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ABSTRACT. A new family of methods, the so-called two-parameter vector penalty-projection
(VPPr,ε) methods, is proposed where an original penalty-correction step for the velocity re-
places the standard scalar pressure-correction one to calculate flows with divergence-free ve-
locity. This allows us to impose the desired boundary condition to the end-of-step velocity-
pressure variables without any trouble. The counterpart to pay back is that in these methods,
the constraint on the discrete divergence of velocity is only satisfied approximately as O(εδt)

within a penalty-correction step and the penalty parameter 0 < ε ≤ 1 must be decreased until
the resulting splitting error is made negligible compared to the time discretization error. How-
ever, the crucial issue is that the linear system associated with the projection step can be solved
all the more easily as εδt is smaller. Finally, the vector penalty-projection method (VPPr,ε) has
several nice advantages: the Dirichlet or open boundary conditions are not spoiled through a
scalar pressure-correction step. Moreover, this method can be generalized in a natural way for
variable density or viscosity flows and we show that the vector correction step can be made
quasi-independent on the density or viscosity variables (and also on the non-linear terms) if
η = εδt is taken sufficiently small. These terms can be then neglected in practical schemes.
KEYWORDS: Vector penalty-projection methods, projection methods, artificial compressibility,
Navier-Stokes equations, incompressible and variable density flows, cell-centered MAC scheme.

1. Introduction: overview of methods dealing with the divergence constraint

Let us consider the unsteady Navier-Stokes problem in a bounded domain Ω ⊂ R
d

(d ≤ 3) with Dirichlet boundary conditions v|Γ = vD on Γ = ∂Ω and f , q (a volumic
mass source), Re (Reynolds number), an initial condition v(t=0) = v0 given:

∂tv + (v· ∇)v − 1

Re
∆v + ∇p = f with ∇· v = q in Ω × (0, T ). [1]
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1.1. Fully-coupled Navier-Stokes solvers

With usual notations for the semi-discretization in time, the linearly implicit Euler
method with v̄0 = v0 and a given time step δt > 0 reads: for all n ∈ N such that
(n + 1)δt ≤ T , find v̄n+1 and p̄n+1 satisfying v̄n+1

|Γ = vn+1
D such that:

v̄n+1 − v̄n

δt
+ (v̄n

· ∇)v̄n+1 − 1

Re
∆v̄n+1 + ∇p̄n+1 = fn+1 in Ω [2]

∇· v̄n+1 = qn+1 in Ω [3]

Here v̄n, p̄n are desired to be first-order approximations of the continuous velocity and
pressure solutions v(tn), p(tn) at time tn =nδt. Of course, higher-order schemes are
generally used for practical computations. For the sake of simplicity in the numerical
procedure, a semi-implicit scheme where the non-linear term is linearized on the first
term is often chosen since it does not suffer from stability conditions. The error ana-
lysis of the fully implicit scheme is simpler but it also makes it necessary to use a
quasi-Newton algorithm to solve the corresponding non-linear system at each time
step in the practical calculations. It is well-known that such a fully-coupled scheme,
with any stable space discretization, yields an ill-conditionned and indefinite algebraic
system at each time step, especially for small spatial mesh steps h. The design of
efficient fully-coupled solvers remains a general problem still largely open; see e.g.
[CIH 99].

1.2. Augmented Lagrangian and artificial compressibility methods

Falling into the class of semi-coupled solvers where the velocity components are
still gathered, the augmented Lagrangian method which is classical in optimization
[FOR 83], with the parameters 0 < λ < 2r + 2/Re and the initial condition p0 given,
reads:

vn+1 − vn

δt
+ (vn

· ∇)vn+1 − 1

Re
∆vn+1 − r∇

(

∇· vn+1 − qn+1
)

+ ∇pn = fn+1

pn+1 = pn − λ
(

∇· vn+1 − qn+1
)

.

