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Free space propagation and conventional optical systems such as lenses

and mirrors all perform spatial unitary transforms. However, the subset of

transforms available through these conventional systems is limited in scope.

We present here a unitary programmable mode converter (UPMC) capable of

performing any spatial unitary transform of the light field. It is based on a

succession of reflections on programmable deformable mirrors and free space

propagation. We first show theoretically that a UPMC without limitations on

resources can perform perfectly any transform. We then build an experimental

implementation of the UPMC and show that, even when limited to three

reflections on an array of 12 pixels, the UPMC is capable of performing single

mode tranforms with an efficiency greater than 80% for the first 4 modes of

the TEM basis.

c© 2010 Optical Society of America

OCIS codes: 110.1080, 110.5100, 230.6120

1. Introduction

Optical systems manipulate light by transforming an input light field into a desired output.

Unitary optical systems do not add nor substract energy to the light in question; they change

its spatial characteristics. Put another way, The light is reshaped without any loss of the

information carried by its photons [1]. Ranging in scale from the large (telescope) [2] to the
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small (microscope, CD) [3], ranging in complexity from the simplicity of a single lens to the

resource heavy nature of adaptive optics in ophtalmoloscopy [4], these systems perform a

specific unitary transform on the input light field. Conventionally, a specific set of optical

components are selected and assembled to perform a specific unitary transform. For example,

to rotate a beam along its propagation axis one may use two dove prisms [5], or to rescale a

field profile a telescope may be used [6].

In this paper, we present a unitary programmable mode converter (UPMC). This device

can be programmed to perform any desired unitary transform. At the heart of the UPMC

are deformable mirrors whose topographies are controlled by actuators [7]. A succession of

reflections upon the deformable mirrors are performed, while the reflections are separated

by free space propagation and a lens which perform a Fourier Transform (FT) of the field’s

spatial profile.

The structure of the paper is as follows. We begin with a theoretical demonstration of the

statement that any desired unitary transform of the light field can be achieved with such a

succession of reflections, provided that the topographies of the deformable mirrors are ad-

equately selected. This mathematical demonstration [8] provides a tractable yet inefficient

solution consisting of a succession of topographies, involving a large number of reflections.

Since the cost and complexity scale with the number of reflections on deformable mirrors we

introduce a measure of how well an optical system approaches the desired transform using

limited resources.

We then present and characterize an experimental UPMC with a limited number of re-

flections. An optimization algorithm is introduced to find the best topographies for the

deformable mirrors, and we compare the experimental performance of the UPMC to prop-

agation simulation results. In this proof-of-principle experiment, we only characterize the

UPMC performances in transforming a single specified input field into a specified output.

The propagation simulation, whose validity has been verified against experimental results for

these single mode transforms, is then extended to compute the performances of the UPMC

for general multimode manipulations.

2. Theoretical Considerations

Conventionally, changing the spatial profile of a beam of light is a destructive process: through

phase control and attenuation (local attenuation [9], spatial filtering [10]...), a given profile

can be transformed into any other profile, albeit with smaller total intensity. Here, we demon-

strate mathematically that changing arbitrarily the spatial profile of a beam need not be

destructive. More generally, we show that any unitary optical transform is achievable.

To begin with, let us define the mathematical framework for the linear optical processes

arising in the UPMC, arising from the deformable mirrors, and including FTs. Without loss
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of generality, we consider a beam of monochromatic, linearly polarized light of wavelength λ

propagating along the z axis. The spatial distribution of magnitude and phase of the beam in

the plane (x,y, z = 0) is the transverse profile of the beam: E (x, y) = A (x, y) eiφ(x,y). This

profile can be decomposed in a transverse mode basis such as the Transverse ElectroMagnetic

(TEM) modes:

E(x, y) =
∑

m∈N,n∈N

amnTEMmn(x, y) (1)

The amn are the complex coefficients of the decomposition of E(x, y) in the TEM basis.

An optical system transforms an input field I(x, y) into an output O(x, y), with different

inputs producing different outputs. Any linear optical system is fully characterized by its

action in a transverse basis: the output of each mode of the basis through the optical system

can be decomposed in the same basis, thus providing a matrix description of the transform.

