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A Study of the Protein Folding Dynamic

Omar GACI ∗

Abstract—In this paper, we propose two means to
study the protein folding dynamic. We rely on the HP
model to study the protein folding problem in a con-
tinuous graphic environment. The amino acids evolve
according to the boid rules, we observe a collective
behavior due to the attraction between residues of H
type. We propose a first step to simulate a folding
process. As well, we present a way to fold a protein
when it is represented by an amino acid interaction
network. This is a graph whose vertices are the pro-
teins amino acids and whose edges are the interactions
between them. We propose a genetic algorithm of
reconstructing the graph of interactions between sec-
ondary structure elements which describe the struc-
tural motifs. The performance of our algorithms is
validated experimentally.

Keywords: boids, protein folding problem, interaction

networks, genetic algorithm

1 Introduction

Proteins are biological macromolecules participating in
the large majority of processes which govern organisms.
The roles played by proteins are varied and complex.
Certain proteins, called enzymes, act as catalysts and
increase several orders of magnitude, with a remarkable
specificity, the speed of multiple chemical reactions essen-
tial to the organism survival. Proteins are also used for
storage and transport of small molecules or ions, control
the passage of molecules through the cell membranes, etc.
Hormones, which transmit information and allow the reg-
ulation of complex cellular processes, are also proteins.

Genome sequencing projects generate an ever increasing
number of protein sequences. For example, the Human
Genome Project has identified over 30,000 genes which
may encode about 100,000 proteins. One of the first tasks
when annotating a new genome, is to assign functions to
the proteins produced by the genes. To fully understand
the biological functions of proteins, the knowledge of their
structure is essential.

In their natural environment, proteins adopt a native
compact three-dimensional form. This process is called
folding and is not fully understood. The process is a
result of interactions between the protein’s amino acids
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which form chemical bonds.

In this study, we propose two means to study the pro-
tein folding problem. First, we treat proteins as chains
where the amino acids are identified by their hydropho-
bicity according to the HP model [?]. Then, we consider
that a residue is an individual which evolves with a boid
behavior. A boid behavior is notably characterized by
three rules which ensure that a population of individuals
stays grouped when it is in movement. We carry out a
study to develop a JAVA application where the confor-
mational space is represented by a 3D continuous graph-
ical environment. Thus, a protein is a sequence whose
amino acids will evolve as boid. The goal is to fold this
protein to give a new graphical interpretation of the HP
model. Second, we treat proteins as networks of interact-
ing amino acid pairs [3]. In particular, we consider the
subgraph induced by the set of amino acids participating
in the secondary structure also called Secondary Struc-
ture Elements (SSE). We call this graph SSE interaction
network (SSE-IN). We begin by recapitulating relative
works about this kind of study model. Then, we present
a genetic algorithm able to reconstruct the graph whose
vertices represent the SSE and edges represent spatial in-
teractions between them. In other words, this graph is
another way to describe the motifs involved in the protein
secondary structures.

2 Protein structure

Unlike other biological macromolecules (e.g., DNA), pro-
teins have complex, irregular structures. They are built
up by amino acids that are linked by peptide bonds to
form a polypeptide chain. We distinguish four levels of
protein structure:

• The amino acid sequence of a protein’s polypeptide
chain is called its primary or one-dimensional (1D)
structure. It can be considered as a word over the
20-letter amino acid alphabet.

• Different elements of the sequence form local regular
secondary (2D) structures, such as α-helices or β-
strands.

• The tertiary (3D) structure is formed by packing
such structural elements into one or several compact
globular units called domains.
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Figure 1: Left: an α-helix illustrated as ribbon diagram,
there are 3.6 residues per turn corresponding to 5.4 Å.
Right: A β-sheet composed by three strands.

• The final protein may contain several polypeptide
chains arranged in a quaternary structure.

By formation of such tertiary and quaternary structure,
amino acids far apart in the sequence are brought close
together to form functional regions (active sites). The
reader can find more on protein structure in [6].

