solution to this problem exists. This is a sequence of controls that we
denote by u∗

t0,t0
, . . . , u∗

t0,T−1, where the first index refers to the initial time step and
the second index refers to the time step for which the decision applies. Moreover,
we suppose a solution exists for each one of the natural subsequent problems, i.e.
for every ti = t1, . . . , T − 1:

min
x,u

T−1
∑

t=ti

Lt (xt, ut) +K (xT ) ,(2a)

s.t. xti given,(2b)

xt+1 = ft (xt, ut) , ∀t = ti, . . . , T − 1.(2c)

We denote the solutions of these problems by u∗
ti,ti

, . . . , u∗
ti,T−1, for every time

step ti = t1, . . . , T − 1. Those notations however make implicit the fact that the
solutions do generally depend on the initial condition xti . We now make a first
observation.

Lemma 1 (Independence of the initial condition). In the very particular case

when the solution to Problem (1) and the solutions to Problems (2) for every time

step ti = t1, . . . , T − 1 do not depend on the initial state conditions, problems are

dynamically consistent.

2where ti + 1 = ti+1
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Proof. Let us denote by x∗
t0,ti

the optimal value of the state variable within Prob-
lem (1) at time ti. If we suppose that solutions to Problems (2) do not depend
on the initial condition, then they are the same as the solutions obtained with the
initial condition x∗

t0,ti
, namely u∗

t0,ti
, . . . , u∗

t0,T−1. In other words, the sequence of
decisions u∗

t0,t0
, . . . , u∗

t0,T−1 remains optimal for the subsequent problems starting
at a later date. �

This property is of course not true in general, but we see in Example 1 hereafter
and in §3 that some very practical problems do have this surprising property.

Example 1. Let us introduce, for every t = t0, . . . , T − 1, functions lt : Ut → R

and ft : Ut → R, and assume that xt is scalar. Let K be a scalar constant and
consider the following deterministic optimal control problem:

min
x,u

T−1
∑

t=t0

lt (ut)xt +KxT ,

s.t. xt0 given,

xt+1 = ft (ut)xt, ∀t = t0, . . . , T − 1.

Variables xt can be recursively replaced using dynamics ft. Therefore, the above
optimization problem can be written:

min
u

T−1
∑

t=t0

lt (ut) ft−1 (ut−1) . . . ft0 (ut0)xt0 +KfT−1 (uT−1) . . . ft0 (ut0)xt0 .

Hence the optimal cost of the problem is linear with respect to the initial condi-
tion xt0 . Suppose that xt0 only takes positive values. Then the value of xt0 has
no influence on the minimizer (it only influences the optimal cost). The same ar-
gument applies at subsequent time steps ti > t0 provided that dynamics are such
that xt remains positive for every time step t = t1, . . . , T . Now, formulate the same
problem at a later date ti = t1, . . . , T − 1, with initial condition xti given. By the
same token as for the first stage problem, the value of the initial condition xti has
no influence on the optimal controls. Assumptions made in Lemma 1 are fulfilled,
so that the time consistency property holds true for open-loop decisions without
reference to initial state conditions.

Although, for the time being, this example may look very special, we will see
later on that it is analogous to familiar SOC problems.

As already noticed, Lemma 1 is not true in general. Moreover, the deterministic
formulation (1) comes in general from the representation of a real-life process which
may indeed be subject to unmodelized disturbances. Think of an industrial context,
for example, in which sequential decisions are taken in the following manner.

• At time t0, Problem (1) is solved. One obtains a decision u∗
t0,t0

to apply at
time t0, as well as decisions u∗

t0,t1
, . . . , u∗

t0,T−1 for future time steps.
• At time t1, one formulates and solves the problem starting at time t1 with

initial condition xt1 = ft0 (xt0 , u
∗
t0,t0

) + εt1 , εt1 being some perturbation of
the model. There is no reason not to use the observation of the actual value
of the variable xt1 at time t1 as long as we have it at our disposal.

