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NORMAL SINGULARITIES WITH TORUS ACTIONS

ALVARO LIENDO AND HENDRIK SÜSS

Abstract. We propose a method to compute a desingularization of a normal affine variety
X endowed with a torus action in terms of a combinatorial description of such a variety
due to Altmann and Hausen. This desingularization allows us to study the structure of the
singularities of X. In particular, we give criteria for X to have only rational, (Q-)factorial,
or (Q-)Gorenstein singularities. We also give partial criteria for X to be Cohen-Macaulay or
log-terminal.

Finally, we provide a method to construct factorial affine varieties with a torus action. This

leads to a full classification of such varieties in the case where the action is of complexity one.
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Introduction

The theory of singularities on toric varieties is well established. All toric singularities are log-
terminal and thus rational and Cohen-Macaulay. Furthermore, there are explicit combinatorial
criteria to decide if a given toric variety is (Q-)factorial or (Q-)Gorenstein, see [Dai02]. In this
paper we elaborate the analog criteria for more general varieties admitting torus actions.

Let X be a normal variety endowed with an effective torus action. The complexity of this
action is the codimension of the maximal orbits. By a classic theorem of Sumihiro [Sum74] every
point x ∈ X posses an affine open neighborhood invariant under the torus action. Hence, local
problems can be reduced to the affine case.

There are well known combinatorial descriptions of normal T-varieties. We refer the reader
to [Dem70] and [Oda88] for the case of toric varieties, to [KKMS73, Ch. 2 and 4] and [Tim08]
for the complexity one case, and to [AH06, AHS08] for the general case.

2010 Mathematics Subject Classification: 14J17, 14E15.
Key words: torus actions, T-varieties, characterization of singularities, toroidal desingularization.
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2 A. LIENDO AND H. SÜSS

Let us fix some notation. We let k be an algebraically closed field of characteristic 0, M be
a lattice of rank n, and T be the algebraic torus T = Spec k[M ] ≃ (k∗)n. A T-variety X is
a variety endowed with an effective algebraic action of T . For an affine variety X = SpecA,
introducing a T -action on X is the same as endowing A with an M -grading.

We let NQ = N ⊗Q, where N = Hom(M,Z) is the dual lattice ofM . Any affine toric variety
can be described via a polyhedral cone σ ⊆ NQ. Similarly, the combinatorial description of
normal affine T-varieties due to Altmann and Hausen [AH06] involves the data (Y, σ,D) where
Y is a normal semiprojective variety, σ ⊆ NQ is a polyhedral cone, and D is a polyhedral divisor
on Y i.e., a divisor whose coefficients are polyhedra in NQ with tail cone σ.

The normal affine variety corresponding to the data (Y, σ,D) is denoted by X [D]. The con-

struction involves another normal variety X̃[D], which is affine over Y , and a proper birational

morphism r : X̃[D] → X [D], see Section 1 for more details.
This description is not unique. In Section 2, we show that for every T-variety X there exists

a polyhedral divisor D such that X = X [D] and X̃[D] is a toroidal variety. Hence, the morphism

r : X̃ [D] → X [D] is a partial desingularization of X having only toric singularities. Moreover,

a desingularization of X̃ [D] can be obtained via toric methods and thus also a desingularization
of X [D], see Construction 2.8.

LetX be a normal variety and let ψ : Z → X be a desingularization. Usually, the classification
of singularities involves the higher direct images of the structure sheaf Riψ∗OZ . In particular,
X has rational singularities if Riψ∗OZ = 0 for all i ≥ 1, see e.g., [Art66, Elk78]. In section
3 we compute the higher direct image sheaves Riψ∗OZ for a T-variety X [D] in terms of the
combinatorial data and we give a criterion for X [D] to have rational singularities.

A well known theorem of Kempf [KKMS73, p. 50] states that a variety X has rational
singularities if and only if X is Cohen-Macaulay and the induced map ψ∗ : ωZ →֒ ωX is an
isomorphism. In Proposition 3.7 we apply Kempf’s Theorem to give a partial characterization
of T-varieties having Cohen-Macaulay singularities.

Invariant T -divisors were studied in [PS08]. In particular, a description of the class group,
and a representative of the canonical class of X [D] are given. In Section 4 we use this results to
state necessary and sufficient conditions for X [D] to be (Q-)factorial or (Q-)Gorenstein in terms
of the combinatorial data. Furthermore, in Theorem 4.7 we apply the partial desingularization
obtained in Section 2 to give a criterion for X [D] to have log-terminal singularities.

In [Wat81] some of the results in Sections 3 and 4 were proved for a 1-dimensional torus action
on X . Our results can be seen as the natural generalization of these results of Watanabe, see
also [FZ03, Section 4].

In Section 5 we specialize our results in Sections 3 and 4 for a T-variety X [D] of complexity
one. In this case, the variety Y in the combinatorial data is a smooth curve. This make the
criteria more explicit. In particular, if X [D] has Q-Gorenstein or rational singularities, then Y
is either affine or the projective line.

Finally, in Section 6 we provide a method to construct factorial T-varieties based on the
criterion for factoriality given in Proposition 4.5. In the case of complexity one, this method
leads to a full classification of factorial quasihomogeneous T-varieties analogous to the one given
in [HHS09]. A common way to show that an affine variety is factorial is to apply the criterion of
Samuel [Sam64] or the generalization by Scheja and Storch [SS84]. However, for the majority of
the factorial varieties that we construct with our method these criteria do not work.

In the entire paper the term variety means a normal integral scheme of finite type over an
algebraically closed field k of characteristic 0.
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1. Preliminaries

First, we fix some notation. In this paper N is always a lattice of rank n, andM = Hom(N,Z)
is its dual. The associated rational vector spaces are denoted by NQ := N⊗Q andMQ :=M⊗Q.
Moreover, σ ⊆ NQ is a pointed convex polyhedral cone, and σ∨ ⊆ MQ is its dual cone. Let
σ∨
M := σ∨ ∩M be the semigroup of lattice points inside σ∨.
We consider convex polyhedra ∆ ⊆ NQ admitting a decomposition as Minkowski sum ∆ =

Π+ σ with a compact polyhedron Π ⊆ NQ; we refer to σ as the tail cone of ∆ and refer to ∆ as
a σ-polyhedron. We denote the set of all σ-polyhedra by Polσ(NQ). With respect to Minkowski
addition, Polσ(NQ) is a semigroup with neutral element σ.

We are now going to describe affine varieties with an action of the torus T = Spec k[M ]. Let Y
be a normal variety, which is semiprojective, i.e. projective over an affine variety. Fix a pointed
convex polyhedral cone σ ⊆ NQ. A polyhedral divisor on Y is a formal finite sum

D =
∑

Z

∆Z · Z,

where Z runs over the prime divisors of Y and the coefficients ∆Z are all σ-polyhedra with
∆Z = σ for all but finitely many of them.

For every u ∈ σ∨
M we have the evaluation

D(u) :=
∑

Z

min
v∈∆Z

〈u, v〉 · Z,

which is a Q-divisor living on Y . This defines an evaluation map D∨ : σ∨ → DivQ Y , which is
piecewise linear and the loci of linearity are (not necessarily pointed) subcones of σ∨. Hence, D∨

defines a quasifan which subdivides σ∨. We call it the normal quasifan of D.
We call the polyhedral divisor D on Y proper if the following conditions hold:

(i) The divisor D(u) has a base point free multiple for u ∈ σ∨
M .

(ii) The divisor D(u) is big for u ∈ relintσ∨ ∩M .

By construction, every polyhedral divisor D on a normal variety Y defines a sheaf A[D] of
M -graded OY -algebras and its ring A[D] of global sections:

A[D] :=
⊕

u∈σ∨

M

O(D(u)) · χu, A[D] := H0(Y,A[D]).

Now suppose that D is proper. Theorem 3.1 in [AH06] guarantee that A[D] is a normal

affine algebra. Thus, we obtain an affine varieties X := X [D] := SpecA[D] and X̃ := X̃[D] :=

SpecY A[D]. Both varieties X and X̃ come with an effective action of the torus T = Spec k[M ]

and there is a proper birational morphism r : X̃ → X . Moreover, by definition of X̃ there is an

affine morphism q : X̃ → Y and the composition

π := q ◦ r−1 : X 99K Y

is a rational map defined outside a closed subset of codimension at least 2.
Note that there is a natural inclusion A[D] ⊂

⊕
u∈M K(Y ) ·χu which gives rise to a standard

representation f · χu with f ∈ K(Y ) and u ∈M for every semi-invariant rational function from
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K(X) = K(X̃). With this notation the rational map π is given by the natural inclusion of
function field

K(Y ) ⊂ K(X) = Quot (
⊕

uK(Y ) · χu) .

