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HOCHSCHILD HOMOLOGY INVARIANTS OF KÜLSHAMMER TYPE

OF DERIVED CATEGORIES

ALEXANDER ZIMMERMANN

Herrn Klaus W. Roggenkamp zum 70. Geburtstag

Abstract. For a perfect field k of characteristic p > 0 and for a finite dimensional sym-
metric k-algebra A Külshammer studied a sequence of ideals of the centre of A using the
p-power map on degree 0 Hochschild homology. In joint work with Bessenrodt and Holm
we removed the condition to be symmetric by passing through the trivial extension alge-
bra. If A is symmetric then the dual to the Külshammer ideal structure was generalised
to higher Hochschild homology in earlier work [23]. In the present paper we follow this
program and propose an analogue of the dual to the Külshammer ideal structure on the
degree m Hochschild homology theory also to not necessarily symmetric algebras.

Introduction

Let k be a perfect field of characteristic p > 0 and let A be a finite dimensional k-
algebra. For a symmetric algebra A Külshammer introduced in [14] a descending sequence
of ideals Tn(A)⊥ of the centre of A satisfying various interesting properties. In [6] Héthelyi,
Horváth, Külshammer and Murray continued to study this sequence of ideals, proved their
invariance under Morita equivalence, and showed further properties linked amongst others to
the Higman ideal of the algebra. In order to show these properties Külshammer introduced
a sequence of mappings ζn : Z(A) −→ Z(A) with image being Tn(A)⊥. In a completely dual
procedure he introduced mappings κn : A/KA −→ A/KA again in case A is symmetric.
These mappings encode many representation theoretic informations, in particular in case
A is a group algebra. The reader may refer to Külshammer’s original articles [14] and [15]
for more details. Moreover, in a recent development it could be proved in [22] that these
mappings actually are an invariant of the derived category of A. This fact could be used to
distinguish derived categories in very subtle situations, such as some parameter questions for
blocks of dihedral or semidihedral type in joint work with Holm [10], such as very delicate
questions to distinguish two families of symmetric algebras of tame domestic representation
type by Holm and Skowroński [9], or in joint work with Holm [11] to distinguish derived
equivalence classes of deformed preprojective algebras of generalised Dynkin type, as defined
by Bia lkowski, Erdmann and Skowroński [3] (modified slightly for type E; cf [5, page 238])
with respect to different parameters. Most recently in joint work [17] with Yuming Liu and
Guodong Zhou we gave a version which is invariant under stable equivalences of Morita
type. This approach gives a link to Auslander’s conjecture on the invariance of the number
of simple modules under stable equivalences of Morita type. König, Liu and Zhou [13]
continued the work with focus being higher Hochschild and cyclic homology invariants.

In joint work with Bessenrodt and Holm [2] we could get rid of the assumption that A
needs to be symmetric for the definition of the images of ζn. We used the trivial extension
algebra TA of A, computed the image of ζn for TA and interpreted the result purely in
terms of A. The derived invariant Külshammer’s ideal structure of the centre of A becomes
available for any finite dimensional algebra over perfect fields of positive characteristic.
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Since the centre of the algebra is the degree 0 Hochschild cohomology and A/KA is the 0-
degree Hochschild homology, it is natural to try to understand the Külshammer construction
for higher degree Hochschild (co-)homology. Denote by HHm(A) the m-degree Hochschild
cohomology of A and by HHm(A) the m-degree Hochschild homology of A. We defined

in [23] for a symmetric algebra A certain mappings κ
(m);A
n : HHpnm(A) −→ HHm(A) in

completely analogous manner as Külshammer’s κn. Moreover we showed that κ
(0);A
n = κn,

and proved its derived invariance as well (cf Theorem 1 below).

In Definition 1 of Section 2 we propose a mapping κ̂
(m);A
n , denoted also κ̂

(m)
n if no confusion

may occur, in analogy of κ
(m);A
n for algebras which are not necessarily symmetric. Further,

we prove that κ̂
(m)
n is invariant under a derived equivalence: If F : Db(A) ≃ Db(B) is a

standard equivalence then it induces coherent isomorphisms of Hochschild homology groups

HHm(F ) : HHm(A) −→ HHm(B) and we get HHm(F ) ◦ κ̂
(m);A
n = κ̂

(m);B
n ◦HHpnm(F ) for

all positive integers m and n.
Finally we give an elementary example in order to illustrate that these invariants are

computable and to show that they are not trivial.
The paper is organised as follows. In Section 1.1 we recall some known facts about

Hochschild (co-)homology. In Section 1.2 the known constructions concerning Külshammer
ideals in degree 0 for symmetric and non symmetric algebras, using trivial extension algebras
are recalled, as well as the m-degree Hochschild cohomology generalisation for symmetric
algebras. Section 1.3 recalls that Hochschild homology is functorial, a statement which is
used at a prominent point in our construction. In Section 2 finally we provide a Külshammer
mapping for not necessarily symmetric algebras and higher Hochschild homology. We show

in Theorem 2 that the new mapping κ̂
(m)
n is an invariant of the derived category. Section 3

is devoted to a detailed computation of an example.