• Hence a decision u∗
t1,t1

is obtained, which is different from the initially
obtained optimal decision u∗

t0,t1
(once again, in general).

• The same process continues at times t2, . . . , T − 1.

Let us now state the two following lemmas.
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Lemma 2 (True deterministic world). If the deterministic model is actually exact,

i.e. if all perturbations εti introduced above equal zero, then Problems (2) with

initial conditions xti = x∗
ti
, fti(x

∗
ti−1

, u∗
t0,ti−1

) are dynamically consistent.

Proof. Since decisions u∗
t0,t0

, . . . , u∗
t0,T−1 are optimal for Problem (1), it follows that

decisions u∗
t0,t1

, . . . , u∗
t0,T−1 are optimal for the problem:

min
x,u

Lt
(

xt0 , u
∗
t0,t0

)

+
T−1
∑

t=t1

Lt (xt, ut) +K (xT ) ,

s.t. xt1 = ft1(xt0 , u
∗
t0,t0

),

xt+1 = ft (xt, ut) , ∀t = t1, . . . , T − 1,

which has the same arg min as Problem (2) at time t1. The same argument applies
recursively for subsequent time steps. �

It is clear that Lemma 2 is not satisfied in real life. Therefore, adding distur-
bances to the problem seems to bring inconsistency to the sequence of optimization
problems. Decisions that are optimal for the first stage problem do not remain
optimal for the subsequent problems if we do not let decisions depend on the initial
conditions.

In fact, as it is stated next, time consistency is recovered provided we let decisions
depend upon the right information.

Lemma 3 (Right amount of information). Suppose that one is looking for strate-

gies (Φ∗
t0,t0

, . . . , Φ∗
t0,T−1) as feedback functions depending on the variable x. Then

Problems (2) are time consistent for every time step t = t0, . . . , T − 1.

Proof. The result is a direct application of the DP principle, which states that there
exists such a feedback function Φ∗

t0,ti
that is optimal for Problem (1) and is still

optimal for Problem (2) at time ti, whatever initial condition xti is. �

We thus retrieve the dynamic consistency property provided that we use the
feedback functions Φ∗

t0,t
rather than the controls u∗

t0,t
. In other words, problems

are dynamically consistent as soon as the control strategy is based on a sufficiently
rich amount of information (time instant t and state variable x in the deterministic
case).

There is of course an obvious link between these optimal strategies and the
controls (u∗

t0,t0
, . . . , u∗

t0,T−1), namely:

u∗
t0,t

= Φ∗
t0,t

(

x∗
t0,t

)

, ∀t = t0, . . . , T − 1,

where

x∗
t0,t0

= xt0 ,

x∗
t0,t+1 = ft

(

x∗
t0,t
,Φ∗

t0,t

(

x∗
t0,t

))

, ∀t = t0, . . . , T − 1.

The considerations we made so far seem to be somewhat trivial However, we
whall observe that for SOC problems, which may seem more complicated at first
sight, the same considerations remain true. Most of the time, decision making
processes are time consistent, provided we choose the correct information on which
decisions are based.
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3. Stochastic optimal control without constraints

We now consider a more general case in which a controlled dynamical system
is influenced by modeled exogenous disturbances. The decision maker has to find
strategies to drive the system so as to minimize some objective function over a
certain time horizon. This is a sequential decision making process on which we
can state the question of dynamic consistency. As in the previous example, the
family of optimization problems is derived from the original one by truncating the
dynamics and the cost function (the final time step T remains unchanged in each
problem), and strategies are defined relying on the same information structure as
in the original problem. In the sequel, random variables will be denoted using bold
letters.

