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1 LMT-Cachan (ENS Cachan/CNRS/University Paris 6/UniverSud Paris)

61 avenue du President Wilson, F-94230 Cachan, France

Abstract. Vibration control is an important issue when it comes to preserving the

structural integrity of mechanical structures, particularly in the case of lightweight

structures found aboard flying vehicles, such as printed circuit boards. In order for a

simulation to be effective, a suitable numerical model of the structure must be used.

Such a model can be obtained using a model updating method, such as that which is

presented in this work, based on the modified constitutive relation error principle.

However, like many other model updating strategies, this method can be very

expensive. When the structural parameters change over time, it would be too

timeconsuming to perform another full calculation. In order to circumvent this

problem, we introduce a new technique called the ‘finite element method over

a polynomial algebra’, which involves modules defined over a ring of truncated

polynomials in multiple variables.

In this paper, we illustrate the method with the updating and reduction of a model

of a beam instrumented with piezoelectric sensors and actuators, which are all taken

into account in the numerical model. This is a simple problem, yet it is representative

of the updating of printed circuit boards.

1. Introduction

In the field of mechanics applied to the development of intelligent systems, the main

areas of investigation are the control of the health or integrity of structures, the control

of their shape, and active vibration damping. In this paper, we consider the case of

lightweight structures, such as the printed circuit boards found aboard flying vehicles

(planes, rockets,. . . ). In the different flight configurations (liftoff, landing,. . . ), these

cards are subjected to low-frequency vibrations which can damage the components and

electrical connections, causing them to age prematurely. The classical remedy, based on

passive damping, works in only a limited range of frequencies and increases the weight

significantly. A solution based on active damping allows the vibrations to be reduced in a

wide frequency range while keeping the increase in weight moderate. Generally speaking,

the active control process can be divided into three steps. First, the displacements of the

structure are measured by sensors and a data processing system: this is the observation

phase, in which the most commonly used sensors are piezoelectric components. Then

comes the thinking phase, which consists in the elaboration of an answer. Finally,
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in the actuation phase, the resulting command is delivered to the structure. Again,

the most commonly used actuators in this phase are piezoelectric components. The

thinking phase requires an adequate model in order to deliver a satisfactory answer. In

the case of lightweight structures, this model must take into account the presence of

the piezoelectric components. One possible method to obtain such a model consists in

using a model updating strategy.

A state-of-the-art review of finite element model updating methods can be

found in [1]. They all rely on stiffness, damping an mass matrices obtained

through changes in the physical parameters of the model. Their differences

come from the objective function they use. A first group of techniques try

to minimize input residuals like the Sensitivity-Based Element-by-Element

Updating Procedure [2] or the Equilibrium Gap Method [3]. The second group

is based on output residuals like the Modal Assurance Criterion [4] or the

Reciprocity Gap Method [5]. A third group relies on the residual over the

constitutive equations like the Constitutive Gap Method [6] or the Modified

Constitutive Relation Error (MCRE) [7], the one we use in this paper.

The

first developments of this method demonstrated the effectiveness of such a model in

structural dynamics, then in forced vibrations with updated models obtained from eigen-

modes. This approach, which uses the concept of Drucker error, provides an effective

means of updating mass and stiffness matrices. Its governing principle consists in parti-

tioning the equations of the problem into two groups, a reliable group and an uncertain

group. Then, among the mechanical fields which satisfy the equations of the reliable

group exactly, one seeks to minimize a norm containing the residuals of the uncertain

group and the distance between the observed experimental data and the numerical cal-

culation. Like many other popular updating techniques, it is an optimization-based

method whose objective function is very computation-intensive.

The structural parameters of the structure can change over time due to ageing,

damage, relative movements in the joints,. . . As this happens, a previous vibration

control can become ineffective. In order to avoid going through another expensive model

updating process, we propose to use a multivariate analysis approach. In this work, we

introduce a new multivariate analysis technique called the Finite Element Method over

a Polynomial Algebra (FEMPA). In this method, the coefficients of the vectors of the

finite element basis are polynomials in multiple variables of interest.

First, we present the MCRE, the model updating method used here. Then, we

introduce the FEMPA and describe its application to the one-time updating of a model

of a structure representing a printed circuit board. Finally, we illustrate how the FEMPA

can be used in order to update a structure rapidly when its parameters change over time.
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Figure 1. The domain being studied

2. Presentation of the model updating method

2.1. The reference problem

For the sake of simplicity, we present the model updating method using a viscoelastic

structure as an example (see Figure 1). The application of the method to a viscoelastic

piezoelectric structure was studied in [8]. The structure vibrates over a time interval

[0, T ]. It is subjected to body forces fd, prescribed displacements ud over ∂1Ω and

distributed forces Fd over the boundary ∂1Ω.