Acknowledgement: Part of this work was done in October 2007 during a visit at
Beijing Normal University and Nanjing Normal University. I wish to express my gratitude
to Changchang Xi and to Jiaqun Wei for their invitation and their kind hospitality.

1. Setup of the basic tools

1.1. Hochschild homology and cohomology. Recall some well-known facts from Hoch-
schild (co-)homology. We refer to Loday [18] for a complete presentation of this theory. Let
A be a finitely generated k-algebra for a commutative ring k, and suppose A is projective
as k-module. Then for every A⊗k A

op-module M we define the Hochschild homology of A
with values in M as

HHn(A,M) := TorA⊗kA
op

n (A,M)

and Hochschild cohomology of A with values in M as

HHn(A,M) := ExtnA⊗kAop(A,M).

Often and frequently throughout the paper, for a k-algebra R we abbreviate Re := R⊗kR
op.

There is a standard way to compute Hochschild (co-)homology by the bar resolution. We
recall its definition in order to set up the notations.

The bar complex BA is given by

(BA)n := A(⊗k)
n+1

:= A⊗k A⊗k · · · ⊗k A
︸ ︷︷ ︸

n+1 factors

and differential

d(a0 ⊗ . . . an) =

n−1∑

j=0

(−1)ja0 ⊗ · · · ⊗ aj−1 ⊗ ajaj+1 ⊗ aj+2 ⊗ · · · ⊗ an.
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One observes that d2 = 0, that (BA)n is a free A ⊗k A
op-module for every n > 0 and that

the complex (BA, d) is a free resolution of A as a A⊗kA
op-module, called the bar resolution.

Hence,

HHn(A,M) ≃ Hn(BA⊗A⊗Aop M) and HHn(A,M) ≃ Hn(HomA⊗Aop(BA,M)).

Moreover, the bar complex is functorial in the sense that whenever f : A −→ B is a
homomorphism of k-algebras, then

(BA)n ∋ a0 ⊗ · · · ⊗ an 7→ f(a0)⊗ · · · ⊗ f(an) ∈ BB

induces a morphism of complexes BA −→ BB.

1.2. The Külshammer ideals; constructions and their Hochschild generalisation.

We recall the constructions introduced by Külshammer in [14] and [15] as well as their gener-
alisation introduced in [23] to higher degree Hochschild cohomology and their generalisations
to 0-degree Hochschild cohomology for not necessarily symmetric algebras.

1.2.1. The Külshammer ideal theory for algebras which are symmetric. Let k be a perfect
field of characteristic p > 0 and let A be a k-algebra. Then

KA :=< ab− ba | a, b ∈ A >k−space

is a Z(A)-module and for all n ∈ N

Tn(A) := {x ∈ A | xp
n

∈ KA}

is a Z(A) submodule of A. If A is symmetric with symmetrising form

< , >: A⊗k A −→ k

taking orthogonal spaces, since KA⊥ = Z(A), Tn(A)⊥ is an ideal of Z(A).
Given an equivalence of triangulated categories of standard type (cf Section 1.2.2 below)

Db(A) −→ Db(B) between two symmetric k-algebras A and B, Rickard showed in [20] that
this equivalence induces an isomorphism Z(A) ≃ Z(B) and if k is a perfect field, it is shown
in [22] that Tn(A)⊥ is mapped by this isomorphism to Tn(B)⊥.

Moreover A is symmetric if and only if A ≃ A∗ := Homk(A, k) as A ⊗k Aop-modules.

Since we supposed k to be perfect the Frobenius map is invertible and let k ∋ λ 7→ λp−1

∈ k
be its inverse. Denote the n-th iterate by p−n :=

(
p−1

)n
. Since A/KA ∋ b 7→ bp ∈ A/KA

is a well-defined additive mapping, semilinear with respect to the Frobenius mapping, one
defines an element in Homk(A, k) by

a 7→
(

b 7→< a, bp
n

>p−n
)

and so for every a ∈ Z(A) there is a unique element ζn(a) ∈ A so that

< a, bp
n

>=< ζn(a), b >pn ∀ b ∈ A.

Similarly, using that Z(A)⊥ = KA, one gets a mapping κn : A/KA −→ A/KA satisfying

< ap
n

, b >=< a, κn(b) >pn ∀ a ∈ Z(A), b ∈ A/KA.

In [23] this construction was generalised to a structure on Hochschild homology which
is invariant under equivalences of derived categories. More precisely, let A be a symmetric
finite dimensional k-algebra for k a perfect field of characteristic p > 0. Then, denoting by
BA the bar resolution of A and Ae = A⊗k A

op,

Homk(BA⊗Ae A, k) ≃ HomAe(BA,Homk(A, k)) ≃ HomAe(BA,A)

and so
Homk(HHm(A,A), k) ≃ HHm(A,A)

which induces a non degenerate pairing

< , >m: HHm(A,A) ×HHm(A,A) −→ k .
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By a construction analogous to the one for the pairing

< , >: Z(A)×A/KA −→ k

one gets a mapping
κ(m);A
n : HHpnm(A,A) −→ HHm(A,A)

denoted simply by κ
(m)
n if no confusion may occur, satisfying

< zp
n

, x >pnm=
(

< z, κ(m)
n (x) >m

)pn

for all x ∈ HHpnm and z ∈ HHm(A,A).