For example, the transform defined by

UT =
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(2)

in the TEM basis acts as a two mode beamsplitter wherein the spatial modes TEM00 and

TEM10 are mixed together, while all the other modes in TEMmn remain unaffected.

In the specific case of a unitary optical system, the total intensity of the output is identical to

the input’s. This entails that the matrix describing the transform is itself unitary. A unitary

matrix can also be seen as a basis change; it transforms an input basis into another output

basis. Any combination of lenses, mirrors and free space propagation is unitary, but these

Gaussian elements [11] give access to only a small subset of all the unitary transforms [11].

For example, the TEMmn modes are eigenmodes of the propagation through these elements;

their size changes, but their intensity distribution does not. To that extent, these Gaussian

elements are not sufficient to transform a TEM00 mode into a TEM10 mode.

The UPMC aims at performing any unitary transform, including transforms that change

a TEM00 input into a TEM10 output. This means that non Gaussian optical elements are

needed, such as deformable mirrors. A programmable deformable mirror is a surface whose

topography z(x, y) can be defined by the user. When the beam hits the mirror, the field

profile is transformed into

E(x, y) → eiφDM (x,y)E(x, y) (3)

with φDM(x, y) = 2π z(x,y)
λ

. While the decomposition of the transverse profile E(x, y) on the

TEM basis remains constant throughout the propagation of the beam, the reflection on a
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deformable mirror changes the coefficients of the decomposition. In order to describe the

unitary transform induced by the reflection, we introduce a different transverse basis.

Due to the finite number of actuators deforming the mirrors, we consider the discretization

of the transverse profile on a pixel basis: Eij = E(xi, yj). xi and yj are the (x, y) coordinates

of pixel (i, j) with i ∈ Z and j ∈ Z. When the size of the pixel ∆pix is small compared to the

variations of the transverse field E(x, y) along the x and y axis, the transverse profile E(x, y)

is adequately described by its discretization Eij. Moreover, since the transverse extension

of a physical beam is finite, E(x, y) is adequately described by Eij with |i| ≤ Npix/2 and

|j| ≤ Npix/2 for a large enough Npix.

In this basis, the reflection on a deformable mirror is the transform Eij → eiφijEij with

eiφij = eiφDM (xi,yj). The table of Eij can be reorganized row by row into a single vector

Ek = Eij with k ∈ A (A = {1, 2, ..., n = N2
pix}). The deformable mirror transforms becomes

E → UDM (φ)E with

UDM (φ) =

















eiφ1 0 0 ... 0

0 eiφ2 0 ... 0

0 0 eiφ3 ... 0

... ... ... ... ...

0 0 0 ... eiφn

















(4)

In the pixel basis, the set of all possible UDM forms the subgroup DU of the unitary group U.

Any unitary transform in the group DU is a local phase manipulation and does not

change the intensity distribution of the beam. In order to transform a field input into any

other output, the intensity distribution also needs to be changed. Propagation through

gaussian elements do not change the intensity distribution of TEMmn modes. However, for

the modes which are decomposed in multiple TEMmn modes, the Gouy phase shift induced

by propagation changes the intensity distribution [11].

Let us consider more specifically the unitary transform performed by the combination of a

lens of focal length f0 and free-space propagation before and after the lens of a distance f0.

These elements perform a FT on the spatial profile of the beam, and the profile is rescaled:

for an input beam with transverse size parameter ωin, the typical transverse size of the

output is ωout = 2πλf0/ωin.

Let us name the unitary matrix of this FT in the pixel basis UFT ; E → UFTE. We choose

the pixel size ∆pix small enough and the number of pixels Npix large enough to make sure

there are no zero elements in UFT . Typically, ∆
2
pixNpix = 2πλf0.

We have thus far provided linear algebra models for the two components of the UPMC;

the reflections on deformable mirrors and the FTs. We now consider a succession of these
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components, and using group theory, we show that they can provide any unitary transform.

Let us name H the set of all possible optical transforms provided by such a succession. H is

a subgroup of U that contains DU and UFT . We want to show that H is U.

Let us now consider Uij the subgroup of U that contains all the matrices of the form

Tij(θ) =





































1 0 ... 0 ... 0 ... 0

0 1 ... 0 ... 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... cos(θ) ... sin(θ) ... 0

... ... ... ... 1 ... ... ...