One of the general principles of protein structure is that
hydrophobic residues prefer to be inside the protein con-
tributing to form a hydrophobic core and a hydrophilic
surface. To maintain a high residue density in the hy-
drophobic core, proteins adopt regular secondary struc-
tures that allow non covalent hydrogen-bond and hold a
rigid and stable framework. There are two main classes
of secondary structure elements (SSE), α-helices and β-
sheets (see Fig. 1).

An α-helix adopts a right-handed helical conformation
with 3.6 residues per turn with hydrogen bonds between
C’=O group of residue n and NH group of residue n+4.

A β-sheet is build up from a combination of several re-
gions of the polypeptide chain where hydrogen bonds can
form between C’=O groups of one β strand and another
NH group parallel to the first strand. There are two kinds
of β-sheet formations, anti-parallel β-sheets (in which the
two strands run in opposite directions) and parallel sheets
(in which the two strands run in the same direction).

Based on the local organization of the secondary struc-
ture elements (SSE), proteins are divided in the following
four classes [17]:

• All α, proteins have only α-helix secondary struc-
ture.

• All β, proteins have only β-strand secondary struc-
ture.

• α/β, proteins have mixed α-helix and β-strand sec-
ondary structure.

• α+ β, proteins have separated α-helix and β-strand
secondary structure.

From this first division, a more detailed classification can
be done. The most frequently used ones are SCOP, Struc-
tural Classification Of Proteins [20], and CATH, Class
Architecture Topology Homology [21]. They are hierar-
chical classifications of proteins’ structural domains. A
domain corresponds to a part of a protein which has a
hydrophobic core and not much interaction with other
parts of the protein.

3 The Protein Folding Problem

Several tens of thousands of protein sequences are en-
coded in the human genome. A protein is comparable
to an amino acid chain which folds to adopt its tertiary
structure. Thus, this 3D structure enables a protein to
achieve its biological function. In vivo, each protein must
quickly find its native structure, functional, among innu-
merable alternative conformations.

The protein 3D structure prediction is one of the most
important problems of bioinformatics and remains how-
ever still irresolute in the majority of cases. The problem
is summarized by the following question: being given a
protein defined by its sequence of amino acids, which is
its native structure?, i.e., the structure whose amino acids
are correctly organized in three dimensions so that pro-
teins can achieve correctly their biological functions. As
well, the native structure is considered as the most stable
with a minimum energy level.

Unfortunately, the exact answer is not always possible
that is why the researchers have developed study models
to provide a feasible solution for any unknown sequences.
However, models to fold proteins bring back to NP-Hard
optimization problems [8]. Those kinds of models con-
sider a conformational space where the modeled protein
tries to reach its minimum energy level which corresponds
to its native structure.

Therefore, any algorithm of resolution seems improbable
and ineffective, the fact is that in the absolute no study
model is yet able to entirely define the general principles
of the protein folding.

3.1 The Levinthal Paradox

The first observation of spontaneous and reversible fold-
ing in vitro was carried out by Anfinsen [1]. He deduced
that the native structure of a protein corresponds to a
conformation with a minimal free energy, at least un-
der suitable environmental conditions. But if the protein
folding is indeed under thermodynamic control, a judi-
cious question is to know how a protein can find, in a
reasonable time, its structure of lower energy among an
astronomical number of possible conformations.

As example, a protein of 100 residues can adopt 2100 (≃
1030) distinct conformations when we suppose that only
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two possibilities are accessible to each residue. If the
passage from a conformation to another is carried out in
10−13 seconds (which corresponds to time necessary for a
rotation around a connection), this protein would need at
least 1017 seconds, i.e. approximately three billion years,
”to test” all possible conformations. The proteins how-
ever manage to find their native structures in a lapse of
time which is about the millisecond at the second. The
apparent incompatibility between these facts, raised ini-
tially by Levinthal in [16], was quickly set up in paradox
and made run enormously ink since.

Levinthal gives the solution of its paradox: proteins do
not explore the totality of their conformational space,
and their folding needs to be ”guided”, for example via
the fast formation of certain interactions which would be
determining for the continuation of the process.

