
HAL Id: hal-00483680
https://hal.science/hal-00483680v1

Submitted on 16 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an UML Profile for the Description of Software
Architecture

Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. Towards an UML Profile for the Description of Software
Architecture. International Conference on Applied Informatics (ICAI’09), Nov 2009, Bou Arréridj,
Algeria. pp.226-232. �hal-00483680�

https://hal.science/hal-00483680v1
https://hal.archives-ouvertes.fr

Towards an UML Profile for the Description of Software Architecture

Abdelkrim Amirat
1,2

 and Mourad Oussalah
1

1
Laboratoire LINA, CNRS UMR 6241, Université de Nantes, France

2
Centre Universitaire de Souk Ahras, Algérie

{abdelkrim.amirat ; mourad.oussalah}@univ-nantes.fr

Abstract

Existing ADLs (architecture description languages)

have an advantage of formally specifying the

architecture of component-based systems. But ADLs

have not come into extensive use in industries since

ADL users should learn a distinct notation specific to

architecture, and ADLs do not address all stakes of

development process that is becoming diversified

everyday. On the other hand, UML is a de facto

standard general modeling language for software

developments as UML provides a consistent notation

and various supporting tools during the whole

software development cycle. A number of researches

on architecture modeling based on UML have been

progressed. In particular, many research results have

been introduced that specialize UML by its extension

mechanism in order to explicitly represent core

architecture concepts that UML does not fully

support. In this paper, we examine architecture

modeling elements that can be represented in UML2.0

and discuss how to extend and specialize UML2.0 in

order to make it more suitable for representing

architectures.

Keywords: Software Architecture Modelling, UML

2.0, OCL, Profile and Metamodel.

 1. Introduction

Software architecture has emerged as an important

subdiscipline of software engineering. A key aspect of

the design of any software system is its architecture,

i.e. the fundamental organization of the system

embodied in its components, their relationships to

each other and to the environment, and the principles

guiding its design and evolution [10].

Architecture can be modeled according to different

viewpoints. From a run time perspective, two

viewpoints are frequently used in software

architecture: the structural viewpoint and the

behavioural viewpoint [10]. In this work we are

interested by the structural viewpoint which can be

specified in terms of Components, Connectors and

Configurations (C3 model). Thereby, from this

viewpoint, an architecture description should provide

a formal model of the architecture in terms of

components and connectors and how they are

composed together.

The Unified Modeling Language (UML) [5] [6] [7]

is a family of design notation that is rapidly becoming

a de facto standard for representing the software

artifacts obtained in the various activities (like

requirement acquisition, requirement analysis, system

design, or system deployment) of a software

development process. For this reason, there have been

attempts to use this language to represent the software

architecture of systems as well. However, the

language is not designed to represent syntactically and

semantically the elements of software architecture [2].

The attempts to instantiate the constructors defined

in the UML meta model or to extend UML by using

stereotypes to represent these elements has driven to

the same representations (boxes and lines) that have

been widely criticized by the software architecture

community. Consequently, the only solution is to

extend the UML meta model. However, the extension

of the UML meta model implies the modification of

the language, which means a deviation from the

standard. This has been one of the reasons used in the

literature to extend UML with stereotypes or by

specifying profiles for the area of interest [11].

A question that arises at this point is why not using

Architecture Description Languages (ADLs) to

describe the application software architecture,

therefore avoiding the change to the UML meta

model. Indeed, the currently available architectural

description languages (ADLs) have not spread in

industry mainly because they are not generic enough,

are not standardized and are poorly supported by tools.

UML is a standard, but its current semantics fails to

meet the criteria stated above: it is weak at describing

interfaces, the abstractions it provides are not univocal

and it provides little support for modeling

architecturally significant information [3].

Additionally, the ADLs are not integrated in any

development process (like the Unified Software

Development Process [4]), while UML is. Hence,

representing the application architecture with UML

allows the integration of this representation with the

rest of software artifacts. In this paper, we propose

UML 2.0 profile for explicit components, connectors

and configurations defined in previous work [8] [9].

The remainder of the paper is organized as follows.

In Section 2 we describe the main elements that

appear in the description of the C3 architectural

elements. Section 3 describes the UML extension

profile as specified by the Object Management Group

(OMG). In Section 4 we present several attempts to

extend UML for representing software architecture. In

Section 5 we characterize C3 elements as UML meta

classes by defining UML Profile. Finally, Section 6

presents conclusions and future lines of research.