By Theorem 3.4 in [AH06], every normal affine variety with an effective torus action arises
from a proper polyhedral divisor.

Example 1.1. Letting N = Z2 and σ = pos((1, 0), (1, 6)), in NQ = Q2 we consider the σ-
polyhedra ∆0 = conv((1, 0), (1, 1)) + σ, ∆1 = (−1/2, 0) + σ, and ∆1 = (−1/3, 0) + σ.

Let Y = P1 so that K(Y ) = k(t), where t is a local coordinate at zero. We consider the
polyhedral divisor D = ∆0 · [0] +∆1 · [1] +∆∞ · [∞], and we let A = A[D] and X = Spec A. An
easy calculation shows that the elements

u1 = χ(0,1), u2 =
t− 1

t2
χ(2,0), u3 =

(t− 1)2

t3
χ(3,0), and u4 =

(t− 1)3

t5
χ(6,−1)

generate A as an algebra. Furthermore, they satisfy the irreducible relation u32 − u23 + u1u4 = 0,
and so

A ≃ k[x1, x2, x3, x4]/(x
3
2 − x23 + x1x4) .

For a polyhedral divisor D and a (not necessarily closed) point y ∈ Y we define the slice of D
at y by Dy :=

∑
Z⊃y ∆Z . Note, that via DZ we may recover the polyhedral coefficients of D.

We want to describe the exceptional divisor of the morphism X̃[D] → X [D]. In general on
a T-variety the two types of prime divisors. Prime divisors of horizontal type consist of orbit
closures of dimension dimN − 1 and prime divisors of vertical type of orbit closures of dimension
dimN . Note, that a generic point on a vertical prime divisor has a finite isotropy group, while
on a horizontal prime divisor every point has infinite isotropy.

Let ρ ∈ σ(1) be a ray of the tail cone. We call it an extremal ray of D if D(u) is big for

u ∈ relint(σ∨ ∩ ρ⊥). The set of extremal rays is denoted by D×. For a vertex v ∈ D
(0)
Z we

consider the smallest natural number µ(v) such that µ(v) · µ is a lattice point. A vertex v is
called extremal if D(u)|Z is big for every u from the interior of the normal cone

N (∆Z , v) = {u | ∀w∈∆ : 〈u,w − v〉 > 0} .

The set of extremal vertices in DZ is denoted by D×
Z .

Theorem 1.2 (Prop. 3.13, [PS08]). For the invariant prime divisors on X̃[D] there are bijections

(i) between rays ρ in σ(1) and vertical prime divisors Ẽρ of X̃ [D].
(ii) between pairs (Z, v), where Z is a prime divisor on Y and v is a vertex in DZ , and

horizontal prime divisors D̃Z,v of X̃[D].
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Via this correspondences the non-exceptional invariant divisor of X̃[D] → X [D], and therefore
the invariant divisors Dρ, DZ,v on X [D] correspond to the elements of ρ ∈ D× or v ∈ D×

Z ,
respectively.

For a semi-invariant function f · χu the corresponding invariant principal divisor on X [D] is

(1)
∑

Z,v

µ(v)(〈u, v〉 + ord f) ·DZ,v +
∑

ρ

〈u, nρ〉 · Eρ.

Hence, for the pullback of a prime divisor Z on Y to X̃ [D] or X [D], respectively, we obtain

q∗Z =
∑

v∈D
(0)
Z

µ(v) · D̃Z,v, π∗Z =
∑

v∈D×

Z

µ(v) ·DZ,v.

2. Toroidal desingularization

The combinatorial description of affine T-varieties in Section 1 is not unique. The following
Lemma is a specialization of Corollary 8.12 in [AH06]. For the convenience of the reader, we
provide a short argument.

Lemma 2.1. Let D be a proper polyhedral divisor on a normal variety Y . Then for any projective

birational morphism ψ : Ỹ → Y the variety X [D] is equivariantly isomorphic to X [ψ∗D].

Proof. We only need to show that

H0(Y,OY (D(u))) ≃ H0(Ỹ ,OỸ (ψ
∗D(u))), for all u ∈ σ∨

M .

We let r be such that rD(u) is Cartier ∀u ∈ σ∨
M . By Zariski’s main theorem ψ∗OỸ = OY and

by the projection formula, for all u ∈ σ∨
M we have

H0(Y,OY (D(u))) ≃
{
f ∈ k(Ỹ ) : f r ∈ H0(Ỹ ,OỸ (ψ

∗rD(u)))
}
= H0(Ỹ ,OỸ (ψ

∗D(u))) .

�

In the previous Lemma, X̃ = X̃ [D] is not equivariantly isomorphic to X̃[ψ∗D], unless ψ is an
isomorphism.

Definition 2.2. We define the support of a proper polyhedral divisor as

suppD =
{
Z prime divisor | DZ 6= σ or D×

Z 6= D
(0)
Z

}
.

We say that D is an

(i) SNC polyhedral divisor if D is proper, Y is smooth, and suppD is a simple normal
crossing (SNC) divisor,

(ii) completely ample if D(u) is ample for every u ∈ relintσ∨.

Remark 2.3. The above notion of complete ampleness has the following geometric interpretations.
D is completely ample iff Y equals the Chow quotient X [D]//T and X [D] has a trivial GIT
chamber decomposition, i.e. there is exactly one GIT quotient of expected dimension. Hence,
the existence of a completely ample polyhedral divisor is a quite restrictive condition for a T-
variety.

In the case of complexity one i.e., when Y is a curve, any proper polyhedral divisor is SNC
and completely ample.

Corollary 2.4. For any T-variety X there exists an SNC polyhedral divisor on a smooth variety
Y such that X = X [D].
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Proof. Let D′ be proper polyhedral divisor on a normal variety Y ′ such that X = SpecX [D′]. Let
ψ : Y → Y ′ be a resolution of singularities of Y such that suppψ∗D′ is SNC. By Chow Lemma
we can assume that Y is semiprojective. By Lemma 2.1, D = ψ∗D′ is an SNC polyhedral divisor
such that X = X [D]. �

Now we elaborate a method to effectively compute an equivariant partial desingularization of
an affine T-variety in terms of the combinatorial data (Y,D). A key ingredient for our results is
the following example (Cf. Example 3.19 in [Lie08]).

Example 2.5. Let Hi, i ∈ {1, . . . , n} be the coordinate hyperplanes in Y = An, and let D be
the SNC divisor on Y given by

D =
n∑

i=0

∆i ·Hi, where ∆i ∈ Polσ(NQ) .

For the function field of Y we have K(Y ) = k(t1, . . . , tn) and we obtain

H0(Y,OY (D(u))) =
{
f ∈ k(Y ) | div(f) +D(u) ≥ 0

}

=

{
f ∈ k(Y ) | div(f) +

n∑

i=1

min
v∈∆i

〈u, v〉 ·Hi ≥ 0

}

=
⊕

ri≥−hi(u)

k · tr11 · · · trnn .

Let N ′ = N × Zn, M ′ = M × Zn and σ′ be the Cayley cone in N ′
Q, i.e. the cone spanned by

(σ, 0) and (∆i, ei), ∀i ∈ {1, . . . , n}, where ei is the i-th vector in the standard base of Qn. A
vector (u, r) ∈M ′ belongs to the dual cone (σ′)∨ if and only if u ∈ σ∨ and ri ≥ −hi(u).

With these definitions we have

A[D] =
⊕

u∈σ∨

M

H0(Y,OY (D(u))) =
⊕

(u,r)∈(σ′)∨∩M ′

k · tr11 · · · trnn ≃ k[(σ′)∨ ∩M ′] .

Hence X [D] is isomorphic as an abstract variety to the toric variety with cone σ′ ⊆ N ′
Q. Since

Y is affine X̃ ≃ X is also a toric variety.

Recall [KKMS73] that a variety X is toroidal if for every x ∈ X there is a formal neighborhood
isomorphic to a formal neighborhood of a point in an affine toric variety.

Proposition 2.6. Let D =
∑

Z ∆Z ·Z be a proper polyhedral divisor on a semiprojective normal

variety Y . If D is SNC then X̃ = X̃[D] is a toroidal variety.

Proof. For y ∈ Y we consider the fiber Xy over y for the morphism ϕ : X̃ → Y . We let also Uy

be a formal neighborhood of Xy.
We let n = dimY and

Sy = {Z prime divisor | y ∈ Z and ∆Z 6= σ} .