3.1. The classical case. Consider a dynamical system characterized by state3

variables X = (Xt)t=t0,...,T , where Xt takes values in Xt. The system can be
influenced by control variables U = (U t)t=t0,...,T−1 and by exogenous noise vari-
ables W = (W t)t=t0,...,T (U t and W t taking values in Ut and Wt respectively).
All random variables are defined on a probability space (Ω,A,P). The problem we
consider consists in minimizing the expectation of a sum of costs depending on the
state, the control and the noise variables over a discrete finite time horizon. The
state variable evolves with respect to some dynamics that depend on the current
state, noise and control values. The problem starting at t0 writes:4

min
X,U

E

(

T−1
∑

t=t0

Lt (Xt,U t,W t+1) +K (XT )

)

,(3a)

s.t. Xt0 given,(3b)

Xt+1 = ft (Xt,U t,W t+1) , ∀t = t0, . . . , T − 1,(3c)

U t � Xt0 ,W t1 , . . . ,W t, ∀t = t0, . . . , T − 1.(3d)

Noises that affect the system can be correlated through time. A general approach
in optimal control consists in including all necessary information in the variable X

so that variables W t1 , . . . ,W T are independent through time. At most, one has to
include all the past values of the noise variable within the variable X. We hence
make the following assumption.

Assumption 1 (Markovian setting). Noises variables Xt0 ,W t1 , . . . ,W T are inde-
pendent.

Using Assumption 1, it is well known (see Bertsekas, 2000) that:

• there is no loss of optimality in looking for the optimal strategy U t at
time t as a feedback function depending on the state variable Xt, i.e. as a
(measurable) function of the form Φt0,t : Xt → Ut;

• the optimal strategies Φ∗
t0,t0

, . . . ,Φ∗
t0,T−1 can be obtained by solving the

classical DP equation. Let Vt(x) denote the optimal cost when being at
time step t with state value x, this equation reads:

VT (x) = K(x),

Vt(x) = min
u

E

(

Lt(x, u,W t+1) + Vt+1

(

ft(x, u,W t+1)
)

)

.

3The use of the terminology “state” is somewhat abusive until we make Assumption 1.
4We here use the notations ∼ for “is distributed according to” and � for “is measurable with

respect to”.
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We call this case the classical case. It is clear while inspecting the DP equation
that optimal strategies Φ∗

t0,t0
, . . . , Φ∗

t0,T−1 remain optimal for the subsequent op-
timization problems:

min
X,U

E

(

T−1
∑

t=ti

Lt (Xt,U t,W t+1) +K (XT )

)

,(4a)

s.t. Xti given,(4b)

Xt+1 = ft (Xt,U t,W t+1) , ∀t = ti, . . . , T − 1,(4c)

U t � Xti ,W ti+1
, . . . ,W t, ∀t = ti, . . . , T − 1,(4d)

for every ti = t1, . . . , T − 1. In other words, these problems are dynamically con-
sistent provided the information variable at time t contains at least the state vari-
able Xt. While building an analogy with properties described in the deterministic
example in §2, the reader should be aware that the case we consider here is closer
to Lemma 1 than to Lemma 3, as we explain now in more details.

3.2. The distributed formulation. Another consequence of the previous DP
equation for Problem (3) is that the optimal feedback functions do not depend
on the initial condition Xt0 . The probability law of Xt0 only affects the optimal
cost value, but not its arg min. In fact, we are within the same framework as
in Example 1. Indeed, Problem (3) can be written as a deterministic distributed
optimal control problem involving the probability laws of the state variable, the
dynamics of which are given by the so-called Fokker-Planck equation. Let us detail
this last formulation (see Witsenhausen, 1973).

Let Ψt be the space of R-valued functions on Xt. Denoting µt0 the probability
law of the first stage state Xt0 , and given feedback laws Φt : Xt → Ut for every

time step t = t0, . . . , T −1, we define the operator AΦt

t : Ψt+1 → Ψt, which is meant
to integrate cost functions backwards in time, as5:

(

AΦt

t ψt+1

)

(·) , E (ψt+1 ◦ ft (·,Φt (·) ,W t+1)) .