This algorithm must in fact be iterated at each time step (not given here for sake of
shortness) to produce good approximations of the solution to the reference method, i.e.
the coupled implicit Euler scheme [2]-[3] for unsteady flows, see [KHA 00] for de-
tails. However, the convergence to a “divergence free” velocity, varying like O(1/r),
is all the faster as the augmentation parameter r � 1 is larger but the resulting system
becomes here also ill-conditioned which greatly increases the solution cost, especially
for 3-D problems. On the contrary, the standard Uzawa algorithm with r = 0 con-
verges very slowly or may not converge at all for strongly non-linear problems. With
the choice λ=r = δt/ε, the method also yields the implicit artificial (or pseudo) com-
pressibility method studied by Chorin (1967) and Temam (1968) [TEM 86]. Indeed,
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the scheme then corresponds to the implicit first-order discretization of the following
singularly perturbed continuous problem where vε(0) = v0 and also pε(0) are given:

∂tvε + (vε· ∇)vε −
1

Re
∆vε + ∇pε = f in Ω × (0, T ), [4]

ε ∂tpε + ∇· vε = q in Ω × (0, T ), [5]

with vε = vD on Γ. This artificial compressibility problem (for q = 0) can be proved
to converge in some sense to the Navier-Stokes system when ε tends to zero, see
[TEM 86] and [ANG 08] for new convergence results like Theorem 2.1.

1.3. Scalar projection and penalty-projection methods

With a completely different approach, the class of fractional-step or splitting me-
thods, namely the projection methods originally introduced by Chorin (1968) and
Temam (1969) [TEM 86], became very popular because they are much cheaper. They
produced an important literature with many variants of the type of pressure-correction
or velocity-correction schemes and we refer to the complete review of Guermond et
al. [GUE 06] and the references therein. Their principle lies in the Helmholtz-Hodge
orthogonal decomposition of the space L2(Ω)d = H⊕H⊥ where, see e.g. [TEM 86]:
H = {u ∈ L2(Ω)d, ∇· u = 0, u· n = 0 on Γ} and H⊥ = {∇φ, φ ∈ H1(Ω)}.
This allows for a predicted velocity field to be corrected with a “pressure” gradient
by the Leray orthogonal projection PH onto the space of solenoidal fields H. As an
example, let us consider the so-called penalty-projection method recently proposed
and numerically investigated by Jobelin et al. [JOB 06, JOB 07], also theoretically
analysed in [ANG 06] – the first one being due to Shen (1992). For r1 ≥ 0 and p0

given, the predicted velocity ṽn+1 satisfies in Ω:

ṽn+1 − vn

δt
+(vn

· ∇)ṽn+1− 1

Re
∆ṽn+1−r1∇

(

∇· ṽn+1 − qn+1
)

+∇pn = fn+1,

[6]
with ṽn+1 = vn+1

D on Γ. This system condition number varies as O(r1) [FEV 08].
Then the pressure correction step reads for r2 ≥ 0:

−∆φ =
1

δt

(

qn+1 − ∇· ṽn+1
)

in Ω with ∇φ· n = 0 on Γ [7]

vn+1 − ṽn+1 + δt∇φ = 0 and pn+1 = pn + φ − r2

(

∇· ṽn+1 − qn+1
)

in Ω. [8]

Under this general form, the standard incremental projection method from Goda
(1979) is recovered with r1 = r2 = 0 which makes it very simple and attractive.
However, the usual projection methods suffer from some drawbacks:

1) First, the original Dirichlet boundary condition on the velocity degenerates
into an inconsistent Neumann boundary condition for the pressure increment φ due
to the scalar pressure correction step and so the end-of-step velocity only satisfies:
vn+1

· n = ṽn+1
· n = vn+1

D · n. This creates artificial pressure boundary layers
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which spoil the pressure numerical solution. They can be reduced with the rotational
projection method from Timmermans et al. (1996) corresponding to the previous al-
gorithm with r1 = 0, r2 = 1/Re [GUE 04] or with the standard penalty-projection
(r1 = r2 = r) or the rotational version (r1 = r, r2 = r + 1/Re) for which they are
nearly suppressed with moderate values of r between 1 and 10 [JOB 06, FEV 08].