Since suppD is SNC, we have that card(Sy) ≤ n. Letting j : Sy → {1, . . . , n} be any injective
function, we consider the smooth σ-polyhedral divisor

D′
y =

∑

Z∈Sy

∆Z ·Hj(Z), on An .

Since Y is smooth, Uy is isomorphic to a formal neighborhood of the fiber over zero for the

canonical morphism π′ : X̃[D′
y] = SpecAn Ã[D′

y] → An. Finally, Example 2.5 shows that X̃[D′
y]

is toric for all y and so X is toroidal. This completes the proof. �
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Remark 2.7. Proposition 2.6 holds in the less restrictive case where only

{Z prime divisor | DZ 6= σ}

is SNC. The definition of suppD given in Definition 2.2 will be useful in Section 4.

Since the morphism ϕ : X̃[D] → X [D] is proper and birational, to obtain a desingularization

of X it is enough to have a desingularization of X̃. If further D is SNC, then X̃ is toroidal and
there exists a toric desingularization. Indeed, in this case we can give a description in terms of

polyhedral divisors of the desingularization of X̃.

Construction 2.8. Let D be an SNC polyhedral divisor on Y and {Ui}i∈I an open affine
covering of Y such that the components of Ui ∩ suppD meet in (at least) a common point yi for
every i ∈ I. It is not hard to see, that the polyhedral divisors Di := D|Ui

give an open affine

covering of {X [Di]}i of X̃[D]. Moreover, the singularities ofX [Di] are toric and correspond to the
Cayley cone from example 2.5. Let Si be a set of simply normal crossing prime divisors having
intersection yi ∈ Ui and containing the prime divisors of Ui ∩ suppD. We set N ′ = N × ZSi

coming with canonical basis elements eZ .
The Cayley cone σi is now the cone generated by ∆Z × {eZ} for Z ∈ Si and σ × {0}. The

intersections of σi with the linear subspaces NZ := NQ × 〈eZ〉 results in cones isomorphic to

σZ := conv (σ × {0}+∆Z × {1}) ⊂ NQ ×Q.

and the intersection with the affine subspace N × {eZ} results in an polyhedron isomorphic to
∆Z . We will use these isomorphisms below.

We fix a toric projective desingularization ΣZ of σZ , such that the induced desingularization
of σ = σZ ×NQ are the same. Now for every Cayley cone σi there exists a desingularization Σi

which is spanned by the desingularizations of the facets {σZ}Z∈Si
. For a cone τ ∈ Σi we define

the polyhedral divisor Dτ
i =

∑
Z∈Si

(τ ∩∆z) · Z. An open affine covering of a desingularization

of X [D] is now given by
{X [Dτ

i ] | i ∈ I, τ ∈ Σi} .

Note, that the polyhedral divisors Dτ
i form a so-called divisorial fan, which is a non-affine

generalization of a polyhedral divisor similar to the passage from cones to fans in toric geometry.
For details see [AHS08].

3. Higher direct images sheaves

In this section we apply the partial desingularization ϕ : X̃[D] → X [D] to compute the higher
direct images of the structure sheaf of any desingularizationW of X [D]. This allows us to provide
information about the singularities of X in terms of the combinatorial data (Y,D). We recall
the following notion.

Definition 3.1. A variety X has rational singularities if there exists a desingularization ψ :
W → X , such that

ψ∗OW = OX , and Riψ∗OW = 0, ∀i > 0 .

The sheaves Riψ∗OW are independent of the particular choice of a desingularization of X .
The first condition ψ∗OW = OX is equivalent to X being normal.

The following well known lemma follows by applying the Leray spectral sequence. For the
convenience of the reader we provide a short argument.

Lemma 3.2. Let ϕ : X̃ → X be a proper surjective, birational morphism, and let ψ : W → X

be a desingularization of X. If X̃ has only rational singularities, then

Riψ∗OW = Riϕ∗OX̃ , ∀i ≥ 0 .
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Proof. We may assume that the desingularization ψ is such that ψ = ϕ ◦ ψ̃, where ψ̃ :W → X̃ is

a desingularization of X̃. The question is local on X , so we may assume that X is affine. Then,
by [Har77, Ch. III, Prop. 8.5] we have1

Riψ∗OW = Hi(W,OW )∼ and Riϕ∗OX̃ = Hi(X̃,OX̃)∼, ∀i ≥ 0 .

Since X̃ has rational singularities

ψ̃∗OW = OX̃ , and Riψ̃∗OW = 0, ∀i > 0 .

By Leray spectral sequence for (p, q) = (i, 0) we have

Hi(W,OW ) = Hi(X̃, ψ̃∗OW ) = Hi(X̃,OX̃), ∀i ≥ 0 ,

proving the Lemma. �

In the following theorem for a T-variety X = X [D] and a desingularization ψ : W → X we
provide an expression for Riψ∗OZ in terms of the combinatorial data (Y,D).

Theorem 3.3. Let X = X [D], where D is an SNC polyhedral divisor on Y . If ψ :W → X is a
desingularization, then for every i ≥ 0, the higher direct image Riψ∗OW is the sheaf associated
to ⊕

u∈σ∨

M

Hi(Y,O(D(u)))

Proof. Let ψ : W → X be a desingularization of X . Consider the proper birational morphism

ϕ : X̃ := X̃ [D] → X . By Lemma 2.6 X̃ is toroidal, thus it has only toric singularities which are
rational [Dai02]. By Lemma 3.2 we have

Riψ∗OW = Riϕ∗OX̃ , ∀i ≥ 0 .

Since X is affine, we have

Riϕ∗OX̃ = Hi(X̃,OX̃)∼, ∀i ≥ 0 ,

see [Har77, Ch. III, Prop. 8.5]. Letting Ã = Ã[D] =
⊕

u∈σ∨

M
OY (D(u)) we let π be the affine

morphism π : X̃ = SpecY Ã→ Y . Since the morphism π is affine, we have

Hi(X̃,OX̃) = Hi(Y, Ã) =
⊕

u∈σ∨

M

Hi(Y,OY (D(u))), ∀i ≥ 0

by [Har77, Ch III, Ex. 4.1], proving the Theorem. �

As an immediate consequence of Theorem 3.3, in the following theorem, we characterize T-
varieties having rational singularities.

Theorem 3.4. Let X = X [D], where D is an SNC polyhedral divisor on Y . Then X has rational
singularities if and only if for every u ∈ σ∨

M

Hi(Y,OY (D(u))) = 0, ∀i ∈ {1, . . . , dimY } .

Proof. Since X is normal, by Theorem 3.3 we only have to prove that
⊕

u∈σ∨

M

Hi(Y,OY (D(u))) = 0, ∀i > 0

This direct sum is trivial if and only if each summand is. Hence X has rational singularities if
and only if Hi(Y,OY (D(u))) = 0, for all i > 0 and all u ∈ σ∨

M .
Finally, Hi(Y,F ) = 0, for all i > dimY and for any sheaf F , see [Har77, Ch III, Th. 2.7].

Now the Lemma follows. �

1As usual for a A-module M , M∼ denotes the associated sheaf on X = SpecA.
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In particular, we have the following corollary.

Corollary 3.5. Let X = X [D] for some SNC polyhedral divisor D on Y . If X has only rational
singularities, then the structure sheaf OY is acyclic i.e., Hi(Y,OY ) = 0 for all i > 0.

Proof. This is the “only if” part of Theorem 3.4 for u = 0. �

Recall that a local ring is Cohen-Macaulay if its Krull dimension is equal to its depth. A
variety is Cohen-Macaulay if all its local rings are. The following lemma is well known, see for
instance [KKMS73, page 50].

Lemma 3.6. Let ψ : W → X be a desingularization of X. Then X has rational singularities if
and only if X is Cohen-Macaulay and ψ∗ωW ≃ ωX

As in Lemma 3.2, applying the Leray spectral sequence shows that the previous Lemma is
still valid if we allow W to have rational singularities. In the next proposition, we give a partial
criterion as to when a T-variety is Cohen-Macaulay.

Proposition 3.7. Let X = X [D], where D is a proper polyhedral divisor on Y . If D× = σ(1),

and D×
Z = D

(0)
Z , for all prime divisor Z ∈ Y , then X is Cohen-Macaulay if and only if X has

rational singularities.

Proof. By Theorem 1.2, the contraction ϕ : X̃ → X is an isomorphism in codimension 1. Thus
ϕ∗ωX̃ ≃ ωX . The result now follows from Lemma 3.6. �

For isolated singularities we can give a full classification whenever rankN ≥ 2.