The reference problem consists in finding a solution in terms of s(x, t) =

(u(x, t), �(x, t),Γ(x, t)) (the displacement, stress and acceleration quantities respec-

tively), with x ∈ Ω, t ∈ [O, T ], which satisfies the kinematic constraints:

u|∂1Ω = ud, (1)

the equilibrium equations:

∇� + fd = Γ, (2)�n|∂2Ω = Fd, (3)

and the constitutive equations:� = K �(u) + D �(u̇), (4)

Γ = ρ ü. (5)

K denotes Hooke’s tensor, D the damping tensor and ρ the density. These quantities

can be defined by a set of np structural parameters. During an experimental test, one

measures a displacement uexp over ∂3Ω. In order to agree with the experiments, the

solution s(x, t) must satisfy:

u|∂3Ω = uexp. (6)
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2.2. The Modified Constitutive Relation Error approach

The MCRE concept, like the CRE concept, is based on a partitioning of the equations

into reliable equations and less reliable equations. The difference comes from the

presence of equation (6), which introduces a distance between the numerical model

and the experimental data. For a given set of structural parameters, a displacement

field uad is said to be kinematically admissible if it satisfies (1). Stress and acceleration

fields �ad, Γad are said to be dynamically admissible if they satisfy (2) and (3). The

MCRE approach consists in finding an admissible solution sad = (uad, �ad,Γad) which

minimizes the residuals of (4), (5) and (6):

e2(s) = γ

∫ T

t=0

‖K �(u) + D �(u̇) − �‖2 dt

+ (1 − γ)

∫ T

t=0

‖ρ ü − Γ‖2 dt

+
r

1 − r

∫ T

t=0

‖u− uexp‖
2 dt, (7)

where γ ∈ [0, 1] and r ∈ [0, 1[ are weighting parameters. Parameter r represents

one’s degree of confidence in the experimental data. The term r
1−r

∈ [0,∞[ is used

to apply the desired weight to the experimental part of the error, even if its initial

magnitude is very different from that of the other errors. Different versions of the

norms involved in equation (7) can be found in [9]. The discrete form of the norms we

are using in this paper will be presented in equation (15).

In the case of a forced vibration problem at an angular frequency ω, the calculation

of the objective function over a duration T ′ which is a multiple of the period leads to:

e2
ω(s) =

γ

2

∥

∥(K + T ′ω2
D)�(u) − �∥∥2

+
1 − γ

2

∥

∥ρω2u− Γ
∥

∥

2
+

r

1 − r
‖u− uexp‖

2
. (8)

2.3. Discretized form of the modified error

For numerical convenience, the problem can be described in terms of displacements by

introducing fields vad and wad such that the associated stress and acceleration fields are

dynamically admissible:� = K �(vad) + D �(v̇ad), (9)

Γ = ρ ẅad. (10)

Now, let us move on and discretize the problem. We introduce a finite element

basis {�} = {φi}i=1,...,ndof
such that the displacement fields are approximated in the

form:

uad =

ndof
∑

i=1

uiφi, vad =

ndof
∑

i=1

viφi, wad =

ndof
∑

i=1

wiφi, (11)
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where ui, vi and wi denote the ith coefficients of the vectors of the nodal displacements

{U}, {V } and {W} respectively. We build the discretized stiffness matrix [K], damping

matrix [D] and mass matrix [M] such that their ith-line and jth-column coefficients are:

[Kij] =

∫

Ω

Tr
[

K �(φi)�(φj)
]

dV , (12)

[Dij] =

∫

Ω

Tr
[

D �(φi)�(φj)
]

dV , (13)

[Mij ] =

∫

Ω

ρφi.φjdV. (14)

With these notations, the discrete form of e2
ω(s) is given by:

e2
ω({U}, {V }, {W}) =

γ

2
{U − V }⋆([K] + T ′ω2[D]){U − V }

+
1 − γ

2
ω2{U − W}⋆[M]{U − W}

+
r

1 − r
{Π3U − Uexp}

⋆[G]{Π3U − Uexp}, (15)

where ⋆ is the conjugate transpose operator, and Π3 a projection operator onto ∂3Ω.