0 0 ... −sin(θ) ... cos(θ) ... 0

... ... ... ... ... ... ... ...

0 0 ... 0 ... 0 ... 0

0 0 ... 0 ... 0 ... 1





































(5)

where the sin(θ) and cos(θ) terms are in the ith row and jth column. Using a reorganisation

of the matrix coefficients that can be found in [8], it is possible to build Tij(θ) for any

triplet (i, j, θ) with a succession of UFT and UDM(φ), as long as there is no zero element in

UFT . This means that all the Tij(θ) are in H, so all the Uij are in H. We now know that

H is a subgroup of the unitary matrices U that contains all the rotations Tij(θ) and the

diagonal matrices UDM(φ). It is easy to show (see for example [12]) that with a succession

of Tij(θ) and UDM(φ) any unitary matrix can be built. Since H is a group, H contains all

these successions. This means that H is U: H, the set of optical transforms formed by all

the successions of reflections on deformable mirrors and spatial FTs, encompasses all the

unitary transforms. Any desired unitary transform has a systematic decomposition in terms

of reflections on specific topographies and FTs.

A finite sequence of UDM and UFT sufficient to build any Tij(θ) is presented in [8]. Such a

systematic construction requires 17 reflections on deformable mirrors, separated by FTs.

To build any unitary matrix only a finite number of Tij(θ) are required. Consequently a

finite number of reflections on deformable mirrors separated by FTs is sufficient to build

any unitary matrix. When the number of pixels is increased, the number of Tij(θ) required

to build a general unitary matrix increases.

As a conclusion, this theoretical study showed that any kind of unitary transform can be

performed using a finite succession of reflections on deformable mirrors and FTs. However,

experimentally the number of reflections on deformable mirrors can be limited. We need

to introduce a measure to evaluate how well an optical system built with limited resources

performs a desired transform.
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Let us consider that the desired unitary transform D is defined by the n orthonormal output

field modes Oi(x, y) for the orthonormal input modes Ii(x, y) (with i ∈ K, K = {1, 2, ..., n}).
For example D can be defined on a single mode. In this case we want a specific output for a

given input, but the action of D on all the other inputs is irrelevant. Or D can be defined on

some or all the modes of a transverse basis. In the latter case, the desired transform matrix

is completely specified.

For the same inputs Ii(x, y) an optical system A has the outputs O′
i(x, y). When D is defined

on a single mode, a standard measure of how well A performs the transform D is the intensity

overlap between the mode O1(x, y) and the mode O′
1(x, y). We introduce the coefficient α,

which is a generalization of this single mode case to all unitary transforms. It combines all

the output overlaps, and is sensitive to the phase between the overlaps:

α =

∣

∣

∣

∣

∣

∑

i∈K

∫∫

(x,y)

Ōi(x, y)O
′
i(x, y)

∣

∣

∣

∣

∣

(6)

If we decompose Oi(x, y) =
∑

m∈N,n∈N oi,m,nTEMmn(x, y) and O′
i(x, y) =

∑

m∈N,n∈N o
′
i,m,nTEMmn(x, y), α can be written as

α =

∣

∣

∣

∣

∣

∑

i∈K

∑

m∈N,n∈N

ōi,m,no
′
i,m,n

∣

∣

∣

∣

∣

(7)

In this last notation, α is a scalar product between the unitary matrices of D and A in the

TEM basis.

When n = 1, α2 is the mode conversion efficiency: it is the proportion of power effectively

tranfered from the input mode into the desired output. For multimode transformations, i.e.

higher values of n, we introduce the transform quality α2
n = α2

n2 , a generalization of the mode

conversion efficiency. α2
n is normalized to compare transforms with different input mode

numbers on the same 0 to 1 scale. When α2
n = 1, there is no difference between A and D,

provided that we only consider the subspace formed by the input modes Ii(x, y), i ∈ K. The

two transforms can still be different; they just differ outside of the considered input modes.

α2
n was chosen as the measure of the difference between the transforms because it gives the

same importance to all the considered modes and coefficients. For a specific purpose, another

measure of distance could be more appropriate. For example, when the relative phases

between the output modes are irrelevant, the quantity β =
∑

i∈K

∣

∣

∣

∫∫

(x,y)
Ōi(x, y)O

′
i(x, y)

∣

∣

∣
is

more appropriate.