2) When an outflow boundary condition of the “Neumann” type like in Section
3 is imposed on a part of the boundary, it degenerates into a homogeneous Dirichlet
condition for φ and the convergence of the standard projection methods is quite poor.
Indeed, the l2(L2) norm of the velocity and pressure errors converges as O(δt) and
O(δt

1

2 ), respectively for a second-order time scheme, see [GUE 06]. This is clearly
improved with the rotational projection [GUE 06] or with the penalty-projection meth-
ods if r takes moderate values, typically 1 ≤ r ≤ 10, see [JOB 06, FEV 08].

3) In the case of variable density flows, as multiphase flows, the scalar correction
step is naturally modified depending now on the density %n+1 [GUE 00], as follows:

−∇·

(

δt

%n+1
∇φ

)

= qn+1 − ∇· ṽn+1 in Ω with ∇φ· n = 0 on Γ

%n+1
(

vn+1 − ṽn+1
)

+ δt∇φ = 0, pn+1 = pn + φ − r2

(

∇· ṽn+1 − qn+1
)

in Ω.

Thus, it introduces an “artificial” dependence on %n+1 of the correction of ṽn+1: in
the case of large density ratios, it generally prevents us from solving φ quasi-exactly
which should be to satisfy the divergence constraint, whereas a standard precision in
agreement with the discretization errors would be sufficient to get only the pressure!

4) The last drawback, less traditional, addresses the fictitious domain methods us-
ing a penalization to impose an immersed boundary condition; see [ANG 99, KHA 00]
and the references therein. Here, the L2-volumic penalty inside a moving subdomain
ω(t) ⊂ Ω with b(t) = χω(t)/η, η > 0, modifies the projection method as below:

ṽn+1 − vn

δt
+ (vn

· ∇)ṽn+1 − 1

Re
∆ṽn+1 + ∇pn + bn+1

(

ṽn+1 − vn+1
D

)

= fn+1

−∇·

(

δt

1 + δt bn+1
∇φ

)

= qn+1 − ∇· ṽn+1 in Ω with ∇φ· n = 0 on Γ

(

vn+1 − ṽn+1
)

+ δt∇φ + δt bn+1
(

vn+1 − ṽn+1
)

= 0, pn+1 = pn + φ in Ω.

Thus, it yields a H1-penalty for φ with a diffusion coefficient varying as O(η) when
η → 0, i.e. a singularly perturbed problem more difficult to treat numerically. This
also gives an additional insight to our first point about the pressure boundary layers.

2. The vector penalty-projection (VPPr,ε) methods for incompressible flows

The vector penalty-projection methods are derived to overcome most of the latter
drawbacks with a compromise between the best properties of both classes: the aug-
mented Lagrangian (without iterations) and splitting methods under a vector form, i.e.
seeking a vector correction v̂ to inherently respect the velocity boundary conditions.
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2.1. The two-step artificial compressibility (VPPε) method

A first two-step VPP scheme with a penalty parameter 0 < ε ≤ δt is devised, for
v0 ∈ H1(Ω)d, p0 ∈ L2

0(Ω) given, as follows: ∀n ∈ N such that (n + 1)δt ≤ T ,

ṽn+1 − vn

δt
+ (vn

· ∇)ṽn+1 − 1

Re
∆ṽn+1 + ∇pn = fn+1

ε

δt

(

v̂n+1

δt
+ (vn

· ∇)v̂n+1 − 1

Re
∆v̂n+1

)

− ∇
(

∇· v̂n+1
)

= ∇
(

∇· ṽn+1 − qn+1
)

vn+1 = ṽn+1 + v̂n+1, and pn+1 = pn − δt

ε

(

∇· vn+1 − qn+1
)

with ṽn+1
|Γ =vn+1

D and v̂n+1
|Γ =0 to satisfy the boundary condition on v. Summing the

two steps yields the implicit artificial compressibility scheme written in section 1.2.