1.2.2. On derived equivalences and Hochschild (co-)homology. In [23] we studied invari-
ance properties of these mappings with respect to equivalences between derived categories.
Rickard showed in [20] that whenever A and B are k-algebras over a field k, and when-
ever Db(A) and Db(B) are equivalent as triangulated categories, then there is a complex
X ∈ Db(B ⊗k A

op) so that X ⊗L

A − : Db(A) −→ Db(B) is an equivalence. Such an equiv-
alence is called of standard type and X is called a two-sided tilting complex. It is shown
in [20] that every equivalence of triangulated categories Db(A) −→ Db(B) coincides with a
suitable standard one on objects.

A tilting complex T is a complex in Kb(A), the homotopy category of bounded com-
plexes of projective A-modules, satisfying HomDb(A)(T, T [i]) = 0 for all i 6= 0, and add(T )

generates Kb(A) as triangulated category. Two k-algebras A and B have equivalent de-
rived categories Db(A) and Db(B) if and only if there is a tilting complex T in Db(A) with
endomorphism ring B. Given an equivalence Db(B) −→ Db(A), the image of the regular
B-module is a tilting complex. Hence, by the above, for every tilting complex T in Db(A)
there is a two-sided tilting complex X in Db(A⊗k B

op) so that X ≃ T in Db(A).
Let FX = X⊗L

A− : Db(A) −→ Db(B) be an equivalence of derived categories with quasi-

inverse Y ⊗L− (cf Rickard [20]). If A is symmetric, then B is symmetric as well (cf [21] for
general base rings, and [20] for fields) and

X ⊗L

A −⊗
L

A Y : Db(A⊗k A
op) −→ Db(B ⊗k B

op)

is an equivalence again. This equivalence induces an isomorphism

HH∗(FX) : HH∗(A) −→ HH∗(B)

made explicit in [23]. Recall the precise mapping, defined on the level of complexes, which
will be needed later.

BA⊗A⊗kAop (X ⊗B Y ) −→ (Y ⊗A BA⊗A X)⊗B⊗kBop B

u⊗ (x⊗ y) 7→ (y ⊗ u⊗ x)⊗ 1

Then HH∗(FX) is the mapping induced on the homology.
We recall one of the main results of [23]. This result will be one of our main ingredients

in the proof of Theorem 2.

Theorem 1. [23] Let A be a finite dimensional symmetric k-algebra over the perfect field k
of characteristic p > 0. Let B be a second algebra such that Db(A) ≃ Db(B) as triangulated
categories, and let m ∈ N. Then, there is a standard equivalence F : Db(A) ≃ Db(B),
and any such standard equivalence induces an isomorphism HHm(F ) : HHm(A,A) −→
HHm(B,B) of all Hochschild homology groups, satisfying

HHm(F ) ◦ κ(m),A
n = κ(m),B

n ◦HHpnm(F ) .

We take the opportunity to mention that in [23] in the statement of the theorem the
condition on the field k to be perfect is unfortunately missing. However, this was a general
assumption throughout [23].
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1.2.3. Trivial extension of an algebra; the Külshammer ideal theory in the general case. Let
k be a commutative ring and let A be a k-algebra. Then Homk(A, k) is an A⊗kA

op-module
by the action

((a, b) · f) (x) := (a · f · b)(x) := f(bxa) ∀a, x ∈ A; b ∈ Aop; f ∈ Homk(A, k).

Now, the k-vector space
TA := A⊕Homk(A, k)

becomes a k-algebra by putting

(a, f) · (b, g) := (ab, ag + fb) ∀a, b ∈ A; f, g ∈ Homk(A, k) .

Then

A
ιA−→ TA

a 7→ (a, 0)

is a ring homomorphism. Moreover {0} ⊕ Homk(A, k) is a two-sided ideal of TA and the
canonical projection

TA
πA−→ A

(a, f) 7→ a

is a splitting for ιA; i.e. πA ◦ ιA = idA. The algebra TA is always symmetric via the bilinear
form

TA⊗k TA ∋< (a, f); (b, g) > 7→ f(b) + g(a) ∈ k

which induces, for k a field and A finite dimensional over k, an isomorphism

TA −→ Homk(TA, k)

(a, f) 7→ ((b, g) 7→ f(b) + g(a))

of TA⊗k TA
op-modules.

In the joint paper [2] with Bessenrodt and Holm it is shown that the Külshammer ideals
satisfy

Tn(TA)⊥ = {0} ⊕AnnHomk(A,k)(Tn(A))

for all n ≥ 1, and therefore for all n ≥ 1 the Z(A)-modules AnnHomk(A,k)(Tn(A)) are
invariants under derived equivalences.

Remark 1.1. It should be noted that for algebras A which are already symmetric, via
the symmetrising form < , > we get an isomorphism of vector spaces λ : Z(A) −→
Homk(A/KA, k). Now, every linear form on A equals a form of the shape < z,− > for
some z ∈ Z(A) and so

λ−1(AnnHomk(A,k)(Tn(A))) = {z ∈ Z(A) | < z, Tn(A) >= 0} = Tn(A)⊥.

We find back our original result.