Corollary 3.8. Let X = X [D], where D is an SNC polyhedral divisor on Y . If rankN ≥ 2
and X has only isolated singularities, then X is Cohen-Macaulay if and only if X has rational
singularities.

Proof. We only have to prove the “only if” part. Assume that X is Cohen-Macaulay and let
ψ : W → X be a resolution of singularities. Since X has only isolated singularities we have that
Riψ∗OW vanishes except possibly for i = dimX − 1, see [Kov99, Lemma 3.3]. Now Theorem
3.3 shows that Riψ∗OW vanishes also for i = dimX − 1 since dim Y = dimX − rankM and
rankM ≥ 2. �

Remark 3.9. In [Wat81] a criterion of X to be Cohen-Macaulay is given in the case where
rankM = 1. In this particular case, a partial criterion for X to have rational singularities is
given.

4. Canonical divisors and discrepancies

In the following we will restrict to the case that Y is projective and σ has maximal dimension.
This corresponds to the fact, that there is a unique fixed point lying in the closure of all other
orbits. In particular, there is an embedding C∗ →֒ T inducing a good C∗-action on X . Hence,
the singularity at the vertex is quasihomogeneous.

We fix isomorphisms N = Zn and NumY := Div Y/
num
∼ ∼= Zr. While we write elements of

N as row vectors we will write elements of M = N∗ as well as elements of Num Y as column
vectors.

Lemma 4.1 (Prop. 3.1, [PS08]). If σ is full dimensional and Y projective then every invariant
Cartier divisor on X [D] is principal.
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Theorem 4.2 ([PS08], Cor. 3.15). The divisor class group of X [D] is isomorphic to

ClY ⊕
⊕

ρ

ZDρ ⊕
⊕

Z,v

ZDZ,v

modulo the relations

[Z] =
∑

v∈D×

Z

µ(v)DZ,v ,

0 =
∑

ρ

〈u, ρ〉Dρ +
∑

Z,v

µ(v)〈u, v〉DZ,v .

Corollary 4.3 ([PS08], Cor. 3.15). X [D] is Q-factorial if and only if

rankClY +
∑

Z

(#D×
z − 1) + #D× = dimN.

In particular Y has to have a finitely generated class group.

Proof. For Z /∈ suppD we have relations of the form Z = DZ,v, so after dividing them out we
remain with finitely many generators and finitely many equations. Lemma 4.6 given below shows
that the relations are linearly independent and that there at most rankClY +

∑
Z∈suppD #D×

Z +

#D× of them. �

Fix a canonical divisor KY =
∑

Z bZ ·Z on Y . Then by [PS08] a T -invariant canonical divisor

on X̃ [D] and X [D], respectively, is given by

KX̃ = q∗KY +
∑

v

(µ(v) − 1)Dv −
∑

ρ

Eρ,(2)

KX = π∗KY +
∑

v

(µ(v) − 1)Dv −
∑

ρ

Eρ

Here, the sums in the first formula run over all rays and vertices and in the second only over the
extremal ones.

Since X [D] has an attractive point, its Picard group is trivial. Hence, it is Q-Gorenstein of
index ℓ iff we find a character u ∈M and a principal divisor div(f) =

∑
Z aZ ·Z on Y . Such that

div(f · χu) = KX . This observation gives rise to the following system of linear equations. Here,
we assume that suppD ∪ suppKY = {Z1, . . . , Zs} and D×

Zi
= {v1i , . . . v

ri
i }. We set µi

j = µ(vij)

and denote the classes of Zi ∈ Num Y ∼= Zr by Zi.



Z1 Z2 . . . Zs 0
µ1
1 0 . . . 0 µ1

1v
1
1

...
...

...
...

µr1
1 0 . . . 0 µr1

1 v
r1
1

. . .

0 0 . . . µ1
s µ1

sv
1
s

...
...

...
...

0 0 . . . µrs
s µrs

s v
rs
s

0 0 . . . 0 n̺1

...
...

...
...

0 0 . . . 0 n̺r




·




a1
...
as
u


 =




0
µ1
1b1 + µ1

1 − 1
...

µr1
1 b1 + µr1

1 − 1

...
µ1
sbs + µ1

s − 1
...

µrs
s bs + µrs

s − 1
−1...
−1




(3)



NORMAL SINGULARITIES WITH TORUS ACTIONS 11

Proposition 4.4. X [D] is Q-Gorenstein of index ℓ if and only if the above system has a (unique)
solution u ∈ 1

ℓM and ℓ ·
∑s

i=1 ai · Zi is principal.

Note that the condition for Q-factoriality in Corollary 4.3 is equivalent to the fact that ClY
has finite rank and the matrix has square format. Moreover, for factoriality we get the following
stronger condition.

Proposition 4.5. X [D] is factorial iff Cl(Y ) ∼= Zℓ and the above matrix is square and has
determinant ±1.

Proofs. The propositions directly follow from the above considerations if the matrix is of maximal
rank. This is indeed the case as we show in Lemma 4.6 below. �

Lemma 4.6. The columns of the matrix A are linearly independent.

Proof. We choose a non-extremal ray ρ ∈ tailD and a maximal cone δ from the normal quasifan
of D, such that ρ⊥ ∩ δ is a facet, and we denote this facet by τ .

We have a linear map F : u 7→ D(u) ∈ Qr ∼= NumQ(Y ). Now we choose any interior element
w ∈ relint δ, hence D(u) is big by the properness of D. We consider the subspaces

V := V1 + V2 V1 := span (Z | D(w)|Z is not big) V2 := span (F (τ)).

We claim that F (w) /∈ V . The semi-ample and big divisor D(w) defines a birational morphism

ϕ : Y → Proj
⊕

i≥0

H0(Y, i · D(w)).

By definition ϕ∗D(u) is ample, hence big and ϕ contracts every prime divisor Z, such that D(u)|Z
is not big.

Let us assume that D(w) ∈ V . It follows that

ϕ∗D(w) ∈ ϕ∗(V ) = ϕ∗(V1) + ϕ∗(V2) = 0 + ϕ∗V2.

But since V2 does not contain any big class the same is true for ϕ∗V2, but this contradicts the
ampleness of ϕ∗D(w).

Now we choose a basis B of V and complement {D(w)} ∪B to get a basis of NumQ Y . This

leads to a coordinate map x1 : NumQ → Q corresponding to the basis element D(w). For every
Zi there is a vertex vi ∈ DZi

such that 〈w, ·〉 is minimized at this vertex. Now we sum up
the corresponding rows in the matrix with multiplicity x1(Zi)/µ(vi) (by choice of the matrix all
non-extremal vertices vi have x1(Zi) = 0) and get

(
x1(Z1), . . . , x1(Zr), vρ

)
.

Where, vρ :=
∑

i x1(Zi) · vi. By construction we have x1(F (u)) = 〈u, vρ〉 for u ∈ δ. Since
x1(F (u)) = 0 and x1(F (u+ αw)) = α for u ∈ τ and α > 0, it follows that vρ ∈ relintρ.

Now assume that
∑

i λici = 0, where ci are the columns of the matrix. Then for every
extremal ray ρ we get

∑n
i=1 λr+i · (nρ)i = 0, where (nρ)i denotes the i-th coordinate of the

primitive generator of ρ. Since
∑r

i=1 λi · Zi = 0 holds because of the first rows of the matrix we
get

∑n
i=1 λr+i · (vρ)i = 0 for every non-extremal ray of D. The fact that the tail cone tailD has

maximal dimension implies that λr+1, . . . , λr+n are zero.
Let us assume that the first r′ columns correspond to prime divisors with D×

Z 6= ∅. By con-
struction of the matrix these columns have staircase structure. Hence, the coefficients λ1, . . . , λr′

vanish. The remaining columns are of the form
(
Zi

0

)
. Since the sets of exceptional vertices D×

Zi
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are empty, D(u)|Zi
is not big for every u ∈ relintσ∨. Hence, the Zi are exceptional prime divisor

of the birational projective map

ϑu : Y → Proj



⊕

j≥0

Γ (Y,O(j · D(u)))


 .

In particular, their images in NumY are linearly independent, which completes the proof. �

Let us assume that X is Q-Gorenstein. Remember that, for a birational proper morphism

r : X̃ → X , we have a canonical divisor KX̃ on X̃ such that Discr(r) = KX̃ − r∗KX is supported
only at the exceptional divisor

∑
iEi. The coefficient of Discrr are called discrepancies of r.

The discrepancies of a pair (X,B), consisting of a normal variety and Q-Cartier divisor, are the
coefficients of Discr(r, B) := KX̃ − r∗(KX +B). With this notation we have

Discr(r′ ◦ r) = Discr(r′,−Discr(r)).