3.2 Motivations

To be able to understand how a protein accomplishes its
biological function, and to be able to act on the cellular
processes in which the protein intervenes, it is essential to
know its structure. Many protein native structures were
determined experimentally - primarily by crystallography
with X-rays or by Nuclear Magnetic Resonance (NMR) -
and indexed in a database accessible to all, Protein Data
Bank (PDB) [5].

However, the application of these experimental tech-
niques consumes a considerable time [15, 22]. Indeed,
the number of protein sequences known [4] is much more
important than the number of solved structures [5], this
gap continues to grow quickly.

The design of methods making it possible to predict the
protein structure from its sequence is a problem whose
stakes are major, and which fascinate many of scientists
for several decades. Various tracks were followed with
an aim of solving this problem, elementary in theory but
extremely complex in practice.

4 Simulation Models

In this section we present two simulations model from
which we present in the next section an application to
fold proteins when we know only their sequences.

4.1 The HP Model

One of the most widespread models for the protein folding
study is the HP model, hydrophobic-hydrophilic. The
term HP-Model was presented by Dill [?] to indicate a
grid model on two dimensions with an energy function
which is simplified as much as possible.

Proteins are chains of monomers whose each one is a va-
riety of the 20 natural amino acids. In the HP model,
only two types of monomers are exploited: those said

Figure 2: A description of the HP model. (a) Energy
matrix, the no covalent interactions between amino acids
of H type reduce the current energy level. (b) An example
of conformation with the HP model. The black nodes are
hydrophobic, they are of H type.

hydrophobic (H), which tend to aggregate each others to
prevent from being surrounded by water and those known
as polar or hydrophilic (P), which are attracted by wa-
ter and are often found in the folding border. Thus, the
nodes of the H type are supposed to attract each other
while the P nodes are neutral.

The energy function is given by the Fig. 2 and is such as
the energy contribution of a no covalent contact between
two monomers is -1 if the two residues are of H type,
and 0 differently. A no covalent contact between two
monomers is definite if their Euclidean distance is worth
a unit and if they are not associated by a physical bond.
A conformation with a minimal energy corresponds to
a folding with a maximum no covalent number of con-
tacts between monomers of H type. The native structure
prediction problem via the HP model was shown to be
NP-Hard problem [8].

A specific conformation of the sequence PHPHPPHHPH
with an energy level is -2 is given Fig. 2. The white
pearls represent the amino acids of P type and the blacks
those of H type. The two contacts indicated in dotted
line are no covalent contacts and allow to evaluate the
global energy of the system.

4.2 The Amino Acid Interaction Network

The 3D structure of a protein is represented by the coor-
dinates of its atoms. This information is available in Pro-
tein Data Bank (PDB) [5], which regroups all experimen-
tally solved protein structures. Using the coordinates of
two atoms, one can compute the distance between them.
We define the distance between two amino acids as the
distance between their Cα atoms. Considering the Cα

atom as a “center” of the amino acid is an approxima-
tion, but it works well enough for our purposes. Let us
denote by N the number of amino acids in the protein.
A contact map matrix is a N ×N 0-1 matrix, whose el-
ement (i, j) is one if there is a contact between amino
acids i and j and zero otherwise. It provides useful in-
formation about the protein. For example, the secondary
structure elements can be identified using this matrix.
Indeed, α-helices spread along the main diagonal, while
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β-sheets appear as bands parallel or perpendicular to the
main diagonal [14]. There are different ways to define the
contact between two amino acids. Our notion is based on
spacial proximity, so that the contact map can consider
non-covalent interactions. We say that two amino acids
are in contact if and only if the distance between them is
below a given threshold. A commonly used threshold is
7 Å [3] and this is the value we use.

Consider a graph with N vertices (each vertex corre-
sponds to an amino acid) and the contact map matrix
as incidence matrix. It is called contact map graph. The
contact map graph is an abstract description of the pro-
tein structure taking into account only the interactions
between the amino acids.

First, we consider the graph induced by the entire set of
amino acids participating in folded proteins. We call this
graph the three dimensional structure elements interac-
tion network (3DSE-IN), see Fig. 3-C.