2.2. The two-parameter vector-penalty projection (VPPr,ε) methods

The two-parameter vector penalty-projection methods with an augmentation pa-
rameter r ≥ 0 and a penalty parameter 0 < ε ≤ 1 are then devised. They read for
v0 ∈ H1(Ω)d and p0 ∈ L2

0(Ω) given: for all n ∈ N such that (n + 1)δt ≤ T ,

ṽn+1 − vn

δt
+ (vn

· ∇)ṽn+1 − 1

Re
∆ṽn+1 − r∇

(

∇· ṽn+1 − qn+1
)

+ ∇pn = fn+1

p̃n+1 = pn − r
(

∇· ṽn+1 − qn+1
)

ε

(

v̂n+1

δt
+ (vn

· ∇)v̂n+1 − 1

Re
∆v̂n+1

)

− ∇
(

∇· v̂n+1
)

= ∇
(

∇· ṽn+1 − qn+1
)

vn+1 = ṽn+1 + v̂n+1, and pn+1 = p̃n+1 − 1

ε

(

∇· vn+1 − qn+1
)

with ṽn+1
|Γ = vn+1

D and v̂n+1
|Γ = 0. Notice that (VPP0,ε) is different from (VPPε)

unless δt = 1. Indeed, summing now the two steps gives the discrete problem below
which provides an additional dissipation of the velocity divergence for δt < 1:

vn+1 − vn

δt
+ (vn

· ∇)vn+1 − 1

Re
∆vn+1 + ∇pn+1 = fn+1 [9]

ε
pn+1 − pn

δt
+

1

δt

(

∇· vn+1 − qn+1
)

+
rε

δt

(

∇· ṽn+1 − qn+1
)

= 0. [10]

This results in a well-posed generalization of the method early proposed in [CAL 99]
considering a singular vector correction step, with ε = 0 in fact, which has a unique
solution only with an additional constraint for v̂, such that e.g.: ∇ × v̂ = 0.

Defining en = vn−v(tn) and πn = pn−p(tn) as the whole velocity and pressure
errors with the Navier-Stokes true solution, respectively, we prove in [ANG 08] the
following result of first-order convergence in time for the time semi-discrete setting.
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THEOREM 2.1 (ERROR ESTIMATES FOR (VPPε – VPPr,ε) WITH vD = 0 AND q = 0.)
Assume (v, p) the solution of [1] smooth enough in time and space, well-prepared ini-
tial conditions and for (VPPr,ε), small enough parameters such that 4r(Re + ε) ≤ 1

and 4c(Ω)
√

Re rε ≤
√

δt, c(Ω) being the Poincaré constant, then there exists C =
C(Ω, T, Re, f ,v0, e

0, π0) > 0 such that we have for all n ∈ N with (n + 1)δt ≤ T ,

(i-VPPr,ε) ||en+1||20 + εδt ||πn+1||20 +
n

∑

k=0

δt

Re
||∇ek+1||20 ≤ C

(

δt2 + ε2δt
3

2

)

,

(ii-VPPr,ε)

n
∑

k=0

δt ||πk+1||20 ≤ C
(

δt2 + ε2δt
)

, ||∇en+1||20 ≤ C Re2
(

δt + ε2
)

,

(iii-VPPr,ε)

n
∑

k=0

δt ||∇· vk+1||20 =

n
∑

k=0

δt ||∇· ek+1||20 ≤ C (δt + ε) εδt2.

(iii-VPPε)
n

∑

k=0

δt ||∇· vk+1||20 =
n

∑

k=0

δt ||∇· ek+1||20 ≤ C

(

1 +
ε2

δt
5

2

+
ε

δt

)

εδt.

3. Generalizations of (VPPr,ε) methods for outflow BC or variable density flows

It is straightforward to write the above (VPP) methods with a higher-order scheme,
e.g. the usual second-order Gear scheme (BDF2) as in [KHA 00, JOB 06].

1) (VPPr,ε) methods for incompressible and variable density flows
By omitting here the convection term and with q = 0 for sake of shortness, the vector
prediction and correction steps in section 2.2 are naturally modified as follows:

%n+1 − %n

δt
+ ∇· (%n+1vn) = 0

%n+1 ṽn+1 − vn

δt
− ∇· µn+1

(

∇ṽn+1 + (∇ṽn+1)T
)

− r∇
(

∇· ṽn+1
)

+ ∇pn = fn+1

ε

(

%n+1 v̂n+1

δt
− ∇· µn+1

(

∇v̂n+1 + (∇v̂n+1)T
)

)

− ∇
(

∇· v̂n+1
)

= ∇
(

∇· ṽn+1
)

.