Consider an SNC polyhedral divisor D. Fix y ∈ Y and prime divisors Z1, . . . , Zn intersecting
transversally at y and containing the prime divisors of the support of ϕ∗D meeting y. From

section 2 we know that the formal neighborhood of every fiber X̃y of X̃[D] → Y is isomorphic
to that of of a closed subset of a toric variety corresponding to some cone σ′

y ∈ NQ ⊗ QdimY .

Moreover, the isomorphism identifies D̃Zi,v and V (Q≥0(v, ei)) as well as Eρ and V (ρ× 0).
Now we may calculate a representation KX = π∗H + div(χu) of the canonical divisor on X

by solving a system of linear equations as in proposition 4.4. Here, H =
∑

Z aZ ·Z is a principal

divisor on Y . Having such a representation we get the discrepancies of X̃ [D] → X [D] at D̃Z,v or

Ẽρ, respectively as

(4) discrZ,v = µ(v)(bZ − aZ − 〈u, v〉+ 1)− 1, discrρ = −1− 〈u, nρ〉.

We may also consider a toroidal desingularization ϕ : X → X̃[D], obtained by toric desingu-
larisations of the Xσ′

y
. Since the discrepancies discrZ,v vanish for Z /∈ suppD, the discrepancies

divisor on X̃ [D] corresponds to a toric divisor B ⊂ Xσ′
y
and we are able to calculate the discrep-

ancy divisor Discr(ϕ,B) by toric methods.
We say that X or (X,B), respectively, is log-terminal, if for a desingularization the discrep-

ancies are > −1. It’s an easily checked fact that a toric pair (Xσ, B) is log terminal as long as
B <

∑
ρ V (ρ) and B−

∑
ρ V (ρ) is Q-Cartier. We may argue as in the proof of [Fuj03, Lem. 5.1]:

Since KXσ
= −

∑
ρ V (ρ) the Q-divisor B +KXσ

corresponds to an element u ∈ MQ such that

〈u, nρ〉 < 0 for every ρ ∈ σ(1). But then the primitive generator nρ′ of a ray ρ′ in a subdivision
Σ of σ is a positive combinationation of primitive generators nρ of rays of σ. Hence, 〈u, nρ′〉 < 0
holds. But now we have discrV (ρ) = −1− 〈u, nρ′〉 > −1.

A Q-divisor B =
∑

Z bZ · Z is called a boundary divisor if for the coefficients we have 0 <

bZ ≤ 1. For a polyhedral divisor on Y we define the boundary divisor B :=
∑

Z
µZ−1
µZ

· Z on

Y ◦ := Y \
⋃

Z,D×

Z=∅ Z, where µZ is defined as max{µ(v) | v ∈ D×
Z }.

Theorem 4.7.

(i) If X [D] is log-terminal then there exists a boundary divisor B′ ≥ B, such that (Y ◦, B′) is
weakly log-Fano (but not necessarily complete). In particular, (Y ◦, B) is a log-terminal
pair and −(KY ◦ +B) is big.

(ii) Assume that D is completely ample and X [D] is Q-Gorenstein, then X [D] is log-terminal
if and only if (Y,B) is log-Fano.
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Proof. Let us choose a representation D =
∑

Z∈I ∆Z · Z, with I being a finite set of Cartier
divisors on Y .

Let KX = π∗H + div(χw) a representation as above. By (2) we have

(5) KY +B = π∗H +
∑

Z

〈w, vz〉 · Z,

here vZ ∈ D×
Z denotes the vertex where µ obtains its maximum.

For any ray ρ ∈ σ(1) the value 〈w, nρ〉 has to be negative because of the condition discrρ =
−1 − 〈w, nρ〉 > −1 for non-extremal rays or 〈w, nρ〉 = −1 for extremal rays, respectively. It
follows that −w ∈ relint(σ∨).

Now we consider the divisor B′ > B defined by

(6) KY +B′ = π∗H −D(−w) = π∗H +
∑

Z

〈w, v′z〉 · Z,

here v′Z denotes the vertices in DZ , where −w is minimized. Since D(−w) is semi-ample and big
this implies the weak Fano property for the pair (Y ◦, B′).

Now consider a birational proper morphism ϕ : Ỹ → Y . And denote X̃ [ϕ∗D] by X̃. Consider

a prime divisor E ⊂ Ỹ and denote by (ϕ∗Z)E the coefficient of ϕ∗Z at E. Note that v′E :=∑
Z(ϕ

∗Z)E · v′Z is a vertex in (ϕ∗D)E . If v
′
E is non-extremal, by (4) we get for the discrepancy

discrv′

E

discrv′

E
= µ(v′E)

(
(KỸ )E − (ϕ∗H)E − 〈w, v′E〉+ 1

)
− 1(7)

= µ(v′E)
(
(KỸ )E − ϕ∗(KY +B′)E + 1

)
− 1.

For the case that E is an exceptional divisor of ϕ this proves the log-terminal property for
(Y ◦, B′). If ϕ = id and E = Z is a prime divisor of Y and v′E = v′Z is non-extremal we obtain

B′
Z < 1. But, for v′Z extremal we have B′

Z =
µ(v′

Z )−1
µ(v′

Z ) < 1 by (2). Hence, B′ is indeed a boundary

divisor.
If D is completely ample all vertices are extremal. Hence, we have Y ◦ = Y and B′ = B.

Since, D(−w) is even ample this proves one direction of (ii) in the Theorem.
For the other direction we first show that the Fano property for (Y,B) implies that −w ∈ σ∨.

For extremal rays ρ ∈ D× we have 〈w, nρ〉 = −1 by (4). For a non-extremal ray ρ we consider
a maximal chamber of linearity δ ⊂ σ∨ such that τ = ρ⊥ ∩ δ is a facet. This corresponds to
a family of vertices vuZ such that D(u) =

∑
Z〈u, v

u
Z〉 · Z for u ∈ relint δ. Now there exists a

decomposition −w = α · u+ uτ such that uτ ∈ τ and u ∈ relint δ. Hence, we have

−KY −B ≤ −π∗H +
∑

Z

〈−w, vuZ〉 · Z ∼ D(uτ ) + αD(u).

By our precondition −KY − B is big. This implies that the right hand side is big, too. Then
we must have α > 0, since D(u) is big, but D(uτ ) is not. By 〈−w, nρ〉 = α · 〈u, nρ〉 we conclude

that 〈−w, nρ〉 > 0 and hence discrρ = −1 − 〈w, nρ〉 > −1 and −w ∈ σ∨. Let ϕ : Ỹ → Y be a
desingularization such that ϕ∗D is SNC. By equation (7) we infer that discvE > −1 for every
exceptional divisor E and every vertex vE ∈ (ϕ∗D)E . By lemma 4.9 this completes the proof. �

Remark 4.8. Let D be a proper polyhedral divisor on some projective variety Y . If Y is a curve,
or more general Y has Picard rank one or rankN = 1 the D is always completely ample. In
these cases we obtain a sufficient and necessary criterion for log-terminality.

As a special case of the theorem we recover the well known fact, that the log-terminal property
a section ring characterizes log-Fano varieties.
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Lemma 4.9. Let D be an SNC polyhedral divisor. Then X [D] is log-terminal iff the discrepancies

of ψ : X̃[D] → X [D] are all greater than −1.

Proof. The discrepancies of a toric map XΣ → Xσ and an invariant boundary divisor B <∑
ρ∈σ(1) V (ρ) are greater than −1. By the toroidal structure of X̃[D] and the considerations

above this implies that the discrepancies of a resolution ϕ ◦ ψ obtained as the composition of a

toroidal resolution ϕ of X̃ and ψ has discrepancies > −1. �

Corollary 4.10. Every Q-Gorenstein T-variety X of complexity c with singular locus of codi-
mension > c+ 1 is log terminal.

Proof. We may assume that X is affine. Given a SNC polyhedral divisor for X we consider an

exceptional divisors D̃Z,v, Ẽρ ⊂ X̃ [D] → X with discrepancy ≤ −1. By the orbit decomposition

ofX [D] given in [AH06] we know that Ẽρ is contracted via r to a closed subvariety of codimension

at most c + 1 in X [D] and D̃Z,v to a subvariety of codimension at most c. But r(Ẽρ), r(D̃Z,v)
are necessarily part of the singular locus. �

5. Complexity one

As an application, in this section we restate our previous results in this particular setting.
This allows us to rediscover some well known results with our methods.