Given a feedback function Φt and a cost function ψt+1 ∈ Ψt+1, for every x ∈ Xt
the value (AΦt

t ψt+1)(x) is the expected value of ψt+1(Xt+1), knowing that Xt = x

and that feedback Φt is used. Thanks to a duality argument, the Fokker-Planck
equation, which describes the evolution of the state probability law (as driven by
the chosen feedback laws Φt), is obtained:

µt+1 =
(

AΦt

t

)⋆

µt,

with (AΦt

t )⋆ being the adjoint operator of AΦt

t . Next we introduce the operator

ΛΦt

t : Xt → R:

ΛΦt

t (·) , E (Lt (·,Φt (·) ,W t+1)) ,

which is meant to be the expected cost at time t for each possible state value when
feedback function Φt is applied. Let us define, for every ψt ∈ Ψt and every proba-
bility law µt on Xt, 〈ψt, µt〉 as E (ψt(Xt)) when Xt is distributed according to µt.
We can now write a deterministic infinite-dimensional optimal control problem that

5We do not aim at discussing technical details concerning integrability here. We suppose that
operators we introduce are well-defined.
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is equivalent to Problem (3):

min
Φ,µ

T−1
∑

t=t0

〈

ΛΦt

t , µt

〉

+ 〈K,µT 〉 ,

s.t. µt0 given,

µt+1 =
(

AΦt

t

)⋆

µt, ∀t = t0, . . . , T − 1.

Remark 1. An alternative formulation is:

min
Φ,ψ

〈ψt0 , µt0〉 ,

s.t. ψT = K,

ψt = AΦt

t ψt+1 + ΛΦt

t , ∀t = T − 1, . . . , t0.

This may be called “the backward formulation” since the “state” ψt(·) follows
an affine dynamics which is backward in time, with an initial-only cost function
(whereas the previous forward formulation follows a forward linear dynamics with
an integral + final cost function). Both formulations are infinite-dimensional linear
programming problems which are dual of each other. The functions µ(·) and ψ(·)
are the distributed state and/or co-state (according to which one is considered the
primal problem) of this distributed deterministic optimal control problem of which
Φ is the distributed control.

Probability laws µt are by definition positive and appear only in a multiplicative
manner in the problem. Hence we are in a similar case as Example 1. The main
difference is rather technical: since we here have probability laws instead of scalars,
we need to apply backwards in time interversion theorems between expectation and
minimization in order to prove that the solution of the problem actually does not
depend on the initial condition µt0 . Indeed, suppose that µT−1 is given at time
step T − 1. Then the most inner optimization problem reads:

min
ΦT −1

〈

Λ
ΦT −1

t , µT−1

〉

+ 〈K,µT 〉 ,

s.t. µT =
(

A
ΦT −1

T−1

)⋆

µT−1,

which is equivalent to:

min
ΦT −1

〈

Λ
ΦT −1

t +A
ΦT −1

T−1 K,µT−1

〉

.

The point is that operators Λ
ΦT −1

t +A
ΦT −1

T−1 K and µT−1 both take values in XT−1

and that the minimization has to be done “x by x”, so that we are in the case of
Example 1 for every x. Therefore, the minimizer does not depend on µT−1. For a
rigorous proof, one needs several technical assumptions concerning measurability,
which we do not intend to discuss in this paper (see Rockafellar and Wets, 1998,
Theorem 14.60). The same argument applies recursively to every time step be-
fore T − 1 so that, at time t0, the initial condition µt0 only influences the optimal
cost of the problem, but not the argument of the minimum itself (here, the feedback
laws Φ∗

t0,t
).

Hence, following Lemma 1, Problems (4) are naturally time consistent when
strategies are searched as feedback functions on Xt only. It thus appears that the
rather general class of stochastic optimal control problems shaped as Problem (3)
is in fact very specific. However, such a property does not remain true when adding
new ingredients in the problem, as we show in the next subsection.
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4. Stochastic optimal control with constraints

We now give an example in which the state variable, as defined notably by Whittle
(1982), cannot be reduced to variable Xt as above. Let us make Problem (3) more
complex by adding to the model a probability constraint applying to the final time
step T . For instance, we want the system to be in a certain state at the final time
step with a given probability:

P (h (XT ) ≥ b) ≤ π.