1.3. Relating Hochschild homology of an algebra and of its trivial extension. Let
R and S be k-algebras and let α : R −→ S and β : S −→ R be algebra homomorphisms.
Then it is well-known (cf e.g. Loday [18, Chapter 1, Section 1.1.4]) that Hochschild homology
is functorial, i.e. α and β induce mappings

HH∗(α) : HH∗(R) −→ HH∗(S) and HH∗(β) : HH∗(S) −→ HH∗(R)

so that
HH∗(idR) = idHH∗(R) as well as HH∗(β) ◦HH∗(α) = HH∗(β ◦ α).

In particular in case of the mappings ιA : A −→ TA and πA : TA −→ A from an algebra A
to its trivial extension TA we get induced mappings giving a split projection

HHn(πA) : HHn(TA) −→ HHn(A)

and a split injection
HHn(ιA) : HHn(A) −→ HHn(TA).
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This can be defined on the level of complexes. As seen in Section 1.1 the algebra homo-
morphism α : R −→ S induces a morphism of complexes

Bα : BR −→ BS

(x0 ⊗ · · · ⊗ xn) 7→ (α(x0)⊗ · · · ⊗ α(xn))

and likewise for β : S −→ R. Also on the complex computing Hochschild homology an
analogous morphism of complexes is defined by

BR⊗Re R −→ BS ⊗Se S

(x0 ⊗ · · · ⊗ xn)⊗ xn+1 7→ (α(x0)⊗ · · · ⊗ α(xn))⊗ α(xn+1)

and likewise for β. Its homology induces a mapping H∗Bα : HH∗(R) −→ HH∗(S) which is
easily seen to be HH∗(α) obtained above.

In particular in our situation

H∗BπA ◦H∗BιA = idBA⊗AeA

and it is clear that

H∗BπA = HH∗(πA) as well as H∗BιA = HH∗(ιA).

We reproved the following proposition which was obtained in a much larger context and
generality, and much more sophisticated methods, by Cibils, Marcos, Redondo and Solotar
in [4, Theorem 5.8].

Proposition 1. [4, Theorem 5.8] Let k be a field and let A be a k-algebra. Then the
canonical embedding A −→ TA induces a canonical embedding of HH∗(A) as a direct factor
of HH∗(TA).

2. Külshammer-like Hochschild invariants for non symmetric algebras

Let k be a perfect field of characteristic p > 0 and let A be a k-algebra. Recall from
Section 1.2.1 that in case A is symmetric, we defined in [23] mappings

κ(m)
n : HHpnm(A) −→ HHm(A)

satisfying
(

< x, κ(m)
n (y) >m

)pn

=< xp
m

, y >pnm ∀ x ∈ HHm(A); y ∈ HHpnm(A).

We should mention that the pairing < , >m is defined only on the (co-)homology of finite
dimensional symmetric algebras by the isomorphism

BA⊗Ae A ≃ Homk(Homk(BA⊗Ae A, k), k) ≃ Homk(HomAe(BA,A), k)

whose homology gives an isomorphism

HH∗(A) ≃ Homk(HH∗(A), k) .

Observe that the double dual is the identity for finite dimensional vector spaces only, and
hence here we use the fact that finite dimensional algebras have projective bimodule reso-
lutions with finite dimensional homogeneous components.

Definition 1. Let A be a finite dimensional (not necessarily symmetric) k-algebra. Then
put

κ̂(m);A
n := HHm(πA) ◦ κ(m);TA

n ◦HHpnm(ιA)

We shall prove now that the invariant κ̂
(m)
n is an invariant of the derived category of A

in the same sense as it was proved for symmetric algebras (cf Theorem 1).
Rickard showed in [19] that an equivalence between the derived categories of two k-

algebras induces an equivalence between the derived categories of their trivial extension
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algebras. We need the following improvement of his result, which seems to be of interest in
its own right.

Proposition 2. Let A and B be finite dimensional k algebras and let T be a tilting complex
in Db(A) with endomorphism ring B.

(1) (Rickard [19]) Then TA ⊗A T is a tilting complex in Db(TA) with endomorphism
ring TB.

(2) Let X be a two-sided tilting complex in Db(TA ⊗k TB) so that TA ⊗A T ≃ X in
Db(TA). Then A⊗TAX and X⊗TBB are two-sided tilting complexes in Db(A⊗kB).
Moreover, T ≃ A⊗TA X.

Proof. Let T be a tilting complex in Db(A) with endomorphism ring B. Then by Rickard’s
theorem [19, Corollary 5.4] the complex TA ⊗A T is a tilting complex in Db(TA) with
endomorphism ring TB. By Keller’s theorem [12] there is a two-sided tilting complex X in
Db(TA⊗k TB

op) so that TA|X ≃ TA⊗A T .
Now,

HomDb(A)(A⊗TA X,A⊗TA X) = HomDb(A)(A⊗TA TA|X,A ⊗TA TA|X)

≃ HomDb(A)(A⊗TA TA⊗A T,A⊗TA TA⊗A T )

≃ HomDb(A)(T, T )

≃ B

as rings. But, we know that TB acts on A⊗TAX by multiplication on the right. Hence, we
get a ring homomorphism

TB −→ HomDb(A)(A⊗TA X,A⊗TA X).