Let D be a proper polyhedral divisor on Y . If the corresponding T -action on X = X [D] has
complexity 1 then Y is a curve. Since any normal curve is smooth and any birational morphism
between smooth curves is an isomorphism we have that the base curve Y is uniquely determined
by the T -action on X .

Furthermore, any curve Y is either affine or projective, and any polyhedral divisor D on Y
is SNC and completely ample. Let D and D′ be two proper polyhedral divisors on Y . Then
X [D] ≃ X [D′] equivariantly if and only if the application

∆ : σ∨ → DivQ(Y ), u 7→ D(u)−D′(u)

is the restriction of a linear map and ∆(u) is principal for all u ∈ σ∨
M .

The simplest case is the one where N = Z i.e., the case of k∗-surfaces. In this particularly sim-
ple setting there are only two non-equivalent pointed polyhedral cones in NQ ≃ Q corresponding
to σ = {0} and σ = Q≥0.

Assuming further that Y is projective, then σ 6= {0} and so we can assume that σ = Q≥0. In
this case D(u) = uD(1). Hence D is completely determined by D1 := D(1), and X [D] ≃ X [D′]
equivariantly if and only if D1 −D′

1 is principal. We also let

D1 =

r∑

i=1

ei
mi

· zi, where gcd(ei,mi) = 1, and mi > 0 .(8)

In this case, the algebra A[D] is also known as the section ring of D1.

5.1. Isolated singularities.

Proposition 5.1. A polyhedral divisor D having a complete curve Y as its locus defines a smooth
variety if and only if Y = P1, D ∼ ∆y ⊗ P +∆z ⊗Q and

δ := Q+ · ({1} ×∆y ∪ {−1} ×∆z) ⊂ Q×N

is a regular cone.
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Proof. One direction is obvious, because the polyhedral divisor D describes the toric variety Xδ

with a TN -action induced by N →֒ Q×N [AH06, section 11]. For the other direction note that
for v ∈ relintσ ∩N we get a positive grading

Γ(X,OX) =
⊕

i≥0

⊕

〈u,v〉=i

Γ(Y,O(D(u))).

There is a full sub-latticeM ′ ⊂ σ⊥ such that D(u) is integral for u ∈M ′. Because D is proper we
get D(u) and D(−u) to be of degree 0 and even principal D(u) = div(fu) and D(−u) = − div(fu)
for u ∈ M ′. This implies that Γ(X,OX)0 ⊂ K(X) is generated by {f±1

u1
χ±u1 , . . . , f±1

ur
χ±ur}

where the ui are elements of a M ′-basis. We get Γ(X,OX)0 ∼= k[M ′].
The following lemma implies that

X = Spec k[M ′][Zdimσ
≥0 ]

holds and D has the claimed form. �

Lemma 5.2. Let A0 = k[Zr], and A =
⊕

i≥0 Ai be a finitely generated positive graded A0-
algebra. A is a regular ring if and only if A is freely generated as an A0-algebra.

Proof. We may choose a minimal homogeneous generating system g1, . . . , gl for A and consider
a maximal ideal m0 of k[Zr] then m := Am0+(g1, . . . , gl) is a maximal ideal of A. If A is regular
and l > dimA − r then dimk m/m

2 = dimA < r + l and w.l.o.g. we may assume that there is
a gi such that there is a (finite) homogeneous relation gi =

∑
|α|≥2 bαg

α, with bα ∈ A0, α ∈ Nl.

For degree reasons we may assume that bα = 0 if αi 6= 0. But this contradicts the minimality of
{g1, . . . , gl}. So we have l = dimA− r, thus A is free as an A0-algebra. �

Theorem 5.3. Let D =
∑

z ∆z · z be a polyhedral divisor on an affine curve. Then X̃[D] is
smooth if and only if for every z ∈ Y the cone

δz := Q+ · ({1} ×∆z) ⊂ Q×N

is regular. Moreover the singularity at q−1(z) is analytically isomorphic to the toric singularity
Xδz .

Proof. This is a special case of Proposition 2.6. In our setting every polyhedral divisor is SNC

and moreover we have X̃ [D] = X [D] since Y is affine. �

For a proper polyhedral divisor D on a complete curve Y we consider it faces. By definition
these are the polyhedral divisors obtained defined as follows

Du =
∑

z

face(Dz , u), u ∈ σ∨

Such a face is called facet, if minz∈Y codimDu
z = 1.

Theorem 5.4. X [D] is an isolated singularity iff for every facet

(i) for every facet with degDu ( face(σ, u) the variety X [Du] is non-singular,

(ii) and for every other facet X̃[Du] is non-singular.

Proof. First note the the inclusion Du ⊂ D defines an open inclusion of X(Du) →֒ X(D) in

the first case and of X̃(Du) →֒ X(D) in the second case. By the orbit decomposition given in
[AHS08] we know that every orbit except from the unique fixed point is contained in one of these
open subsets. �
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5.2. Rational singularities. The following proposition gives a simple characterization of T-
varieties of complexity 1 having rational singularities.

Proposition 5.5. Let X = X [D], where D is an SNC polyhedral divisor on a smooth curve Y .
Then X has only rational singularities if and only if

(i) Y is affine, or
(ii) Y = P1 and deg⌊D(u)⌋ ≥ −1 for all u ∈ σ∨

M .

Proof. If Y is affine, then the morphism ϕ : X̃ [D] → X is an isomorphism. By Lemma 2.6 X is
toroidal and thus X has only toric singularities and toric singularities are rational.

If Y is projective of genus g, we have dimH1(Y,OY ) = g. So by Corollary 3.5 if X has rational
singularities then C = P1. Furthermore, for the projective line we have H1(P1,OP1(D)) 6= 0
if and only if degD ≤ −2 [Har77, Ch. III, Th 5.1]. Now the corollary follows from Theorem
3.4. �

In the next proposition we provide a partial criterion for the Cohen-Macaulay property in the
complexity 1 case. Recall that in the complexity one case, a ray ρ ∈ σ(1) is extremal if and only
if degD ∩ ρ = ∅.

Proposition 5.6. Let X = X [D], where Y is a smooth curve and D is an SNC polyhedral divisor
on Y . The X is Cohen-Macaulay if one of the following conditions hold,

(i) Y is affine, or
(ii) rankM = 1

Moreover, if Y is projective and D× = σ(1), then X is Cohen-Macaulay if and only if X has
rational singularities.

Proof. If Y is affine then X = X̃ [D]. Thus X has rational singularities and so X is Cohen-
Macaulay. If rankM = 1 then X is a normal surface. By Serre S2 normality criterion any
normal surface is Cohen-Macaulay, see Theorem 11.5 in [Eis95]. Finally, the last assertion is a
specialization of Proposition 3.7. �

Remark 5.7. Corollary 3.8 and Proposition 5.6 give a full classification of isolated Cohen-
Macaulay singularities on T-varieties of complexity one.

5.3. Log-terminal and canonical singularities. In the complexity one case every proper
polyhedral divisor is completely ample, since ampleness and bigness coincide. Now, theorem 4.7
gives rise to the following

Corollary 5.8. Let D =
∑

z ∆z · z be a proper polyhedral divisor on a curve Y . Assume that
X [D] is Q-Gorenstein.

Then X [D] is log-terminal if and only if either

(i) Y is affine, or
(ii) Y = P1 and

∑
z

µz−1
µz

< 2.

Proof. By theorem 4.7 we know that −KY −
∑

z
µz−1
µz

·z has to be ample. This is the case exactly

under the conditions on the corollary. �

Remark 5.9.

(i) The second condition in the corollary can be made more explicit: there are at most
three coefficients Dz1 , Dz2 , Dz3 on P1 having non-integral vertices, and the triple
(µz1 , µz2 , µz3) is one of the Platonic triples (1, p, q), (2, 2, p), (2, 3, 3), (2, 3, 4), and
(2, 3, 5).
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(ii) It is well known that log-terminal singularities are rational. Indeed, since a
b −

⌊
a
b

⌋
≤ b−1

b ,

the condition
∑

z
µz−1
µz

< 2 ensures that deg⌊D(u)⌋ > degD(u) − 2 ≥ −2. Thus X [D]

has rational singularities by Corollary 5.5.

As a direct consequence we get the following corollary characterizing quasihomogeneous sur-
faces having log-terminal singularities. Recall the definition of D1 in (8).

Corollary 5.10. Every quasihomogeneous log-terminal surface singularity is isomorphic to the
section ring of the following divisor on Y = P1.

D1 =
e1
m1

· [0] +
e2
m2

· [1] +
e3
m3

· [∞], and degD1 > 0 .