For a given transform D, finding the optimal achievable transform A within the exper-

imental constraints is an optimization problem. When a large number of reflections on
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deformable mirrors is possible, we can use the systematic decomposition sequence of D in

UFT and UDM(φ) presented above to perform the transform perfectly. However when the

number of reflections is a constraint, there is no algebraic solution [13]. The problem then

comes down to the optimization of a finite set of parameters (here the topographies of the

deformable mirrors) and can be efficiently solved using a stochastic approach, using α2
n as

the optimization criterion.

In this section we showed that the UPMC has in theory the ability to perform any desired

unitary transform. Since performing this transform perfectly is resource heavy, we introduce

a measure α2
n, a generalization of the intensity overlap, to evaluate how well an optical

system performs the desired transform.

3. Experimental Demonstration

An experimental implementation of the UPMC was built in order to verify the theoretical

capabilities discussed in the previous section. We will first show that the experimental

deformable mirror can be modelled reasonably well by the theoretical unitary transform

UDM . The optical set-up of the UPMC is then presented, designed to allow three reflections

on the same deformable mirror. Finally, we characterize this experimental UPMC’s ability

to perform a range of single mode transforms. A propagation model of this UPMC, validated

by these experimental results, can then be used to evaluate the performances of the UPMC

to multimode transforms.

We use a Thorlabs multi-DM as a programmable deformable mirror. This device is a

continuous membrane with a gold coating, controlled by 140 electrostatic actuators (laid

out in a 12 by 12 square without the 4 corners). The schematic is displayed in the inset of

Fig. 1. The actuators are computer controlled, with a settling time of 10ms. There is no

measurable modulation of the beam intensity or phase profile due to any flickering of the

deformable mirror, as can be sometime found in the liquid crystal on silicon spatial light

modulators (LCOS SLM) [14].

Comparing the deformable mirror with a highly reflective flat mirror, we can derive the

optical power loss induced by the deformable mirror and its protective window. For each

reflection we find a 4.2%(±0.5%) loss compared to the flat mirror. Manufacturer specifi-

cations predict a 3.4% loss; we can safely conclude that the only losses on the deformable

mirror are due to the absorption on the gold coating and the scattering from the protective

window. These two technical losses could be reduced by using a highly anti-reflective coated

protective window and gold surfaces. In the approximation that the losses are (or can be
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made) negligible, it is justified to model the transform induced by a single reflection on

the deformable mirror by the matrix UDM with the topography z(x, y) controlled by the

actuators.

For this proof of principle UPMC, we utilize a single deformable mirror. In order to

satisfy the requirement of having multiple reflections on deformable surfaces, we choose

to designate three separate areas of the deformable mirror, allowing for three successive

independent reflections. A highly elliptic beam is used; the topography of the deformable

mirror along the vertical axis is controlled by 12 actuators, while the horizontal axis remains

flat (see inset in Fig. 1). Between each reflection a FT on the vertical axis is performed

using a cylindrical lens and a spherical lens. We use half wave plates and polarizing

beamsplitters to couple the beam in and out of the UPMC. A schematic of the general

UPMC can be found in Fig. 1. This pratical implementation of the UPMC is limited in the

maximum number of reflections (3) and in the number of actuators per reflection (12). To

that extent, the ideal theoretical construction sequence presented above cannot be performed.

Assessing how well the UPMC performs the desired single mode unitary transform

requires the stable production of both the input mode (to send into the optical system

responsible for the transform) and of the desired output mode (in order to measure the

strength of its overlap with the output of the optical system). The mode conversion

efficiency, α2, is found through the intensity overlap measurements. The same measurement

could be achieved through an intensity and phase profile detection coupled with a computed

scalar product, but without the stability and the precision provided by direct experimental

measurement of the overlap.

We produce stable input and output profiles using mode cleaning cavities operating as

gaussian mode selectors, locked to the desired resonating modes: I(x, y) = TEMm0(x, y)

and O(x, y) = TEMn0(x, y). Phase plates are placed before the cavities to couple light from

the TEM00 mode produced by the laser into the desired mode. The cavity is then locked to

this mode. This technique is very lossy; a 36% loss in power results when a TEM00 mode is

coupled into a cavity locked to the TEM10 mode.