Since we have seen that the endomorphism ring of A⊗TAX is isomorphic to B, the mapping

TB −→ HomDb(A)(A⊗TA X,A⊗TA X)

factorises through the canonical projection TB −→ B. Hence, the action of TB on A⊗TAX
has B∗ in the kernel.

Now, the TB⊗kTB
op-module structure of HomDb(A)(A⊗TAX,A⊗TAX) is the following.

The action of TB on the first argument gives the TB-action from the left on HomDb(A)(A⊗TA

X,A⊗TA X) and the action of TB on the right comes from the action of TB on the second
argument. Both have the degree 2 nilpotent ideal B∗ in the kernel and so, the natural action
of TB ⊗k TB

op is actually an action of B ⊗k B
op.

Therefore,
HomDb(A)(A⊗TA X,A⊗TA X) ≃ B

as B ⊗k B
op-modules.

Hence A⊗TA X is invertible from the left in the sense that

HomDb(A)(A⊗TA X,A⊗TA X) ≃ HomA(A⊗TA X,A) ⊗A (A⊗TA X) ≃ B

as B ⊗k B
op-modules.

We still need to show that A ⊗TA X is invertible from the right as well. Since TA and
TB are both symmetric, and since X is a two-sided tilting complex in Db(TA⊗k TB

op), its
inverse complex is given by its k-linear dual Homk(X, k) =: X̌ . We claim that X̌ ⊗TA A is
a right inverse of A⊗TA X. Indeed, by the previous paragraph, we see that TB acts on the
right of A ⊗TA X via the projection TB −→ B, i.e. the nilpotent ideal B∗ is in the kernel
of this action. Analogously, the same holds for X̌ ⊗TA A. Hence, the tensor product over
TB equals the tensor product over B only.

(A⊗TA X)⊗B (X̌ ⊗TA A) ≃ (A⊗TA X)⊗TB (X̌ ⊗TA A)

≃ A⊗TA (X ⊗TB X̌)⊗TA A

≃ A⊗TA TA⊗TA A

≃ A
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as A⊗k A
op-modules.

As a consequence A⊗TAX is a two-sided tilting complex with restriction to the left being
T . Moreover, it is clear that πA will map X to A⊗TA X.

Theorem 2. Let k be a perfect field of characteristic p > 0, let A and B be finite dimen-
sional k-algebras and suppose that Db(A) ≃ Db(B) as triangulated categories. Let F be an
explicit standard equivalence between Db(A) and Db(B). Then, F induces a sequence of
isomorphisms HHm(F ) : HHm(A) −→ HHm(B) so that

HHm(F ) ◦ κ̂(m);A
n = κ̂(m);B

n ◦HHpnm(F ).

Proof. Let T be a tilting complex in Db(A) with endomorphism ring B and let X be a two-
sided tilting complex in Db(TA⊗k TB

op) with TA⊗A T ≃ X in Db(TA). By Proposition 2
we get A⊗TA X is a two-sided tilting complex in Db(A⊗k B).

We now use Theorem 1:

HHm(FX ) ◦ κ(m);TA
n = κ(m);TB

n ◦HHpnm(FX).

Multiplying with HHpnm(ιA) from the right and with HHm(πB) from the left gives then

HHm(πB)◦HHm(FX)◦κ(m);TA
n ◦HHpnm(ιA) = HHm(πB)◦κ(m);TB

n ◦HHpnm(FX)◦HHpnm(ιA).

We now claim that

HHpnm(FX) ◦HHpnm(ιA) = HHpnm(ιB) ◦HHpnm(FA⊗TAX)

and
HHm(πB) ◦HHm(FX) = HHm(FA⊗TAX) ◦HHm(πA).

Recall from Section 1.2.2 how HHm(FX) is defined. Then, the commutativity relation
will be proven as soon as we have that the diagrams

(
X̌ ⊗TA B(TA)⊗TA X

)
⊗(TB)e TB ←− BTA⊗(TA)e (X ⊗TB X̌)

↑ HH(ιB) HH(ιA) ↑
(
(X̌ ⊗TA A)⊗A BA⊗A (A⊗TA X)

)
⊗Be B ←− BA⊗Ae ((A⊗TA X)⊗B (X̌ ⊗TA A))

as well as
(
X̌ ⊗TA B(TA)⊗TA X

)
⊗(TB)e TB ←− BTA⊗(TA)e (X ⊗TB X̌)

↓ HH(πB) HH(πA) ↓
(
(X̌ ⊗TA A)⊗A BA⊗A (A⊗TA X)

)
⊗Be B ←− BA⊗Ae ((A⊗TA X)⊗B (X̌ ⊗TA A))

are commutative.
We use the canonical isomorphisms

(X̌ ⊗TA A)⊗A BA⊗A (A⊗TA X) ≃ X̌ ⊗TA BA⊗TA X

and
BA⊗Ae (A⊗TA X ⊗B X̌ ⊗TA A) ≃ BA⊗(TA)e (X ⊗TB X̌),

which proves that we only need to show that the diagrams
(
X̌ ⊗TA B(TA)⊗TA X

)
⊗(TB)e TB ←− BTA⊗(TA)e (X ⊗TB X̌)

↑ HH(ιB) HH(ιA) ↑
(
X̌ ⊗TA BA⊗TA X

)
⊗Be B ←− BA⊗(TA)e (X ⊗TB X̌)

and (
X̌ ⊗TA B(TA)⊗TA X

)
⊗(TB)e TB ←− BTA⊗(TA)e (X ⊗TB X̌)

↓ HH(πB) HH(πA) ↓
(
X̌ ⊗TA BA⊗TA X

)
⊗Be B ←− BA⊗(TA)e (X ⊗TB X̌)

are commutative. But this is clear since the unit element of TB (and of TA resp.) is the
image of the unit element of B (and of A resp.) under ι.