Here (m1,m2,m3) is one of the Platonic triples (1, p, q), (2, 2, p), (2, 3, 3), (2, 3, 4), and (2, 3, 5),
where p ≥ q ≥ 1, and r ≥ 2.

We now characterize quasihomogeneous surfaces having canonical singularities.

Theorem 5.11. Every quasihomogeneous canonical surface singularity is isomorphic to the sec-
tion ring of one of the following Q-divisors on P1:

Ai :
i+ 1

i
· [∞] , i ≥ 1 .

Di :
1

2
· [0] +

1

2
· [1]−

1

(i− 2)
· [∞] , i ≥ 4 .

Ei :
1

2
· [0] +

1

3
· [1]−

1

(i− 3)
· [∞] , i = 6, 7, 8 .

Proof. Canonical implies log-terminal. Hence, it suffices to consider a polyhedral divisors D on
P1 as in Corollary 5.10 i.e., of the form

D1 =
e1
m1

· [0] +
e2
m2

· [1] +
e3
m3

· [∞], and degD1 > 0 .

Let 1 ≤ m1 ≤ m2 ≤ m3. Up to linear equivalence we may assume that m1 > e1 ≥ 0 and
m2 > e2 ≥ 0. If m1 = 1 we have e1 = 0 and X is isomorphic to the affine toric variety given by
the cone pos((e2,m2), (e3,−m3)). But every cone is isomorphic to a subcone of pos((0, 1), (1, 1)).
Therefor we may assume that m1 = m2 = 1, e1 = e2 = 0 and e3 ≥ m3.

The system of equations from proposition 4.4 takes the form

1 1 1 0 0
m1 0 0 e1 m1 − 3
0 m2 0 e2 m2 − 1
0 0 m3 e3 m3 − 1

Any solution (a1, a2, a3, u) must also fulfill

(9) u · degD =
∑

i

mi − 1

mi
− 2.

The formula for the discrepancy at Eρ yields discρ = −1 − u. Hence, we need u < −1. For

the case (1, 1, q) equation (9) yields u = −m3+1
e3

. Hence we must have e3 = m3+1. For the cases

(2, 2, r) equation (9) takes the form u · m3+e3
m3

= 1
m3

and we get e3 = 1−m3. For the remaining

cases (2, 3, r) we get

3 + 2e2 + 2e3
6

=
1

6
,

6 + 4e2 + 3e3
12

=
1

12
,

15 + 10e2 + 6e3
30

=
1

30
.

Since 1, 2 are the only options for e2 we infer that e2 = 1 and e3 = 1−m3. �
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5.4. Elliptic singularities. Let (X, x) be a normal singularity, and let ψ : W → X be a
resolution of the singularity (X, x). One says that (X, x) is an elliptic singularity2 if

RiψOW = 0 ∀i ∈ {1, . . . , dimX − 1}, and RdimX−1ψ∗OW ≃ k .

An elliptic singularity is minimal if it is Gorenstein. e.g., [Lau77], and [Dai02].
In the complexity one case Riψ∗OW = 0, for all i ≥ 2. Thus, the only way to have elliptic

singularities is to have M = Z. That is, the case of k∗-surfaces. In the following we restrict to
this case.

We give now a simple criterion as to when X [D] is Q-Gorenstein. This is a specialization of
4.4 Recall that the boundary divisor is defined in this particular case as B =

∑
i
mi−1
mi

· zi, see

(8). We let u0 = deg(KY +B)/deg(D1).

Lemma 5.12. The surface X [D] is Q-Gorenstein of index ℓ if and only if u0 ∈ 1
ℓZ and the

divisor ℓ(u0D1 −KY − B) is principal. Furthermore, if X [D] is Q-Gorenstein of index 1 then
X [D] is Gorenstein.

Proof. Let a canonical divisor of the curve Y be given by

KY =

k∑

i=r+1

bizi, where zi 6= zj , ∀i 6= j .

With the notation of Proposition 4.4 we have that D×
zi = {ei/mi} for i ≤ r and D×

zi = {0}
otherwise. Furthermore µi = mi and µivi = ei for i ≤ r, and µi = 1 and µivi = 0 otherwise.
With this considerations, the system of equations in (3) becomes

miai + eiu = mi − 1, ∀i ≤ r

ai = bi, ∀i ≥ r + 1 ,

and so

ai = −u
ei
mi

+
mi − 1

mi
, ∀i ≤ r .

This yields D = −uD1 +B +KY and u = u0. This shows the first assertion. The second one
follow at once since any normal surface is Cohen-Macaulay. �

Remark 5.13. The Q-Gorenstein assertion of the previous lemma is true in general for affine
k∗-varieties with the same proof, Cf. [Wat81].

In the following theorem we characterize quasihomogeneous (minimal) elliptic singularities of
surfaces.

Theorem 5.14. Let X = X [D] be a normal affine surface with an effective elliptic 1-torus
action, and let 0̄ ∈ X be the unique fixed point. Then (X, 0̄) is an elliptic singularity if and only
if one of the following two conditions hold.

(i) Y = P1, deg⌊uD1⌋ ≥ −2 for all u ∈ Z>0, and deg⌊uD1⌋ = −2 for one and only one
u ∈ Z>0.

(ii) Y is an elliptic curve, and for every u ∈ Z>0, the divisor ⌊uD1⌋ is not principal and
deg⌊uD1⌋ ≥ 0.

Moreover, (X, 0̄) is a minimal elliptic singularity if and only if (i) or (ii) holds, u0 is integral
and u0D1 −KY −B is principal.

2Some authors call such (X, x) a strongly elliptic singularity.
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Proof. Assume that Y is a projective curve of genus g, and let ψ : Z → X be a resolution of
singularities. By Theorem 3.3,

R1ψ∗OZ =
⊕

u≥0

H1(Y,OY (uD1)) .

Since dimR1ψ∗OZ ≥ g = dimH1(Y,OY ), if X has an elliptic singularity then g ∈ {0, 1}.
If Y = P1 then (X, 0̄) is an elliptic singularity if and only if H1(Y,OY (uD1) = k for one

and only one value of u. This is the case if and only if (i) holds. If Y is an elliptic curve, then
H1(Y,OY ) = k. So the singularity (X, 0̄) is elliptic if and only if H1(Y, uD1) = 0 for all u > 0.
This is the case if and only if (ii) holds.

Finally, the last assertion concerning maximal elliptic singularities follows immediately form
Proposition 5.12. �

Example 5.15. By applying the criterion of Theorem 5.14, the following combinatorial data
gives rational k∗-surfaces with an elliptic singularity at the only fixed point.

(i) Y = P1 and D1 = − 1
4 [0]−

1
4 [1] +

3
4 [∞]. In this case X = SpecA[Y,mD1] is isomorphic to

the surface in A3 with equation

x41x3 + x32 + x23 = 0 .

(ii) Y = P1 and D1 = − 2
3 [0]−

2
3 [1] +

17
12 [∞]. In this case X = SpecA[Y,mD1] is isomorphic to

the surface

V (x41x2x3 − x2x
2
3 + x24 ; x51x3 − x1x

2
3 + x2x4 ; x22 − x1x4) ⊆ A4 .

This last example is not a complete intersection since otherwise (X, 0̄) would be Gorenstein i.e.,
minimal elliptic which is not the case by virtue of Theorem 5.14. In the first example the elliptic
singularities is minimal, since every normal hypersurface is Gorenstein.

6. Factorial T-varieties

Let Y be a normal projective variety having class group Z. Hence, we have a canonical degree
map Cl(Y ) → Z by sending the ample generator to 1. We choose a set Z = {(Z1, µi), . . . (Zs, µs)}
of prime divisors of degree 1 and corresponding tuples µi = (µi1, . . . µiri) ∈ Nri . We assume that
the integers gcd(µi) are pairwise coprime and define |Z| :=

∑
i(ri − 1).

We give construction of a polyhedral divisor on Y with polyhedral coefficients in NQ = Q|Z|+1

by induction on |Z|.

Construction 6.1. If |Z| = 0 the µ1, . . . , µs are positive pairwise coprime integers. Hence,
there is are integer coefficients e1, . . . , es such that 1 =

∑
eiµi. Now, we define the vertices

vij :=
eiµi

µ1···µs
∈ NQ.

If |Z| > 0 there is a j ∈ {1, . . . , r} such that rj > 1. Now, we consider the data Z ′ obtained
from Z by replacing µj by

µ′
j := (µj1, . . . , gcd(µjrj−1, µjrj )).