Such chance constraints can equivalently be modelled as an expectation constraint
in the following way:

E
(

1{h(XT )≥b}

)

≤ π,

where 1A refers to the indicator function of set A. Note however that chance con-
straints bring important theoretical and numerical difficulties, notably regarding
connexity and convexity of the feasible set of controls, even in the static case.
The interested reader should refer to the work of Prékopa (1995), and to the
handbook by Ruszczynski and Shapiro (2003, Ch.5) for mathematical properties
and numerical algorithms in Probabilistic Programming (see also Henrion, 2002;
Henrion and Strugarek, 2008, for related studies). We do not discuss them here.
The difficulty we are interested in is common to both chance and expectation con-
straints. This is why we concentrate in the sequel on adding an expectation con-
straint to Problem (3) of the form:

E (g (XT )) ≤ a.

The reader familiar with chance constraints might want to see the level a as a level
of probability that one wants to satisfy for a certain event at the final time step.

We now show that when adding such an expectation constraint, the dynamic
consistency property falls apart. More precisely, the sequence of SOC problems
are not time consistent anymore when using the usual state variable. Nevertheless,
we observe that the lack of consistency comes from an inappropriate choice for the
state variable. By choosing the appropriate state variable, one regains dynamic
consistency.

4.1. Problem setting. We now go back to the constrained formulation and intro-
duce a measurable function g : XT → R and a ∈ R. We consider Problem (3) with
the additional final expectation constraint:

E (g (XT )) ≤ a.

The subsequent optimization problems formulated at an initial time ti > t0 are
naturally deduced from this problem. The level a of the expectation constraint
remains the same for every problem. One has to be aware that this corresponds to
a (naive) modelling choice for the family of optimization problems under consid-
eration. Such a choice is questionable since the perception of the constraint may
evolve over time.

Suppose there exists a solution for the problem at t0. As previously, we are
looking for the optimal control at time t as a feedback function Φ∗

t0,t
depending on

the variable Xt. The first index t0 refers to the time step at which the problem
is stated, while the second index t refers to the time step at which the decision is
taken.

One has to be aware that these solutions now implicitly depend on the initial
condition Xt0 . Indeed, let µT be the probability law of XT . Constraint (4) can
be written 〈g, µT 〉 ≤ a, so that the equivalent distributed formulation of the initial
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time problem is:

min
Φ,µ

T−1
∑

t=t0

〈

ΛΦt

t , µt

〉

+ 〈K,µT 〉 ,

subject to the Fokker-Planck dynamics:

µt+1 =
(

AΦt

t

)⋆

µt, ∀t = t0, . . . , T − 1,

µt0 being given by the initial condition, and the final expectation constraint:

〈g, µT 〉 ≤ a.

Even though this problem seems linear with respect to variables µt, the last con-
straint introduces an additional highly nonlinear term in the cost function, namely:

χ{〈g,µT 〉≤a},

where χA stands for the characteristic function6 of set A. The dynamics are still
linear and variables µt are still positive, but the objective function is not linear with
respect to µT anymore, and therefore not linear with respect to the initial law µt0
either. Hence there is no reason for feedback laws to be independent of the initial
condition as in the case without constraint presented in §3.

Let us now make a remark on this initial condition. Since the information struc-
ture is such that the state variable is fully observed, the initial condition is in fact
of a deterministic nature:

Xt0 = xt0 ,

where xt0 is a given (observed) value of the system state. The probability law
of Xt0 is accordingly the Dirac function δxt0

.7 The reasoning made for the problem
initiated at time t0 remains true for the subsequent problems starting at time ti:
an observation xti of the state variable Xti becomes available before solving Prob-
lem (4), so that its natural initial condition is in fact:

Xti = xti .

Otherwise stated, the initial state probability law in each optimization problem we
consider should correspond to a Dirac function. Note that such a sequence of Dirac
functions is not driven by the Fokker-Planck equation, but is in fact associated to
some dynamics of the degenerate filter corresponding to this perfect observation
scheme. In the sequel, we assume such an initial condition for every problem we
consider.