As well, we consider the subgraph induced by the set of
amino acids participating in SSE. We call this graph SSE
interaction network (SSE-IN), see Fig. 3-B.

To manipulate a SSE-IN or a 3DSE-IN, we need a PDB
file which is transformed by a parser we have developed.
This parser generates a new file which is read by the
GraphStream library to display the SSE-IN in two or
three dimensions.

5 A Simulation Model Based on the
Boids Behavior

Our goal is to exploit the HP model to propose a means
to simulate the folding process. Here, the amino acids
are boids and evolve as a consequence.

The alphabet of 20 amino acids letters is reduced to two
letters, namely H and P. The residues of the H type
represent hydrophobic amino acids, whereas those of P
type are polar and are the hydrophilic amino acids. In
the same way, the energy function checks the illustration
given in Fig. 2, the goal being to maximize no covalent
contacts of H-H type to minimize the global energy of the
modeled protein.

5.1 A Boid Behaviour

The observation of birds clouds, in which one or more
thousands of birds fly in a mass which seems compact,
becoming deformed, being divided sometimes into sev-
eral swarms, then being reformed given birth to some
interrogations. The single character of the bird masses
is the first character which strikes imagination. We can
also be astonished by the significant number of animals
within the clouds, and their capacity, however, to avoid
each others. Such clouds seem ”directed”, by a collective
direction.

(A)

(B)

(C)

Figure 3: Protein 1DTP (top), its SSE-IN and its 3DSE-
IN (bottom). From a pdb file a parser we have devel-
oped produces a new file which corresponds to the SSE-
IN graph displayed by the GraphStream library.
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Figure 4: The three boid behavioral constraints. A boid
has a radius of perception represented as a circle to de-
termine its neighborhood. A boid adapts its velocity as
a function of its neighbors.

One of the first researchers who studied this subject un-
der the angle of the cloud phenomena modeling is Craig
Reynolds [23]. The solution suggested is astonishing of
simplicity, and gives a particularly faithful model of the
bird clouds, fish benches, etc.

The model is based on a personal representation, each in-
dividual is modeled explicitly with simple behavior rules.
Each boid flies according to a direction vector which indi-
cates also its velocity. During its motion, a boid respects
three constraints, see Fig. 4, which are the following:

• Separation: boids try to avoid the collisions with
their neighbors.

• Alignment: they tend to align their direction vector
and their velocity with their neighbors.

• Cohesion: they move to the barycenter of their
neighbors.

The neighbors of a boid are defined by a vision radius
such as shown by Fig. 4 and which is represented by a
circle (the angle is 360 degrees).

These simple behavior rules create a collective behavior
which particularly looks like the one of birds clouds or
fish benches. Obviously, certain rules can be added so
that there are various type of boids.

5.2 Adaptations to Fold Proteins

To exploit a boid behavior to fold a sequence, we need to
define the groups of amino acids which evolve as boids.
Thus, the residues of H type will evolve as boids with a
specific cohesion rule.

To apply the Reynolds rules to the residues, in particu-
lar the rule of separation, we must exploit an ”elasticity”
on the connections. The variation of the bond lengths
makes it possible to highlight the mechanisms of attrac-
tion involved between hydrophobic residues. Therefore,
the length of connections inter amino acids will evolve
between a minimum and a maximum length. Then, the
bonds become rubber bands whose length is limited. Let
us notice here that the bond minimal length returns to
consider a mutual repulsion force between two covalent
amino acids which are two close.

5.3 Energy Evaluation

The energy function we exploit corresponds to the one
described in Fig. 2. The goal is to maximize the num-
ber of non-covalent contact, i.e. without physical bonds,
between hydrophobic residues.

We consider that if two amino acids of H type evolve
in the graphical space with a distance below a certain
threshold then we update the energy function adding −1.
When, the folding process is unable to decrease the en-
ergy level, we stop the simulation.

5.4 Simulation of a Boid Dynamic

The programming language we choose is Java3D which
allows us to apply an object modeling to develop our sim-
ulator. The dataset is composed of 20 chains represented
through the HP model.