Hence the claim is proven.
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This implies now

HHm(FA⊗TAX) ◦ κ̂(m);A
n = HHm(FA⊗TAX) ◦HHm(πA) ◦ κ(m);TA

n ◦HHpnm(ιA)

= HHm(πB) ◦HHm(FX) ◦ κ(m);TA
n ◦HHpnm(ιA)

= HHm(πB) ◦ κ(m);TB
n ◦HHpnm(FX) ◦HHpnm(ιA)

= HHm(πB) ◦ κ(m);TB
n ◦HHpnm(ιB) ◦HHpnm(FA⊗TAX)

= κ̂(m);B
n ◦HHpnm(FA⊗TAX)

which proves Theorem 2.

3. Dual numbers as an example

It should be noted that the mappings κ
(m)
n are not zero in general. The dual numbers

provide an example. In this section we shall show this fact and prove moreover that κ
(n)
m =

κ̂
(n)
m in this case.

Holm computed the cohomology ring of rings k[X]/(f(X)) for all polynomials f(X) and
all fields k. In particular for f(X) = X2 one obtains a symmetric algebra, the algebra of dual
numbers, whose Hochschild homology and cohomology are isomorphic. For fields of char-
acteristic zero Lindenstrauss [16] computed in general the Hochschild homology of algebras
k[X1, . . . ,Xn]/mm for m being the maximal ideal corresponding to the point (0, 0, . . . , 0) by
exhibiting an explicit projective resolution.

We shall reprove parts of these statements since we will need quite detailed information
about the (co-)cycles that represent each element in the Hochschild structure.

Let A = k[ǫ]/(ǫ2) throughout this section and let k be a field of characteristic p > 0.

Lemma 3. TA ≃ A⊗k A.

Proof. Clearly, since A is commutative, also TA is commutative. Moreover, there is a k-
basis A = k·1⊕k·ǫ and since A is symmetric, the symmetrising form being 〈x+yǫ, x′+y′ǫ〉 :=
xy′ + x′y, we get a K-basis of TA = A∗ ×A by

TA = k · (〈1,−〉, 0) ⊕ k · (〈ǫ,−〉, 0) ⊕ k · (〈0,−〉, 1) ⊕ k · (〈0,−〉, ǫ).

Let δ := (〈1,−〉, 0), σ := (〈ǫ,−〉, 0), ε := (〈0,−〉, ǫ) and 1 := (〈0,−〉, 1) (remarking that
this is still the unit element of the trivial extension algebra). We verify immediately that
ε2 = δ2 = 0. Furthermore, ε · δ = δ · ε = σ. Hence, TA is the quotient of the quiver algebra
with one vertex and two loops by the relations saying that the two loops are nilpotent of
order 2 and that they commute. This describes exactly the algebra A⊗k A.

Remark 3.1. If p = 2, then A is isomorphic to the group algebra of the cyclic group of
order 2. Then A⊗k A

op is isomorphic to the group algebra of the Klein four group and the
Hochschild cohomology ring is known. Holm showed [8, Theorem 3.2.1] that in this case

HH∗(A⊗k A
op) ≃ A[X,Y ]

where X and Y are algebraically independent of degree 1.

For any p > 0 we know how to determine the Hochschild homology in this more general
case as well by the Künneth formula. Indeed,

HH∗(A⊗k A) ≃ HH∗(A)⊗k HH∗(A)

by the Künneth formula.
We have to study the injection

HH∗(A) −→ HH∗(TA) ≃ HH∗(A⊗K A) ≃ HH∗(A)⊗K HH∗(A)
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given by the isomorphism TA ≃ A⊗K A, the injection A −→ TA and the Künneth formula,
as well as the projection

HH∗(A)⊗k HH∗(A) ≃ HH∗(A⊗k A) ≃ HH∗(TA) −→ HH∗(A).

The algebra A is symmetric and hence

Homk(HHm(A), k) ≃ HHm(A)

by an isomorphism induced by the symmetrising bilinear form. Therefore there is a non
degenerate pairing

HHm(A)×HHm(A) −→ K

as usual.

Remark 3.2. The algebra A⊗A is the quotient of the quiver algebra with one vertex and
two loops by the relations saying that the two loops are nilpotent of order 2 and that they
commute. Hence, we may replace any loop by a non trivial linear combination of these two
loops, completing by another linear combination of the two loops so that the determinant
of the coefficient matrix is non zero. Hence, we may suppose that the inclusion A −→ TA is
given by the inclusion A −→ A⊗A defined by a 7→ 1⊗ a. Indeed, the Hochschild homology
computation by means of the corresponding double complex does not depend on the choice
of a basis.