By induction we obtain vertices v′ik with v′jrj−1 being the vertex corresponding to µ′
jrj−1 =

gcd(µjrj−1, µjrj ). We find coefficients α, β ∈ Z such that µ′
jrj−1 = αµjrj−1 + βµjrj . Now, we

define the vertices

vjrj−1 =

(
v′j1,−

β

µjrj−1

)
; vjrj =

(
v′j1,

α

µjrj

)

and vik = (v′ik, 0) for i 6= j or k < rj − 1.
For every set of admissible data Z we can define a polyhedral divisor D = D(Z) on Y . The

tail fan is spanned by the rays Q≥0 ·
∑

i viki
, where 1 ≤ ki ≤ ri. And the vertices of DZi

are
exactly the vik. We denote the corresponding algebra A[D] also by A[Z].
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Theorem 6.2. A[Z] is a normal factorial ring.

Proof. For |Z| = 0 the matrix of relations for the class group has the following form

MZ =




1 . . . 1 0
µ1 . . . 0 µ1v11
...

. . .
...

...
0 . . . µs µsvs1




We get detMZ =
∑

i eiµi = 1 by the choice of vij =
eiµi

µ1···µs
.

By the inductive construction above we obtainMZ fromM ′
Z by adding first a column of zeros

and then replacing the row (0 · · · 0, µ′
jrj−1, 0 · · · 0, µ

′
jrj−1v

′
jrj−1, 0) by the two rows

0 · · · 0 µjrj−1 0 · · · 0 µjrj−1v
′
jrj−1 −β

0 · · · 0 µjrj 0 · · · 0 µjrjv
′
jrj−1 α

Via row operations these rows transform to

0 · · · 0 0 0 · · · 0 0 1
0 · · · 0 µ′

jrj−1 0 · · · 0 µ′
jrj−1v

′
jrj−1 0

Hence, we have detMZ = detM ′
Z . But detM

′
Z = 1 holds by induction. �

For the case Y = P1 we obtain a complete classification. Now, z1, . . . , zs are points in P1.
Without loss of generality, we may assume that the support of D consists of at least 3 points—in
the other case X would be toric. But this would imply that X = An.

By applying an isomorphism of P1 we may assume, that z1 = ∞, z2 = 0 and z3, . . . , zs ∈ k∗.
Via K(P1) ∼= k(t) we get div(t) = [0]− [∞] = z2 − z1.

Corollary 6.3 (Thm. 1.9., [HHS09]). Every normal k-algebra A of dimension n admitting a
(positive) grading by Nn−1 such that A0 = k is factorial iff it is isomorphic to a free algebra over
some

A[Z] = k
[
Tij

∣∣ 0 ≤ i ≤ s; 1 ≤ j ≤ ri
]
/
(
T µi

i + T µ2

2 − ziT
µ1

1

∣∣ 3 ≤ i ≤ s
)
.

In particular every such k-algebra it is a complete intersection of dimension 2 +
∑

i(ri − 1).

Proof. We consider X := SpecA, which gives rise to a polyhedral divisor D on P1 with support
z1, . . . , zs ∈ P1. We consider the prime divisors Di1, . . . , Diri ⊂ X corresponding to the vertices

in vi1, . . . viri ∈ D
(0)
zi and the prime divisors E1, . . . , Er corresponding to the extremal rays of D.

Moreover, let µij denote the multiplicity µ(vij).
Since A is factorial, there are homogeneous elements Tij , Si ∈ A such that div(Tij) = Dij and

div(Si) = Ei. Moreover, these elements are unique up to multiplication by a constant.
First we show, that A is generated by these elements. Let f · χu be a homogeneous element

of A ∼= A[D]. Then div(f · χu) is effective and we have a decomposition

div(f · χu) =
∑

ij

αijDij +
∑

i

βiEi + c · π∗z1 +
∑

z /∈suppD

cz · (Dz,0 − π∗z1),

with c =
∑

z cz . We find a polynomial gc of degree C such that div(g) =
∑

z cz · (z− z1). We get
div((zi− t) ·χ0) = π∗zi−π∗z1 =

∑ri
j=1 µijDij−

∑r1
j=1 µ1jD1j . Hence, we have div((zi− t) ·χ0) =

div(T
µi
i /Tµ2

1 ) and moreover

div(f · χu) = div
(∏

ij T
αij

ij ·
∏

i S
βi

i · (T µ1

1 )c · gc
(
T

µ2
2 /Tµ1

1

))
.

Since A is factorial and the only invertible functions are constants we get a equality not only
for the induced divisors but also for the functions themselves—at least up to a constant factor.
Hence, A is generated by Tij and Si.
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Next, we will show that the relations between these elements are as given above. Remember,
that Tij was given only up to a constant factor. By making a suitable choice of constants, we
may assume that T

µi
i /Tµ1

1 = (zi − t)χ0 holds for 2 ≤ i ≤ s. In particular, the Zn−1 degree of T µi

i

does not depend on i. Now, the relation (zi − t) + t = zi lifts to (zi − t) · χ0 + t ·χ0 = zi · χ
0 and

we obtain

T µi

i /T µ1

1 + T µ2

2 /T µ1

1 = zi · χ
0 ⇒ T µi

i + T µ2

2 − ziT
µ1

1 = 0 .

It remains to show, that there are no other independent relations. Therefore it is enough
to consider a homogeneous relation F (T, S) =

∑
i ciT

αiSβi = 0. Being homogeneous im-

plies, that TαiSβi/TαjSβj = f · χ0. Hence, by our for principal divisors on page 5 we get
div(TαiSβi/TαjSβj ) =

∑
ℓ(ordzℓ f) ·

∑
m µℓmDℓm. Thus,

TαiSβi/TαjSβj =
∏

ℓ

(T µℓ

ℓ )
(ordzℓ

f)
and F (T, S) = Tα′

Sβ′

· F ′(T µ1

1 , . . . , T µr
r ).

First we may divide by Tα′

Sβ′

. Now, by reducing with relations of the form T µi

i +T µ2

2 −ziT
µ1

1 we
eliminate the occurrences of Ti with i > 2 and come to homogeneous relation F ′′(T µ1

1 , T µ2

2 ) = 0
of degree m. Dividing by Tm

1 gives

F ′′(1 · χ0, T µ2

2 /T µ1

1 ) = F ′′(1, z) · χ0 = 0.

But this implies that F ′′ = 0 hold and hence that the relation F is a combination of the relations
T µi

i + T µ2

2 − ziT
µ1

1 . �

Remark 6.4. We can easily identify the log-terminal singularities of the form A(Z)—by theo-
rem 4.7 A(Z) is log-terminal if and only if maxµi > 1 for at most three 1 ≤ i1 < i2 < i3 ≤ s
and (maxµi1 ,maxµi2 ,maxµi3) is one of the platonic triples (1, p, q), (2, 2, q), (2, 3, 3), (2, 3, 4),
(2, 3, 5).

In the case of complexity one we are also able to characterize isolated factorial singularities.
Every (normal) factorial surface singularity is of course isolated. For the remaining cases we
provide the following theorem

Theorem 6.5. Every factorial T-variety of complexity one and dimension at least three having
an isolated singularity at the vertex is one of one of the following

(i) A cAq threefold singularities of the form

k[T1, . . . , T4]/(T1T2 + T q+1
3 + T r

4 )

with 0 < q < r being coprime.
(ii) The fourfold singularity which is stably equivalent to Aq:

k[T1, . . . , T5]/(T1T2 + T3T4 + T q+1
5 )

(iii) The fivefold singularity which is stably equivalent to A1:

k[T1, . . . , T6]/(T1T2 + T3T4 + T5T6)

Proof. We consider the Jacobian of a algebra as in corollary 6.3.



z3f11 · · · z3f1r1 f21 · · · f2r2 f31 · · · f3r3
z4f11 · · · z4f1r1 f21 · · · f2r2 f41 · · · f4r4
...

...
...

...
. . .

zsf11 · · · zrf1r1 f21 · · · f2r2 fs1 · · · fsrs
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Here, fij denotes the partial derivative ∂T
µi
i /∂Tij . Since we consider singularities of dimension at

least three we must have rℓ > 1 for at least one ℓ. Then for

Tij =

{
1, if (i, j) = (ℓ, 1),

0, otherwise.

all but one column vanish. Hence, we are in the case of a hypersurface, because the matrix has
to have full rank.

Now, one easily checks that a multiexponent µi > (1, 1) automatically leads to partial deriva-
tives fij which jointly vanish even if one of the Tij does not vanish. Hence, the singular locus
has dimension at least one.

Alternatively one could use Theorem 5.4 and Proposition 5.1 to prove the claim. �
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of Sémin. Congr., pages 155–186. Soc. Math. France, Paris, 2002.
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