As we have already exposed, we want to reproduce the
folding process considering that amino acids are boids.
Then, the amino acids of H type tend to regroup each
others to act as boids.

The three Reynolds rules will lead the simulation process.
The residues will move in the graphical scene accord-
ing to their velocity, direction and neighborhood. Ob-
viously, the amino acid type, namely hydrophilic (H) or
hydrophobic (P), determines which laws will govern the
folding. The two types of amino acids will obey mutually
to the rules of separation and alignment while the cohe-
sion rule will differ to reproduce the attraction between
the hydrophobic amino acids. The general principle of
our simulations is given by Algorithm 1.

The application proposes a main window from which the
user is invited to select a sequence to fold. Once the sim-
ulation is launched, it remains to await the result while it
is possible to modify certain current simulation parame-
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Algorithm 1: Description of the general principle of
our simulations to fold a sequence modeled by the HP
model with a boid behavior.
Input:
setBoids: all amino acids
setH : amino acids of H type
Data:
vision: radius of neighborhood perception
position: 3D position of a Boid

begin
energy ←− 0
while energy is decreasing do

foreach b ∈ setBoids do
Pos3D ←− position(b)
V1 ←− separationRule(vision, Pos3D)
V2 ←− alignementRule(vision, Pos3D)
if b ∈ setH then

V3 ←− cohesionRule(vision, Pos3D)

else
V3 ←− cohesionRule(Pos3D)

position(b)←− scale(V1, V2, V3)

ters. When the native structure is reached, the user will
be able to launch the comparison between the folding ob-
tained and the one available at the PDB, see Fig. 5.

5.5 Folding Evaluation

Proteins whose native structure is determined are avail-
able at PDB. This organization provides files with the
three-dimensional coordinates of each protein. Neverthe-
less, the coordinates available are expressed in a specific
format and it is not possible to compare them to the one
obtained from our simulations. Consequently, we apply a
transformation to the simulation coordinates to express
them in the PDB format. It remains us to draw in the
same reference mark, the two structures, see Fig. 6. The
score of this superposition is calculated by summing the
Euclidean distances between the amino acids of the two
structures to obtain a RMSD score.

5.6 Synthesis

The goal of this first application is to propose at the same
time a study model for the protein folding and a graphic
simulation able to highlight the dynamic of phenomena
engaged during the folding process.

The method implemented exploits the hydrophilic and
hydrophobic properties of a protein chain modeled ac-
cording to the HP model. The motion of elements is
governed by the Reynolds laws which make it possible
to simulate flocking. Thus, the residues of the H type
tend to move so as to approach their neighbors while the
residues of the P type will evolve only according to their

Figure 5: Simulator interface, the user chooses a sequence
expressed in the HP model and launch the simulation.
Three parameters can be updated, the radius of percep-
tion, the maximum bond length and the attraction power
between H amino acids.

Figure 6: The native structure is plotted in red and the
one obtained by the simulation is plotted in blue. We
measure the simulated folding quality by a RMSD score.
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vicinity without particular behavior. The connections in
the protein chain will undergo the stretching or the con-
tracting according to interaction mechanisms intervening
in the protein folding dynamic.

This first approach shows that computational intelligence
methods can be applied to study the protein folding prob-
lem.

6 Folding a Protein in a Topological
Space by Bio-Inspired Methods

In this section, we treat proteins as amino acid interaction
networks, see Fig. 3. We describe a bio-inspired method
to fold amino acid interaction networks. In particular,
we want to fold a SSE-IN to predict the motifs which
describe the secondary structure, see [13]

6.1 Motif Prediction

In previous works [9], we have studied the protein SSE-
IN. We have identified notably some of their properties
like the degree distribution or also the way in which the
amino acids interact. These works have allowed us to
determine criteria discriminating the different structural
families. We have established a parallel between struc-
tural families and topological metrics describing the pro-
tein SSE-IN.