Matrix [G] quantifies the error in the measurements and can be expressed as:

[G] =
γ

2
Π3([K] + T ′ω2[D])Π⋆

3 +
1 − γ

2
ω2Π3[M]Π⋆

3. (16)

In addition, the solution ({U}, {V }, {W}) must be admissible, i.e. it must satisfy:

Π1{U} = {Ud}, (17)

([K] + iω[D]){V } − ω2[M]{W} = {F}, (18)

where Π1 is a projection operator onto ∂1Ω and {F} is the excitation force vector.

The expression of e2
ω(s) under the admissibility constraints is obtained through the

introduction of Lagrange multipliers. Then, for a given a set of the structural

parameters, one can calculate {U},{V } and {W}. During these calculations, which

are not described in detail here, the Lagrange multiplier corresponding to equation (18)

is eliminated and the change of variables from ({U}, {V }, {W}) to ({U}, {U −V }, {U −

W}) comes naturally. We end up with the resolution of a system of linear equations

[A]{X} = {B} with:

A =











γ

2
([K] + T ′ω2[D]) 1−γ

2
ω2[M] r

1−r
[G] 0

γ

2
([K] + T ′ω2[D]) 1−γ

2
([K] + iω[D]) 0 0

−([K] + iω[D]) ω2[M] [K] + iω[D] − ω2[M] ΠT
1

0 0 Π1 0











(19)

X =



















{U − V }

{U − W}

{U}

{λ}



















, B =



















r
1−r

[G]{Uexp}

0

{F}

{Ud}



















. (20)

Once the fields {U},{V } and {W} have been determined, the value of the objective

function is calculated using equation (15).
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3. The finite element method over a polynomial algebra

3.1. The two families of model reduction techniques

Let us consider a problem discretized spatially into ndof degrees of freedoms in a

frequency range discretized with nω points. For any set of the structural parameters

which define the stiffness, damping and mass matrices, the calculation of the objective

function requires the resolution of nω linear systems of size 3ndof (see equation (20) ).

If ndof and/or nω are large, the objective function

e2(sad) =

ωnω
∑

ω=ω1

e2
ω(sad) (21)

must be calculated approximately. There are two families of techniques, leading to

different kinds of approximations.

The first family, based on a mechanical approach to the problem, consists in

reducing ndof , which can be done by reducing the structure to its eigenmodes in a

frequency range of interest [4]. Alternatively, one can use a condensation method. The

second family, based on a mathematical approach to the problem, consists in replacing

the objective function by a simpler function. The most natural way to do that is to

compute a Taylor series expansion of the objective function in the structural parameters,

which can be done by three differents approaches.

The easiest maner to perform it is to have a sampling approach [10, 11].

It is based on the evalution of the objective function for nsamp sets of the

structural parameters. Thus is requires the resolution of nsampnω linear systems

of size 3ndof . It is easy to implement but the choice of the sampling points

can be a sentitive issue for the quality of the Taylor series expansion. This

problem is avoided by the techniques based on the perturbation theory, like the

perturbation finite element method [12, 13]. They introduce the parametric

variabilities into the numerical model under variational form. It leads to

the resolution of nomega linear systems of size 3ndofn
′
samp, where n′

samp is the

dimension of the Taylor series expansion. The main drawback is the needed of

heavy software development in order to change the basis where the solution is

seeked.

We introduce here a new method to obtain the Taylor series expansion of the

objective function, called the Finite Element Method over a Polynomial Algebra

(FEMPA), that keeps the dependence over the parameters without changing

the finite element basis. It is done by changing the ring over which the finite

element method is build, using a multivariate polynomial ring instead of the

real field or the complex field. It leads to the resolution of nomega linear systems

of size 3ndof which coefficients are polynomials.
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3.2. The polynomial algebra

Let P(nd, nX ,K) denote the set of the polynomials in nX variables with maximum

degree nd and coefficients in K. In the rest of the paper, for the sake of simplicity, this

set will be denoted P when there is no ambiguity. The nX variables will be denoted

X = (X1, . . . , XnX
). A polynomial p ∈ P can be expressed as:

p =
∑

i6nd

piX
i =

∑

i1+...+inX
6nd

pi1,...,inX
X i1

1 . . .X
inX
nX . (22)

For k ∈ K and (p, q) ∈ P2,

p =
∑

i6nd

piX
i, q =

∑

i6nd

qiX
i, (23)

let + denote the internal operation

p + q =
∑

i6nd

(pi + qi)X
i, (24)

let . denote the external operation

k.p =
∑

i6nd

kpiX
i, (25)

and let × denote the internal operation

p × q =
∑

i6nd





∑

(α,β)∈Σi

pαqβ



Xi, (26)

where Σi is the set:

Σi = {(α, β)|∀s ∈ [1, . . . , nX ], αs + βs = is}. (27)

With these definitions, it is very easy to prove that (P, +, .,×) has the required

properties to be an algebra over the field K and that (P, +,×) as the required properties

to be a ring. It is not a field because an element has an inverse for operation × if, and

only if, its constant term is nonzero. Let P÷ denote the subset of P whose elements

have an inverse for operation ×. We will show that P÷ 6= P − {0P}, where 0P is the

neutral element of operation +.