2. Basic Architecture Elements of C3

Model

The C3 model supports description of software

architectures from a structural viewpoint. In C3,

architecture is described in terms of components,

connectors, and their composition (configuration).

Figure 1 depicts its main constituents.

Figure 1. Architectural Concepts

Components are described in terms of external

interfaces and an internal behaviour. Their architecture

role is to specify computational elements of a software

system. Interfaces are described in terms of ports and

services. Ports are described in terms of connections

between a component and its environment. The figure

2 defines the metamodel of component concept in C3

from the structural point view.

Component

+name: String

Port

+Name: String

Computation

1..* 1

Figure 2. Component Meta Model in C3

Connectors are special-purpose components. They are

described as component in terms of external interfaces

and internal behaviour. However, their architectural

role is to connect together components. They specify

interactions among components. The internal

behaviour is described by the glue protocol. Interfaces

are described in terms of roles and services.

Attachments describe the different possible connection

of roles with the external environment. Figure 3

depicts the main constituent of connectors.

Connector

+name: String

Role

+name: String

Attachment Glue

2..*
2..* 1

Figure 3. Connector Meta Model in C3

In order to attach a port to role, the interfaces of the

two elements must be compatible, i.e. the type of the

component must be defined in interface of the

connector. So, the provided port will be connected

with required role and required port will be connected

with provided role. Thereby, attached port/role can

transport values (that can be data, connections, or even

architectural elements. From a black-box perspective,

only port of components and roles of connectors and

values passing through connections are observable.

Components and connectors can be composed to

construct configuration (composite elements), which

themselves will become components. Configurations

can be decomposed and recomposed in different ways

or with different components in order to construct

different compositions. The visible parts of

Configuration

Cp1 Cp2

Assembly

Connector

Delegation

Connector

Component
Connector RolePort

configurations are their interfaces which are defined in

terms of ports and services. Ports are described in

terms of connections between the configuration and its

internals from one side and from the other side

between the configuration and its environment. The

figure 4 defines the meta model of configuration

concept in C3 from the structural point view.

Configuration

+name: String

0..1

0..*

Component

+name: String

1

0..*

Connector

+name: String

1

1..*

Port

1..*

Figure 4. Configuration Meta Model in C3

 3. UML 2.0 Profile

UML provides a number of extension mechanisms

that allow designers to customize and extend the

semantics of model elements:

Constraints place added semantics restrictions on

model elements. The possibilities for constraints are

numerous and include type constraints on class

attribute values, constraints on the construction of

associations between classes, and so on.

Tagged values: Allow new attributes to be added to

particular elements of the model. The stereotype

defines a number of tagged values. Each tagged value

is typed with a data type number, string, boolean, or

user-defined enumeration.

Stereotypes allow groups of constraints and tagged

values to be given descriptive names (with the same

specified in double angle brackets), and applied to

model elements, effectively creating a new yet

restricted form of a meta class for constructing

models. The semantic effect is as if the constraints and

tagged values were attached directly to those

elements.

UML Profiles combine the concepts of stereotypes,

tagged values, and constraints to provide a coherent

and concise dialect of UML for specific family of

applications.

 4. UML Extension Mechanisms

UML 2.0 has become an industry standard for

modeling, design and construction of software systems

as well as more generalized business and scientific

processes. In UML 2.0 there is no specific diagram for

modeling architectures. In fact, constructs for

architecture description are not directly provided but

architecture description is supported and can be

expressed as a combination of different views, e.g.

4+1 views.

UML 2.0 provides a major improvement in its

support to architecture description with a major

enhancement in the Component Diagram and the

introduction of a new diagram Composite Structure

Diagram. So, in UML 2.0 components have been

generalised, and are considered as higher-level than

classes.

The definition of UML Profiles for modelling

software architecture is not new; [1] identifies three

possible strategies for modeling software architectures

using UML. The four-layer meta modelling

architecture of UML suggests three possible strategies

for modeling software architectures using UML.

• Using UML “as is”

• Constrain the UML meta model using UML’s

built-in extension mechanisms (e.g. UML Profile).

• Extend the UML meta model to directly support

the needed architectural concepts.