BACH [1] and Holm [7] computed an explicit resolution of bimodules for a monogenic
algebra, such as the dual numbers. Abbreviate for simplicity A = K[ǫ]/ǫ2 (as usual) and
A2 := A⊗k A. Then a free resolution C of A is periodic of period 2 and is given by

C : (A←−)A2 d1←− A2 d2←− A2 d1←− A2 d2←− A2 ←− · · ·

where d1 is multiplication by 1⊗ ǫ− ǫ⊗ 1 and d2 is multiplication by 1⊗ ǫ + ǫ⊗ 1.
Applying the functor −⊗A2 A gives a complex

A
(d1)⊗
←− A

(d2)⊗
←− A

(d1)⊗
←− A

(d2)⊗
←− A←− . . .

with (d1)⊗ = 0 and (d2)⊗ = 2ǫ.
Now, applying the functor HomA2(−, A) gives a complex HomA2(C,A)

. . . −→ A
(d1)h
−→ A

(d2)h
−→ A

(d1)h
−→ A

(d2)h
−→ A

where again (d1)h = 0 and (d2)h = 2ǫ.
The Künneth formula gives that the tensor product of the cohomology is the cohomology

of the tensor product

H (HomA2(C,A) ⊗HomA2(C,A)) = H (HomA2(C,A)) ⊗H (HomA2(C,A)) .

We observe that

HomA2(C,A) ⊗HomA2(C,A) ≃ HomA2⊗A2(C ⊗ C,A ⊗A)

and this is the complex computing the Hochschild cohomology of A ⊗k A, and whence for
TA.

As usual the Hochschild (co-)homology depends on weather p = 2 or p > 2. Our ar-
guments use the explicit structure of the Hochschild (co-)homology and therefore we shall
need to treat these two cases separately.
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3.1. The case p > 2. Holm [7] shows that

HH∗(A) ≃ A[U,Z]/(Zǫ,Uǫ, U2)

for an element U in degree 1 and an element Z in degree 2. Hence HHm(A) is one-
dimensional, generated by Zn if m = 2n or UZn if m = 2n + 1, for m > 0 and isomorphic
to A in degree 0.

We may therefore choose for each n ∈ N \ {0} an element zn in HH2n(A) which cor-
responds to Zn in HH∗(A) under the above isomorphism and we get HH2n(A) = kzn.
Moreover, choose an element uzn ∈ HH2n+1(A) which corresponds to UZn under the above
isomorphism. Hence, HH2n+1(A) = kuzn.

Observe that

(HH∗(A) ⊗HH∗(A))∗ ≃ HH∗(A)∗ ⊗HH∗(A)∗ ≃ HH∗(A)⊗HH∗(A)

where the first isomorphism is canonical and the second one is induced by the isomorphism
HH∗(A)∗ ≃ HH∗(A). Hence using this chain of isomorphisms we choose the k-basis

xiyj in bidegree (2i, 2j) of HH2i+2j(A⊗A),

xivyj in bidegree (2i + 1, 2j) of HH2i+1+2j(A⊗A),

xiyjw in bidegree (2i, 2j + 1) of HH2i+2j+1(A⊗A),

xivyjw in bidegree (2i + 1, 2j + 1) of HH2i+1+2j+1(A⊗A),

which is the dual basis element to the corresponding monomial in XiY j , the monomial
XiV Y j , the monomial XiY jW or the monomial XiV Y jW of HH∗+∗(A ⊗ A) under that
isomorphism. The p-th power of all these basis elements is zero, except the element XiY j,
whose p-th power is XpiY pj.

The (minimal) projective resolution of A2 used above can most easily be expressed as a
double complex C ⊗ C, as was shown above.

A2 ←− A2 ←− A2 ←− A2 ←− A2 ←−
↑ ↑ ↑ ↑ ↑

A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←−
↑ ↑ ↑ ↑ ↑ ↑
A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←−
↑ ↑ ↑ ↑ ↑ ↑
A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←−
↑ ↑ ↑ ↑ ↑ ↑
A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←− A2 ⊗A2 ←−
↑ ↑ ↑ ↑ ↑ ↑

In order to view the image of zn ∈ HH2n(A) in HH2n(TA) we need to first establish the
multiplicative structure of HH∗(A⊗A) in terms of maps in the double complex.

The element X is the degree (2, 0) mapping consisting of the identity on all homogeneous
components except on the borders of this bi-complex, and the element Y is the degree (0, 2)
mapping identity on all homogeneous components except on the borders of this bi-complex.

The element V is the degree (1, 0) mapping consisting of ǫ ⊗ 1 in all degrees, except on
the borders of the bi-complex, where it is 0. Likewise the element W is the degree (0, 1)
mapping consisting of ǫ ⊗ 1 in all degrees, except on the borders of the bi-complex, where
it is 0.