Using these results, we have proposed a method to deduce
the family of an unclassified protein based on the topolog-
ical properties of its SSE-IN, see [11]. Thus, we consider a
protein defined by its sequence in which the amino acids
participating in the secondary structure are known. This
preliminary step is usually ensured by threading methods
[?] or also by hidden Markov models [2]. Then, we apply
a method able to associate a family from which we rely to
predict the fold shape of the protein. This work consists
in associating the family which is the most compatible to
the unknown sequence. The following step, is to fold the
unknown sequence SSE-IN relying on the family topolog-
ical properties.

To fold a SSE-IN, we rely on the Levinthal hypothesis
also called the kinetic hypothesis. Thus, the folding pro-
cess is oriented and the proteins don’t explore their entire
conformational space. In this paper, we use the same ap-
proach: to fold a SSE-IN we limit the topological space by
associating a structural family to a sequence [11]. Since
the structural motifs which describe a structural family
are limited, we propose a genetic algorithm (GA) to enu-
merate all possibilities.

In this section, we present a method based on a GA to
predict the graph whose vertices represent the SSE and
edges represent spatial interactions between two amino
acids involved in two different SSE, further this graph is
called Secondary Structure Interaction Network (SS-IN),

Figure 7: 2OUF SS-IN (left) and its associated incidence
matrix (right). The vertices represent the different α-
helices and an edge exists when two amino acids interact.

see Fig 7.

6.2 Dataset

Thereafter, we use a dataset composed of proteins which
have not fold families in the SCOP v1.73 classification
and for which we have associated a family in [11].

6.3 Overall description

The GA has to predict the adjacency matrix of an un-
known sequence when it is represented by a chromosome.
Then, the initial population is composed of proteins of
the associated family with the same number of SSEs.
During the genetic process, genetic operators are applied
to create new individuals with new adjacency matrices.
We want to predict the studied protein adjacency matrix
when only its chromosome is known.

Here, we represent a protein by an array of alleles. Each
allele represents a SSE notably considering its size that
is the number of amino acids which compose it. The
size is normalized contributing to produce genomes whose
alleles describe a value between 0 and 100. Obviously,
the position of an allele corresponds to the SSE position
it represents in the sequence. In the same time, for each
genome we associate its SS-IN incidence matrix.

The fitness function we use to evaluate the performance
of a chromosome is the L1 distance between this chromo-
some and the target sequence.

6.4 Genetic operators

Our GA uses the common genetic operators and also a
specific topological operator.

The crossover operator uses two parents to produce two
children. It produces two new chromosomes and matri-
ces. After generating two random cut positions, (one ap-
plied on chromosomes and another on matrices), we swap
respectivaly the both chromosome parts and the both ma-
trices parts. This operator can produce incidence matri-
ces which are not compatible with the structural family,
the topological operator solve this problem.

The mutation operator is used for a small fraction (about
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1%) of the generated children. It modifies the chromo-
some and the associated matrix. For the chromosomes,
we define two operators: the two position swapping and
the one position mutation. Concerning the associated
matrix, we define four operators: the row translation,
the column translation, the two position swapping and
the one position mutation.

These common operators may produce matrices which
describe incoherent SS-IN compared to the associated se-
quence fold family. To eliminate the wrong cases we de-
velop a topological operator.

The topological operator is used to exclude the incom-
patible children generated by our GA. The principle is
the following; we have deduced a fold family for the se-
quence from which we extract an initial population of
chromosomes. Thus, we compute the diameter, the char-
acteristic path length and the mean degree to evaluate
the average topological properties of the family for the
particular SSE number. Then, after the GA generates a
new individual by crossover or mutation, we compare the
associated SS-IN matrix with the properties of the initial
population by admitting an error rate up to 20%. If the
new individual is not compatible, it is rejected.

6.5 Algorithm

Starting from an initial population of chromosomes from
the associated family, the population evolves according to
the genetic operators. When the global population fitness
cannot increase between two generations, the process is
stopped, see Algorithm 2.

The genetic process is the following: after the initial pop-
ulation is built, we extract a fraction of parents according
to their fitness and we reproduce them to produce chil-
dren. Then, we select the new generation by including
the chromosomes which are not among the parents plus
a fraction of parents plus a fraction of children. It remains
to compute the new generation fitness.