The output mode of the UPMC is then made to overlap the stable output mode of

the reference mode cleaning cavity. The powers of the two outputs are balanced and a

mirror mounted on a piezo electric transducer modulates the overall phase of the reference

beam, thus providing an interference signal. The visibility of the interference signal is then

derived; it is the intensity overlap between the two profiles. This process is described in Fig. 2.

The deformable mirror is controlled through 140 computer-controlled actuators, each
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Fig. 1. (Color online) The Beam is coupled into the UPMC by a reflection

on the polarizing beamsplitter PBS1. It is then focused on to the deformable

mirror DM. The beam first undergoes a 2D FT through the spherical lens SL,

followed by a vertical FT going through the cylindrical lens CL, and finally

another 2D FT going back through SL. The sliding half wave plates HWP1

and HWP2 are used to choose how many times the beam is reflected by the

deformable mirror before being coupled out on PBS1. The deformable mirror

representation in the inset shows the pixel layout and the measured positions

and sizes of the beam for the 3 reflections, when the beam is a simple gaussian.

Manipulation of the beam makes the spatial profile bigger than the simple

gaussian, hence the small footprint of the simple gaussian compared to the

size of the Deformable Mirror.
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Fig. 2. (Color online) The beams coming from the laser go through Gaussian

Mode Selectors locked to the desired input and output modes (here I = TEM00

and O = TEM20). The desired output is phase modulated using the electroac-

tuator PZT and overlapped with the output of the UPMC. The interference

signal is then measured on a photodiode, and the intensity overlap is derived.

Depending on the measured overlap, the stochastic optimization algorithm

changes the control signal of the deformable mirror.
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moving a different part of the gold membrane. The different gains and offsets for each

actuator and the coupling between them make the relation between the computer signals

and the actual membrane topography difficult to derive. This is a common problem in

adaptive optics, and is often solved using active feedback [15]. This is the method employed

here; a stochastic optimisation on the computer signals was performed. Depending on the

measuremed value of the intensity overlap, we changed stochastically the computer signals,

and measured the overlap again. The best value is kept and the process was repeated as

fast as was allowed by the settling time of the deformable mirror. The overlap converges to

a maximum value, where the process was then stopped.

Power fluctuations arising from the laser make it redundant to introduce additional

randomness in the optimization process. Instead, we adopt an optimization routine which

moves one actuator at a time. Each individual actuator is moved in order to maximize the

intensity overlap, then the next one is moved. The order of the actuators is random. It

is trivial to show that for a single reflection, such a sequential optimization will find the

maximum intensity overlap possible.

For each desired transform, the gaussian mode selectors are locked to the desired input

and output modes. Next, the number of reflections the beam is given on the deformable

mirror is controlled by the half wave plates within the UPMC. Now, with the deformable

mirror flat, we balance the powers between the output of the UPMC and the reference

beam. We then proceed to optimize the membrane topography. Fig. 3 presents the mode

conversion efficiencies obtained after optimization for different transforms and for different

numbers of reflections. As can be clearly seen in the figure, for all the transforms considered,

the quality of the conversion consistently improves with the number of reflections allowed.

This is in agreement with the fundamental idea underlying the UPMC that successive

reflections on a deformable surface eventually lead to a perfect unitary transform.

In the case of the single mode transform, the value α2 is the fraction of the power of the

output mode effectively converted into the desired mode. For example, the value α2 of 0.91

measured for the conversion TEM00 → TEM10 with three reflections on the deformable

mirror means that 91% of the power of the UPMC’s output is in the desired TEM10. The

largest sources of losses in the UPMC are due to the aforementioned gold coating and the

protective window for these three reflections, giving us a loss 12% in optical power. Thus,

the limiting factor of the overall efficiency of the physical system in transferring the light

from the TEM00 input into the TEM10 output is the quality of the coatings and surfaces

on the optical path, for which there are technical solutions. Reverse transforms were also

tested and for the transform TEM10 → TEM00 with 3 reflections the mode conversion

efficiency is also 0.91.
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Fig. 3. (Color online) Mode conversion efficiency, α2, for three different trans-

formations (green). Simulated results are also plotted (blue). The number of

reflections allowed on the UPMC are varied; the screenshots below the plots

represent stills from the CCD camera, capturing the output of the UPMC.