We claim that the element XiY j is represented by the degree (2i, 2j) mapping consisting
of the identity on all homogeneous components except on the borders of this bi-complex.
The proof of this statement is an easy induction on i and j. Actually, the composition of a
morphism of bi-complexes of degree (2i, 2j) of the given shape by a morphism of complexes
of degree (2, 0), or (0, 2) respectively, corresponds to a morphism of bi-complexes of degree
(2(i + 1), 2j), or (2i, 2(j + 1)) respectively. This corresponds to the cup product of XiY j

with X, or Y respectively.
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The element XiV Y j is represented by the degree (2i + 1, 2j) mapping consisting of the
mapping (ǫ⊗ id)⊗ (id⊗ id) on all homogeneous components except on the borders of this
bi-complex. Likewise the element XiY jW is represented by the degree (2i, 2j + 1) mapping
consisting of the mapping (id ⊗ id) ⊗ (ǫ⊗ id) and the element XiV Y jW is represented by
the degree (2i + 1, 2j + 1) mapping consisting of the mapping (ǫ⊗ id)⊗ (ǫ⊗ id).

The cup product on HH∗(A) is similar: Z corresponds to the degree 2 mapping being the
identity on all homogeneous of C, except the degree 0 and degree 1 component, where the
mapping clearly is 0. Now, again by an analogous induction as in the bi-complex case, the
element Zn corresponds to the degree 2n mapping being the identity on all homogeneous of
C, except the degrees up to 2n−1 component, where the mapping clearly is 0. The element
U corresponds to the degree 1 mapping ǫ⊗ 1 in all degrees except the degree 0, where it is
0. The cup product with Zn is just an additional shift in degree, the cup product of U with
U is 0, since (ǫ⊗ 1)2 = 0.

We now need to compare this mapping to the dual of the Hochschild homology side.
Hence, we dualise the bi-complex and the cocycle representing XiY j. This just reverses the
arrows, identifying again A∗ with A. The dual of the cocycle XiY j can also be obtained
by first applying HomA2⊗A2(−, A2) to the double complex and then K-dualising the result.
We obtain the double complex DHH(A2).

. . . . .
↑ ↑ ↑ ↑ ↑

. ←− A2 0
←− A2 ←− A2 0

←− A2 ←− A2 ←−
↑ 0 ↑ 0 ↑ 0 ↑ 0 ↑ 0

. ←− A2 0
←− A2 ←− A2 0

←− A2 ←− A2 ←−
↑ ↑ ↑ ↑ ↑

. ←− A2 0
←− A2 ←− A2 0

←− A2 ←− A2 ←−
↑ 0 ↑ 0 ↑ 0 ↑ 0 ↑ 0

. ←− A2 0
←− A2 ←− A2 0

←− A2 ←− A2 ←−
↑ ↑ ↑ ↑ ↑

which now represents exactly the complex computing Hochschild homology of A⊗A. Half of
the arrows represent the 0-morphism, the rest, without a side- or superscript in the diagram,
represent the mapping 2ǫ. The cycle representing Xn is the 2n-th mapping identity in the
upper line. The complex computing the Hochschild homology of A is simpler:

CHH(A) : A
0
←− A←− A

0
←− A←− A

0
←− · · ·

with the same convention on non superscribed arrows.
The injection A −→ A⊗A ≃ TA maps a 7→ 1⊗ a and the projection A⊗A −→ A maps

a⊗ b 7→ ab. Hence, the projective resolution P• of A as A2-modules maps to the projective
resolution P•⊗P• of A2 as A2⊗A2-modules as x 7→ 1⊗x. The second degree component is
0, except in degree 0, where it is constantly 1⊗1. Hence, the Hochschild homology complex
of A injects by the identity into the first line of the Hochschild homology (double-) complex
of A2. In other words, the injection produces the mapping of complexes from CHH(A) to the
first line of the bi-complex DHH(A2) by the mapping A ∋ a 7→ 1⊗ a ∈ A⊗A on the level of
each homogeneous component.

Likewise, the projection produces a mapping of complexes in the inverse order, which
compose to the identity on CHH(A). Hence zn is mapped to xn for all n > 0 and znu is
mapped to xnv for all n > 0.

Finally, since p is odd, pnm is odd if and only if m is odd. We proved the following

Proposition 4. Let k be a perfect field of characteristic p > 2. Then κ̂
(m),k[ǫ]/ǫ2

n = κ
(m),k[ǫ]/ǫ2

n

for all n and m. Moreover, κ
(m)
n (zpnm) = zm and κ

(m)
n (zpnm−1u) = 0.
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3.2. The case p = 2. The case of even characteristic is completely analogous, with a few
exceptions. The generator Z of HH∗(A) is in degree 1, Z is not annihilated by ǫ, and the
differentials for the homology and the cohomology complex are all 0. The Hochschild coho-
mology ring does only contain nilpotency coming from the centre. The rest is immediate.

Proposition 5. Let k be a perfect field of characteristic 2. Then κ̂
(m),k[ǫ]/ǫ2
n = κ

(m),k[ǫ]/ǫ2
n

for all n and m. Moreover, κ
(m)
n (zpnm) = zm for all m and n.

Proof. The proof is a straightforward analogue of the proof in the p > 2-case.
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Algebras and Related Topics, Skowroński (ed.), Series of Congress Reports, European Mathematical
Society Publishing House Zürich 2008.
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