For a given p ∈ P, denoting 1P is the neutral element of operation ×, one can find

q ∈ P such that:

p × q =

(

∑

i6nd

piX
i

)

×

(

∑

i6nd

qiX
i

)

= 1P (28)

when

qi =



















1

p(0,...,0)
for i = (0, . . . , 0)

−1

p(0,...,0)

∑

(α,β)∈Σ′

i

pαqβ for i 6= (0, . . . , 0)
, (29)
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k1 k2

u1 u2

f

Figure 2. Two springs

where Σ′
i
is the set:

Σi = {(α, β)|(α, β) ∈ Σi and α 6= (0, . . . , 0)}. (30)

In other words, such a polynomial q exists if, and only if, p(0,...,0) 6= 0. In such a case,

we will denote q = 1P ÷ p.

3.3. An example of application

Let us consider a series of two springs (see Figure 2) whose stiffnesses k1 and k2 vary

around values k
(0)
1 and k

(0)
2 respectivly. In order to apply the FEMPA, we express the

stiffnesses as :

k1(X) = k
(0)
1 (1 + X1), k2(X) = k

(0)
2 (1 + X2). (31)

If additional information is available concerning the variation of these stiffnesses,

for example following two functions g1 and g2, one can use the Taylor series expansions

of functions g1 and g2 around k
(0)
1 and k

(0)
2 .

Let us now apply a force f to the second spring. The problem can be described

using the equations:
{

k1u1 − k2(u2 − u1) = 0

k2(u2 − u1) = f
. (32)

This problem can be rewritten in matrix form. In the framework of the FEMPA, this

leads to matrices and vectors whose coefficients belong to P:
[

k
(0)
1 (1 + X1) + k

(0)
2 (1 + X2) −k

(0)
2 (1 + X2)

−k
(0)
2 (1 + X2) k

(0)
2 (1 + X2)

]{

u1(X1, X2)

u2(X1, X2)

}

=

{

0

f

}

. (33)

The analytic solution of this system is:














u1(θ) = f
1

k1

u2(θ) = f
k1 + k2

k1.k2

, (34)

which can be rewritten, using the FEMPA notations, in the form:






u1(X) = f ÷
(

k
(0)
1 (1 + X1)

)

u2(X) = f ×
(

k
(0)
1 (1 + X1) + k

(0)
2 (1 + X2)

)

÷
(

k
(0)
1 (1 + X1) × k

(0)
2 (1 + X2)

) . (35)
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Initial guess of the np quantites

Computation of {U(X)}, {V (X)}, {W (X)}

Computation of a Taylor series expansion of the error eP(X)

Minimization of the approximate error

New guess of the np quantites

Stop criterion fullfilled ?

End of the updating procedure

yes

no

Figure 3. Algorithme de recalage suivant une stratgie algbrique

During the resolution of the linear system (33) using a specific algorithm, the

elementary operations leading to the solution (35) are carried out with the definitions

given in equations (23), (26) and (29). When the degree nd is equal to 2, we obtain the

solution:














u1(X1, X2) =
f

k
(0)
1

−
f

k
(0)
1

X1 +
f

k
(0)
1

X2
1

u2(X1, X2) =
f

k
(0)
1

+
f

k
(0)
2

−
f

k
(0)
1

X1 +
f

k
(0)
1

X2
1 −

f

k
(0)
2

X2 +
f

k
(0)
2

X2
2

. (36)

If one needs to calculate a quantity of interest using the vectors of the nodal

displacements [u1, u2]
T , one can also use the operations defined in Subsection 3.2.
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4. Application of the FEMPA to the one-time updating of a model

4.1. The strategy

In order to apply the FEMPA to the one-time updating of a model, we write

the np structural parameters under polynomial form as in equation (31). Thus,

the i-th quantity we want to update zi is written:

zi(X) = z
(0)
i (1 + Xi) (37)

where z
(0)
i is an initial guess of this quantity. In order to compute a

polynomial form of the displacement {U(X)}, {V (X)}, {W (X)} we solve the

linear system (20) whose coefficients lie now in P(nd, np,R), using the definitions

given in equations (23), (26) and (29). We also use them and equation (15) to

compute a first Taylor series expansion of the error :

e ≈ e
(0)
P (X) = e

(0)
P (X1, . . . , Xnp

). (38)