For repeated optimization procedures of the same transform, with the same

number of reflections, the membrane topography was found to differ greatly,

while the mode conversion efficiency was consistent. This can be explained by

the high number of remaining degrees of freedom. When the maximum mode

conversion efficiency was low, i.e. for small number of reflections, the shape of

the optimized output mode differed from one optimization to another. In the

case of high mode conversion efficiency, most of the power is in the desired

output mode, while in the case of low efficiency, a significant portion of the

power is not in the desired output mode and changes the intensity distribution

of the output depending on the membrane topography.
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The mode conversion efficiency for the transform TEM00 → TEM50 is 0.60 ± 0.01; the

quality of this transform is limited by the size of the beam on the deformable mirror. The

optical set-up was chosen so that the energy of a TEM00 is spread over five actuators (see

Fig. 1), therefore a significant portion of the third reflection in the TEM00 → TEM50

transform (that tends to be the size of a TEM50) hits the deformable mirror outside of

the controllable membrane. This underlines the geometrical limit of this specific UPMC; it

can only efficiently handle modes from TEM00 to TEM40. Since the spot size of a TEMn0

mode scales as
√
n+ 1, an increased number of actuators would allow for the manipulation

of more modes with the same precision.

Importantly, all of these results were obtained using the same optical set-up. To change from

one conversion to another, we simply sent a different computer signal to the deformable

mirror. Once an optimal signal is found using the stochastic optimization, the deformable

mirror can be repeatably returned to this optimal setting in 10ms.

4. Multimode generalization

In order to check the capabilities of a realistic UPMC for multimode transforms, we

simulate the proof of principle UPMC using a direct propagation model and check the

model’s validity against the experimental results. We can then use the model to assess this

UPMC’s performances in manipulating multiple modes and performing general unitary

transforms. Fig. 3 provides a comparison between the simulated and experimental UPMC.

The good agreement between the two methods validate the model as a tool to explore the

multimode capabilities of this experimental set-up. The limitations on the optimization

speed of the experimental set-up compared to the computational simulations explain the

small systematic difference between the results: a typical experimental optimization time

allows for 105 trials. Computational tests involve typically 106 to 107 trials. By simulating

the experimental optimization, we found that the 102 ratio explains the systematic difference.

We simulate the UPMC by modelling the propagation of the light field. The light profile

is input as a 2048 value array. The FT is performed as a normalized and centered Fast

Fourier Transform aglorithm. The reflection on the deformable mirror is a product element

per element with a 2048-element array of phases. This array of phases derives from the

12 phase values of the actuators, with smoothing between them to take into account the

continuous nature of the membrane. We use a stochastic approach (simulated annealing) to

find the optimal phase profile for a specified transform.

The simulation performed was on a practical optical system for single and two mode

conversions for a wide set of modes. For all these transforms we considered from one to four
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reflections on the deformable mirror, separated by FTs. We mainly considered transforms

between TEMmn modes, with the exception being a flip mode (a TEM00 with a π phase

shift in the middle).

Fig. 4 presents simulated mode conversion efficiencies for single mode transforms.

Among them a., b. and c. are used in Fig. 3 to check the validity of the simulations.

The efficiency consistently increases with the number of reflections allowed, for all the

transforms considered. The results for single reflections match the theoretical maximums

(modulus overlap). Comparing the results of d. and e. to c. and a. respectively show that

the difference between the shape of the input mode and the shape of the desired output

has a stronger impact on the overlap than the complexity of the modes themselves. Fig. 5

presents the magnitude and phase evolution in the conversion process: TEM00 → TEM20.

This simulation details the spatial process that the light undergoes. On each surface, the

intensity profile is not changed, but a phase is printed onto the light field. The propaga-

tion of the phase profile is then responsible for the change in the intensity profile of the beam.

The propagation model is now generalized to simulate multimode manipulations by the

UPMC. For a desired transform D, we optimize the topography of the deformable mirror to

make the UPMC perform D. The transform quality α2
n evaluate how closely the UPMC’s

transform matches the desired transform. To compute α2
n, the multiple input modes are

propagated throuh the simulated UPMC sequentially. For each of the output modes,

the intensity overlap with the desired output mode is computed. The overlaps are then

combined to form the transform quality α2
n. The simulated annealing process optimizes the

topography of the deformable mirror so as to improve α2
n, until a maximum value is reached.