Each strategy has certain potential advantages and

disadvantages. This section presents a brief discussion

and preliminary evaluation of the strategies. In order

to reap the benefits of standardization we require that

any resulting notation adhere to the syntax and

semantics of UML.

 4.1 Using UML “As Is”

Using UML 2.0 “As Is” is not the good choice of

strategy [1]. The modeling capabilities provided by

UML 2.0 “As Is” do not fully satisfy the structural and

behavioural requirements for describing software

architectures, because UML 2.0 does not provide

specialized constructs for modeling software

architectures, in particular for modeling software

architecture from a runtime perspective. For example,

although they are different architectural elements with

very different responsibilities, components and

connectors must be modeled in UML 2.0 using the

same mechanism. Hence, describing software

architecture in UML 2.0 is an error-prone approach.

 4.2 Constraining UML

This strategy uses profiles, also some times called

lightweight built-in extension mechanisms. The most

important profile element is the stereotype.

Stereotyping is a pure extension mechanism. The

model elements marked with a stereotype have the

same structure (attributes, associations, operations)

defined by the meta model element that describes

them, plus the constraints and tagged values added by

the stereotype to that meta model element. This is

accomplished via the extension mechanisms described

in section 3. However, with stereotypes we can not

change the semantics of the meta model elements (at

most, we can refine it), change its structure, nor create

new elements of that meta model. So, the architecture

specified in this manner would still be manipulated by

standard UML tools and would understandable to

UML users.

 4.3 Augmenting UML

This strategy is a heavyweight extensibility

mechanism as defined by the specification of Meta

Object Facility (MOF) [5][11]. In this strategy the

goal is to extend the UML meta model by explicitly

adding new meta classes and other meta constructors.

The potential benefit of such an extension is that it

could fully capture every desired feature of every

ADL and provide “native” support for software

architectures in UML. However, the challenge of

standardization is finding a language that is general

enough to capture needed concepts without adding too

much complexity, while such a modification would

result in a notation that is overly complex. More

importantly, the notation would not conform to the

UML standard and could become incompatible with

UML compliant-tools.

In this work we have experimented with the second

strategy. Indeed, the use of UML Profile as an

extension mechanism provides the best compromise to

at the same time remain compliant with UML and

specialise UML with precise semantics.

 5. UML 2.0 Profile for C3

First of all we identify the target meta classes of

UML 2.0 meta model which allow to stereotype the

structural concepts as well as behavioral ones. The C3

structural concepts component, connector and the

configuration are considered as types. Furthermore,

those concepts are treated as entities having the same

level of abstraction (first class entities). Finally, the

external vision of component and configuration

concepts is based on a set of ports and the external

vision of connector concept is based on a set of roles.

Although both component and class concepts of UML

2.0 have the same expressive power, they are used as

base for stereotyping respectively the component and

connector concepts of C3. The concept state machine

of UML 2.0 is used as base for stereotyping the

behavioral aspects of the C3 elements. A C3 interfaces

is described by a stereotype of UML 2.0 interface

«C3Interface».

 5.1 Components

UML 2.0 component is the closest concept to the

C3 component. So, the former concept will be used as

base for stereotyping the later one. Invariant 1 assures

that those components have only interfaces through

C3 ports and properties. There are no required or

provided interfaces which are associated to

C3Component. All ports associated with

C3component are C3Ports and have port type. A C3

component is described by a stereotype of UML 2.0

component «C3Component» as depicted by Figures 5

and 6.

Figure 5. OCL description for a component

ComponentInterface

Realisation

StateMachine

+realisation

0..1

*
0..1

*

Port

+ownedPort
0..1

*

+provided
*

+required
*

Figure 6. Component Meta Class in UML 2.0 Meta

Model

Context Component inv: -- invariant 1
 self.isC3Component () implies
 self.provided � isEmpty and
 self.required � isEmpty
 self.ownedPort �
 forAll (p | p.stereotype = C3Port
 and p.C3PortType = # port)
 self.realisation � isEmpty
 self.sateMachine � size() = 1

5.2 Ports

Ports identify points of interaction between a

component and its environment. UML ports are

features of classifiers that specify distinct points of

interaction between the classifier and its environment.

UML ports have required and provided interfaces. We

use a combination of UML port and corresponding

required and provided interfaces to express C3’s port

concept as illustrated by figure 7. Ports can only be

used with components and they have only one

provided and one required interface.