It is thus clear that the velocity correction v̂ becomes quasi-independent on the density
% and viscosity µ as ε → 0, see section 4, which is not the case for scalar projection
methods. These terms can be then dropped in practical algorithms for small enough ε.

2) (VPPr,ε) methods for open boundary conditions on a part ΓN of Γ
For a given stress vector (σ(v, p)· n)|ΓN

≡ −pn + µ
(

∇v + (∇v)T
)

· n = g, we
now get to satisfy both the Neumann and Dirichlet velocity boundary conditions:

ṽn+1 = vn+1
D on ΓD, −pn n + µn+1

(

∇ṽn+1 + (∇ṽn+1)T
)

· n = gn+1 on ΓN

v̂n+1 = 0 on ΓD, −(p̃n+1 − pn)n + µn+1
(

∇v̂n+1 + (∇v̂n+1)T
)

· n = 0 on ΓN .
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4. Numerical experiments with the finite volume MAC scheme

The (VPPr,ε) methods are implemented with a Navier-Stokes finite volumes solver
on the staggered MAC mesh of size h issued from previous works; see [KHA 00]. The
first test case is the unsteady Green-Taylor vortex such that the mean steady velocity
field is of order 1 at Re=100 like in [CAL 99]. The scheme is O(δt) in time for velo-
city and pressure with r ≥ 10−3, i.e. for rRe = O(1), see Figure 1, whereas it is also
O(h2) in space as in [CAL 99]. Moreover, we find that the L2-norm of the velocity di-
vergence varies like O(εδt), as expected by the theory; see Theorem 2.1. However, the
pressure does not seem to converge for r < 10−3, unless performing inner iterations
as for the augmented Lagrangian which is not our goal. This is somewhat deceptive
since we should expect convergence for smaller values of r in order to degrade the
conditioning of the prediction step at the very least. The second benchmark problem
is the Rayleigh-Bénard natural convection inside a square differentially heated verti-
cal cavity at Ra = 105, the vertical walls being isothermal and the horizontal walls
insulating. Here, we study the convergence properties of the penalty-correction step
for this sharp test case at t = 2δt with δt = 1. Again, we get the convergence of the
velocity divergence as O(εδt), whatever the viscosity term included in the penalty-
correction step and also for µ = 0. We can reach the machine precision of 10−15 for
double precision floating point computations. Besides, the solution of the penalty-
correction step proves to be all the cheaper as εδt tends to zero: typically one or two
iterations of a preconditioned gradient algorithm, e.g. the ILU-BiCGStab solver, are
sufficient for εδt ≤ 10−6 and the condition number of the operator (preconditioned
or not) also becomes more and more quasi-independent on the spatial mesh size h.
Hence, the central issue for the proposed scheme is that the linear system associated
with the projection step can be solved very easily because of the specific form of the
right-hand side. Indeed, this latter lies more and more in the image of the left-hand
side operator as ε is taken smaller and smaller; see the projection step in section 2.2.
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Figure 1. LEFT: (VPPr,ε) velocity and pressure convergence in time for the Green-
Taylor vortex at Re = 100, t = 10 - h = 1/128, ε = 10−4 with ||∇· vn||L2 = O(ε).
RIGHT: Convergence of the velocity correction step - divergence L2-norm δ as O(ε)
- for the natural convection at Ra=105 and t=2δt with δt=1, h=1/256 – µ=0 or
1.85 10−5 (idem) and µ=1.85 10−1.
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5. Perspectives

The generalization of the (VPPr,ε) methods for low Mach number dilatable flows
in the same spirit of what was done in [JOB 07] is the subject of a future work. More-
over, their extension to more general vector problems for fictitious domain methods
with immersed moving and/or deformable interfaces, e.g. multiphase flows, particu-
late flows or fluid-structure interaction problems, is an undergoing project.
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