Now, according to Lemma 2, the subsequent optimization problems formulated
at time ti will be dynamically consistent provided their initial conditions are given
by the optimal Fokker-Planck equation:

µ∗
t0,ti

=
(

A
Φ∗

t0,ti−1

ti−1

)⋆

. . .
(

A
Φ∗

t0 ,t0

t0

)⋆

µt0 .

However, except for noise free problems, such a probability law µ∗
t0,ti

is always
different from a Dirac function, which is, as already explained, the natural initial
condition for the subsequent problem starting at time ti. As a conclusion, the
sequence of problems is not time consistent as long as we consider feedback laws Φt
depending on Xt only.

6as defined in convex analysis: χA(x) =

{

0 if x ∈ A

+∞ otherwise
7The initial law µt0 in Problem (3) corresponds to the information available on Xt0 before

Xt0 is observed, but it seems more reasonable in a practical situation to use all the available
information when setting the problem again at each new initial time, and thus to use a Dirac
function as the initial condition.
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Remark 2 (Joint probability constraints). Rather than P (g (XT ) ≥ b) ≤ a, let us
consider a more general chance constraint of the form:

P (gt (Xt) ≥ bt, ∀t = t1, . . . , T ) ≤ a.

This last constraint can be modelled, like the previous one, through an expectation
constraint by introducing a new binary state variable:

Y t0 = 1,

Y t+1 = Y t × 1{gt+1(Xt+1)≥bt+1}, ∀t = t0, . . . , T − 1,

and considering constraint E (Y T ) ≤ a. �

4.2. Back to time consistency. We now show that time consistency can be
recovered provided we choose the right state variable on which to base decisions.
We hence establish a link between time consistency of a family of optimization
problems and the notion of state variable.

We claim that a better-suited state variable for the family of problems with
final time expectation constraint introduced above is the probability law of the
variable X. Let us denote by Vt(µt) the optimal cost of the problem starting at
time t with initial condition µt. Using notations of the distributed formulation of
a SOC problem, one can write a DP equation depending on the probability laws µ
on X :

VT (µ) =

{

〈K,µ〉 if 〈g, µ〉 ≤ a,

+∞ otherwise,

and, for every t = t0, . . . , T − 1 and every probability law µ on X :

Vt (µ) = min
Φt

〈

ΛΦt

t , µ
〉

+ Vt+1

((

AΦt

t

)⋆

µ
)

.

The context is similar to the one of the deterministic example of §2, and Lemma 3
states that solving the deterministic infinite-dimensional problem associated with
the constrained problem leads to time consistency provided DP is used. For the
problem under consideration, we thus obtain optimal feedback functions Φt which
depend on the probability laws µt. Otherwise stated, the family of constrained
problems introduced in S4.1 is time consistent provided one looks for strategies
as feedback functions depending on both the variable Xt and the probability law
of Xt.

Naturally, this DP equation is rather conceptual. The resolution of such an
equation is intractable in practice since probability laws µt are infinite-dimensional
objects.

5. Conclusion

We informally introduced a notion of time consistency of a sequence of decision-
making problems, which basically requires that plans that are made from the very
first time remain optimal if one rewrites optimization problems at subsequent time
steps. We show that, for several classes of optimal control problems, this concept
is not new and can be directly linked with the notion of state variable, which is the
minimal information one must use to be able to take the optimal decision.

We show that, in general, feedback laws have to depend on the probability law
of the usual state variable for Stochastic Optimal Control problems to be time
consistent. This is necessary, for example, when the model contains expectation or
chance constraints.

Future works will focus on three main directions. The first concern will be to
better formalize the state notion in the vein of the works by Witsenhausen (1971,
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1973) and Whittle (1982). The second will be to establish the link with the lit-
erature concerning risk measures, in particular the work by Ruszczynski (2009).
Finally, the last DP equations we introduced are in general intractable. In a forth-
coming paper, we will provide a way to get back to a finite-dimensional information
variable, which makes a resolution by DP tractable.
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