Figure 7. OCL constraints for a Port

 5.3 Connectors

Representing connectors using UML’s assembly

connector would be visually appealing, but we would

loose expressiveness because C3 connectors may be

much more complex than a simple interfaces’ match.

They can be, for example, a protocol, or a SQL link

between two components (a client and a database).

Moreover, when reusing components built by different

teams it is normal that their interfaces do not match

exactly. The connector may provide the required glue

between the components and this must be made

explicit in the design. In order to represent the concept

of connector, which has no semantic equivalent in

UML, we use a stereotype of UML class named

<<C3Connector>> and that it has no other interfaces

than the ones defined through its roles and properties

as depicted by Figures 8 and 9.

Figure 8. OCL description for a component

Class

Port

Interface

Property

Operation

StateMachine

0..1

*

+class
+ownedAttribute

0..1

*

+class +ownedOperation

0..1

*

+ownedPort

0..1

*

+required

+provided

Attachment

+end

0..1

*

Figure 9. The Meta class Class in UML 2.0 Meta
Model

Attachments are represented by stereotype attribute

in C3Connector <<C3Attachment>>. An attachment

can connect only two C3 elements. Those two

elements can only be a connector with a component or

a component with configuration. All elements

connected by an attachment are C3Port. A

C3Attachment can bind one C3Port of type port with

one C3Port of type role.

 5.4 Roles

In C3, roles are related to connectors the same way

as ports are related to components. Thus, it makes

sense to represent C3 roles as constrained UML ports,

through the use of the <<C3Role>> stereotype as

illustrated by Figure 10.

Figure 10. OCL constraints for a Port

 5.5 Configurations

We introduce stereotypes for modeling the

attachments of components to connectors and for C3

configurations.

Context Port inv: -- invariant 4
 self.isC3Role () implies
 self.owner.isC3Connector () and
 (self.required � size() =1 and
 self.provided � size() = 1)

Context Connector inv: -- invariant 3
 self.isC3Connector () implies
 self.ownedAttribute � isEmpty() and
 self.ownedOperation � isEmpty()
 self.provided � isEmpty and
 self.required � isEmpty
 self.ownedPort �
 forAll (p | p.stereotype = C3Port and
 p.C3PortType = # role)
 self.sateMachine � size() = 1
 self.end � size() = 2

Context Port inv: -- invariant 2
 self.isC3Port () implies
 self.owner.isC3Component () and
 (self.required � size() =1 and
 self.provided � size() = 1)

Stereotype C3Attachment for instances of

metaclass association:

• C3 attachments are associations between two

elements.

 self.ocltype.end � size() = 2

• One end of the association must be a C3 component.

 Let ed = self.ocltype.end

 ed[1].multiplicity =”1..1” and

 ed[1].class.stereotype = C3Component

• The other end of the association must be a C3

connector

 ed[2].multiplicity =”1..1” and

 ed[2].class.stereotype = C3Connector

Stereotype C3Configuration: A C3Configuration is

made up of only C3 model elements.

 self.ocltype.elements � forAll (e |

 e.stereotype = C3Component or

 e.stereotype = C4Connector or)

6. Related Work

Different UML Profiles dedicated for the

description of software architecture have been

proposed in the literature. For instance, the SAE

Architecture Analysis and Design Language (AADL

[13]) standard includes UML 1.4 and UML 2.0

Profiles that add the real-time and embedded systems

semantics of AADL to UML [14].

In [16] the authors establish an UML 2.0 profile for

the ADL ACME. The authors of [15] indicate some

weaknesses of this work specially related to the

proposed representation of ADL connector in UML2.0

and propose a generic ADL in the form of a UML2.0

profile. In this work, authors use the concept of

collaborations provided by UML2.0 to represent ADL

connectors.

Oquendo in his paper [12] presents the UML 2.0

Profile for π-ADL, a novel ADL that has been

designed in the ArchWare European Project. he

presents π-ADL and its UML 2.0 Profile which

formally modelling software architectures.

It is expected that multiple profiles for different

domains will be defined as specialization of UML 2.0

in the future.

7. Conclusion

C3 introduces the notion of architecture

abstractions, which can be components, connectors,

and configuration from structural viewpoint. All

abstractions are first-class citizens. The UML 2.0

Profile for C3 architecture elements briefly presented

in this paper provides a UML-compatible notation for

modeling software architecture. This UML 2.0 Profile

provides an easy to learn and low cost entry point for

describing software architectures.