Algorithm 2: Genetic algorithm for SS-IN adjacency
matrix determination.
Data:
pop: Current chromosome population
parents: Set of parents
children: Set of children

begin
pop ←− setInitialPopulation()
while fitness(pop) is increasing do

parents ←− parentExtraction(pop)
children ←− parentCrossing(parents)
children ←− childrenMutation(children)
children ←− exclusionByTopology(children)
pop ←− selection(pop, children)
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Figure 8: Error rate as a function of the initial population
size. When the initial population size is more than 10,
the error rate becomes less than 15%.

When the algorithm stops, the final population is com-
posed of individuals close to the target protein in terms
of SSE length distribution because of the choice of our
fitness function. As a side effect, their associated matri-
ces are supposed to be close to the adjacency matrix of
the studied protein that we want to predict.

In order to test the performance of our GA, we pick ran-
domly three chromosomes from the final population and
we compare their associated matrices to the sequence SS-
IN adjacency matrix. To evaluate the difference between
two matrices, we use an error rate defined as the number
of wrong elements divided by the size of the matrix. The
dataset we use is composed of 698 proteins belonging to
the All alpha class and 413 proteins belonging to the All
beta class. A structural family has been associated to this
dataset in [11].

The average error rate for the All alpha class is 16.7% and
for the All beta class it is 14.3%. The maximum error rate
is 25%. As shown in Fig 8, the error rate strongly depends
on the initial population size. Indeed, when the initial
population contains sufficient number of individuals, the
genetic diversity ensures better SS-IN prediction. When
we have sufficient number of sample proteins from the
associated family, we expect more reliable results. Note
for example that when the initial population contains at
least 10 individuals, the error rate is always less than
15%.
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Figure 9: SSE-IN of 1DTP protein. The edges we want
to predict are green.

7 Conclusions

In this paper, we present two models to study the protein
folding problem. The first try to reproduce the boid be-
haviors when a protein is represented by the HP model.
It implies that the hydrophobic amino acids tend to group
to reproduce the general folded protein shape that is the
hydrophobic side chains are packed into the interior of
the protein creating a hydrophobic core and a hydrophilic
surface. Second, we summarize relative works about how
to fold an amino acid interaction networks. We need to
limit the topological space so that the folding predictions
become more accurate. We propose a genetic algorithm
trying to construct the interaction network of SSEs (SS-
IN). The GA starts with a population of real proteins
from the predicted family. To complete the standard
crossover and mutation operators, we introduce a topo-
logical operator which excludes the individuals incompat-
ible with the fold family. The GA produces SS-IN with
maximum error rate about 25% in the general case. The
performance depends on the number of available sample
proteins from the predicted family, when this number is
greater than 10, the error rate is below 15%.

The characterization we propose constitutes a new ap-
proach to the protein folding problem. Here we propose
to fold a protein SSE-IN relying on topological properties.
We use these properties to guide a folding simulation in
the topological pathway from unfolded to folded state.

7.1 Future Research Direction

After we have predicted the motifs in SSE-INs, we con-
tinue our folding process by predicting the interaction
involved between amino acid in the folded protein, see
Fig. 9.

To do that, we build a probability of node interaction
between different SSEs and we use a comparative model
to predict the quantity of inter-SSE edges to add. The
probability that two amino acids interact as a function of

their physico-chemical properties is computed from the
comparative model exploited during the family associa-
tion. Finally, we use an ant colony system to predict the
nodes involved when two SSEs are in contact. When two
SSEs are in interaction, we predict the inter-SSE edges by
an ant colony approach and we repeat the same process
at the global level. By measuring the resulting SSE-IN,
we remark that their topology depends on the local re-
search. If, during the local folding, we collect the right
edges (more than 75%) then the global score stays close
to 76% of the real inter-SSE edges. These approaches
and results are exposed in [10].

The researches leaded are now oriented around the global
amino acid interaction network, 3DSE-IN. We describe
these type of graphs and study their topological behavior
[12]. We deduce that the loops fold locally with their
neighbors and propose three steps to fold a protein when
it is represented by amino acid interaction networks.
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