Multimode manipulations can take many forms. We focus here on two families of trans-

forms: phase operators; and beamsplitters. Two mode transforms between the first two TEM

modes will be considered - TEM00 and TEM10. The beamsplitter transform is the matrix

UBS(r) =

(

r t

t −r

)

(8)

with the relationship t =
√
1− r2. UBS(r) is the beamsplitter matrix for a half silvered

mirror of reflectivity r2. The phase operator is defined by the matrix

UP (φ) =

(

1 0

0 eiφ

)

(9)

and corresponds to introducing a phase shift between the two copropagating modes.
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Fig. 4. (Color online) Presentation of the mode conversion efficiency α2 as a

function of the transform considered and the number of reflections Nr allowed.

The transforms are a. TEM00 → TEM10 b. TEM00 → TEM20 c. TEM00 →
TEM30 d. TEM10 → TEM30 e. TEM10 to flip mode
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Fig. 5. (Color online) Transverse profiles of the magnitude of the field when

undergoing a succession of FTs and reflections on deformable mirrors (DM).

The magnitude remains constant at the reflection surfaces while the phase has

a sharp discontinuity. The transverse axis is renormalized to keep the profile

of TEM00 constant throughout propagation.
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Fig. 6 presents the best transform quality achieved, α2
n, when the UPMC is optimized

to perform the transforms UBS(r) and UP (φ). We present α2
n as a function of r and

φ and the number of reflections allowed. In the single reflection case, we can derive

the theoretical maximum for the transform quality, assuming the topography is fully

controllable (i.e. not limited to a twelve actuators control). Comparing the performances

of the realistic UPMC to the theoretical maximums shows that the limited number

of actuators has an impact on the transform quality. On the other hand, when higher

number of reflections are allowed, the UPMC outperforms the single reflection theoretical

maximums. With increased number of reflections, the efficiency improves for all values of

r and φ: this validates the multiple reflection scheme as a way to perform unitary transforms.

The high α2
n values obtained both for the beamsplitters and the phase operators for 3 and

4 reflections, especially compared to the single mode transforms in Fig. 4 tends to show that

the limiting factor is the complexity of the modes manipulated, rather than the number

of manipulated modes. This means that this realistic UPMC can efficiently manipulate

multiple copropagating modes, mixing them or introducing phase shifts between them.

Fig. 6. (Color online) Transform quality α2
n when the realistic UPMC is opti-

mized to perform a beamsplitter UBS (a) and a phase operator UP (b). They

are plotted as a function of the number of reflections allowed and their re-

spective parameters r and φ. The black curve represents the single reflection

theoretical maximum. The overlap is perfect for α2
n = 1. Additional simula-

tions with the same number of trials for a constant transform D presented

the same small fluctuations in the case of three and four reflections. These are

artefacts of the optimization process.
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As the constraints include more modes, the transform quality gets lower, but the tendancy

remains: with more reflections allowed, the unitary transform performed by the UPMC

approaches the desired one. This statement is in agreement with the theoretical result, and

shows empirically that for a limited number of resources (i.e. reflections and actuators),

efficient transforms are possible.

5. Conclusion

As a conclusion, we showed that multiple reflections on deformable mirrors separated by

FTs can perform any unitary spatial transformation on a beam of light. Realistically, the

capabilities of this unitary programmable mode converter is only limited by the number of

reflections allowed and the number of pixels for each reflection. We show experimentally

that three reflections on an array of 12 pixels are enough to perform single mode transforms

with an efficiency better than 80% for the first 4 modes of the TEM basis. This achievement

also validates our model for the UPMC, allowing us to compute the efficiency of multimode

transforms, the simultaneous transformation of multiple input modes. We find that the

UPMC can perform multiple mode manipulations as well as single mode manipulations.

The programmable nature of the UPMC makes it a good candidate for general light

manipulation. An important application is its uses after a multi-mode fiber as a way to

compensate mode diffusion. Moreover, since all the losses in the UPMC can be reduced by

technical improvement of the quality of the coatings and surfaces, it opens general spatial

light manipulation to quantum protocols.
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