However, while a connector is regarded as first

class design element by architecture community, it has

no direct mapping in UML 2.0. Our proposal is to

promote connectors to first class architectural element,

by representing them as stereotyped components. This

seems to be good option, considering that the

evolution of Component Based System should provide

us with an increasing number of off-the-shelf

components. Representing connectors as stereotyped

components gives us the extra flexibility to meet this

challenge.

The availability in UML 2.0 of components with

ports typed by provided and required interfaces has

proved to be a step forward in bridging the gap

between architectural and design information. This

improves the traceability between architectural

description and its implementation, using the design as

a middle layer between them. This traceability is

relevant for keeping the consistency between the

architecture, design and implementation of a software

system. Our ongoing works in this field are: 1-

Implementation of this C3 Profile in UML 2.0

environment with OCL support. 2- Extension of this

profile to support advanced concepts like behavioral

aspects of C3 elements, nested configurations,

architectural styles.

References

[1] Medvidovic N., Rosenblum D.S., Redmiles D.F.

and Robbins J.E., “Modeling Software Architectures

in the Unified Modeling Language”, ACM

Transactions on Software Engineering and

Methodology, Volume 11, Issue 1, January 2002.

[2] Medvidovic, N. and Taylor, R.N. 2000. “A

Classification and Comparison Framework for

Software Architecture Description Languages”, IEEE

Transactions on Software Engineering, Volume

26, Issue 1, Pages 70–93, January 2000.

[3] Riva, C., Xu, J. and Maccari, A. “Architecting and

Reverse Architecting in UML”, In Proceedings of the

Workshop on Describing Software Architecture with

UML, 23rd International Conference on Software

Engineering, Toronto, Canada, 2001.

[4] Jacobson, I., Booch, G. and Rumbaugh, J., The

Unified Software Development Process,

Massachusetts, Addison Wesley, 1999.

[5] OMG: Unified Modeling Superstructure,

[Electronic Version] from

http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

[6] OMG: Unified Modeling Language:

Infrastructure, [Electronic Version] from

http://www.omg.org/docs/formal/07-02-06.pdf, 2007.

[7] OMG: Object Constraint Language, Proposal,

OMG Document, (http://www.uml.org/), May, 2006.

[8] Oussalah, M., Amirat, A., and Khammaci, T.,

“Software Architecture Based Connection Manager”,

In Proceedings of SEDE’07, Las Vegas, Nevada,

USA, Pages 194-199, July 2007.

[9] Amirat, A., Oussalah, M., and Khammaci, T.,

“Towards an Approach for Building Reliable

Architectures”, In Proceeding of IEEE IRI’07, Las

Vegas, Nevada, USA, Pages 467-472, August 2007.

[10] Szyperski, C., Component Software: Beyond

Object-Oriented Programming, 2nd Edition, Addison

Wesley, January 2002.

[11] Enrique, J., and Martínez, P., “Heavyweight

Extensions to the UML Metamodel to Describe the C3

Architectural Style”, ACM SIGSOFT Software

Engineering Notes, Volume 28, Issue 3, May 2003.

[12] Oquendo, F., “Formally Modelling Software

Architectures with the UML 2.0 Profile for π-ADL”,

ACM SIGSOFT Software Engineering Notes, Volume

31, Issue 1, Pages 1-13, January 2006.

[13] SEA Standard AS5506: Architecture Analysis &

Design Language (AADL), Embedded Computing

Systems Committee, November 2004.

[14] Feiler, H., Lewis, B., and Vestal, S., “The SAE

Avionics Architecture Description Language (AADL)

Standard: A Basis for Model-Based Architecture-

Driven Embedded Systems Engineering”, In RTAS

2003 Workshop on Model-Driven Embedded Systems,

May 2003.

[15] Roh S., Kim K. et Jeon T., “Architecture

Modeling Language based on UML2.0”, Software

Engineering Conference, APSEC’04, Proceedings of

the 11th Asia-Pacific Software Engineering

Conference, 2004.

[16] Goulão M., Abreu F.B., “Bridging the gap

between Acme and UML 2.0 for CBD”, Workshop at

ESEC/FSE 2003-Septembre 1-2, 2003.