Then, we try to find a local minimum which is close to (0, . . . , 0), denoted

a(1) = (a
(1)
1 , . . . , a

(1)
np ) when it exists. The minimization algorithm choice is given

to the reader, but a variable-step BFGS algorithm is recommended, with the

identity matrix as the initial guess for the Hessian matrix. Once the minimum

is found, we have a new guess of the quantity we want to update, the i-th being:

z
(1)
i = z

(0)
i (1 + a

(1)
i ), (39)

which can be rewritten under polynomial form

zi(X) = z
(1)
i (1 + Xi), (40)

in order to repeat all the steps described above until convergence as described

in figure 3.

4.2. Presentation of the example

Let us consider an aluminum isotropic beam instrumented with one piezoelectric sensor

and one piezoelectric actuator. Both piezoelectric components are assumed to be

transverse isotropic. All the dimensions are shown in Figure 4. The material properties

are given in Table 1 for the beam and in Table 2 for the piezoelectric components.

With this structure, we tested our model updating method by modifying the

Young’s modulus and the structural damping of the beam. The experimental

measurements were simulated by perturbing the structural parameters by:

E(exp) = 0.7E, D(exp) = 1.4D. (41)

We obtained a Frequency Response Function (FRF). In order to limit the number

of frequencies used to calculate the error (see equation (21)), we retained only the

measured frequencies with high FRF amplitude: this is justified by the fact that in

actual experiments it is at these frequencies that there is the least measured noise. In

our example, the 4 first frequencies were 6, 33, 88 and 178 Hz.
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6 mm

1.6 mm

0.5 mm

20 mm

10 mm

200 mm

Figure 4. The instrumented beam

Table 1. Material properties of the beam

Parameter Value

Young’s modulus E = 70 GPa

Shear modulus 26 GPa

Density 2, 700 kg.m−3

Structural damping D = 0.7 MPa.s

Structural shear damping 0.26 MPa.s

Table 2. Material properties of the piezoelectric components

Parameter Value

Young’s modulus in Direction e1 127 GPa

Shear modulus in Directions e1, e3 22.9 GPa

Piezoelectric constant in Directions e1, e3 −6.62 kg.m−2

Dielectric constant in Direction e1 127.10−11 F.m−1

Density 7, 500 kg.m−3

Structural damping in Direction e1 0.5 MPa.s

Shear damping in Directions e1, e3 0.5 MPa.s

In addition, we chose r = γ = 0.5. The calculations of the successive minima of

the error (see equations 38) was performed with a variable-step BFGS algorithm, with

the identity matrix as the initial guess for the Hessian matrix.

4.3. Results of the model updating

The initial guess of the structural parameters was E(0) = E and D(0) = D. Figure 5

shows the exact objective function (whose minimum is (E(exp), D(exp))) and its successive

approximations with polynomials of degree 4. Table 3 shows that the minimum was

reached after three iterations.
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0.6 E 0.7 E 0.8 E 0.9 E 1 E1 D
1.2 D

1.4 D
1.6 D

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Error

Exact error
Initial guess

First approximation
Second approximation
Third approximation

Final value

Stiffness

Damping

Error

Figure 5. The objective function and its approximations

Table 3. The minima of the successive approximations

i (a
(i)
1 , a

(i)
2 ) (E(i), D(i))

1 (−0.356099, 0.587651) (0.643901E, 1.58765D)

2 (0.0868269,−0.118969) (0.699809E, 1.39877D)

3 (0.00027282, 0.00087909) (0.7E, 1.4D)

Each calculation of an approximation of e2(s) took 31 seconds on a 2 GHz dual-

core processor with 512 Mb RAM, using a code written in C++. The total time of

93 seconds was 2.5 times less than with the usual scalar field method, which required

232 seconds to obtain results of similar quality, i.e. an error in the final guess of the

parameters of less than 10−6.
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Table 4. Computation times in relation to polynomial degree

Polynomial Time for one Number of Total

degree approximation approximations time

2 15 s ∞ ∞

3 21 s 5 105 s

4 31 s 3 93 s

5 46 s 3 138 s

6 73 s 2 146 s

4.4. The influence of the degree of the polynomials

The degree nd of the polynomials has an influence on both the computation time and the

quality of the approximation. As shown in Table 4, on the one hand, the lower the degree,

the better the computation time; on the other hand, increasing the degree improves the

quality of the approximation and, therefore, decreases the number of iterations needed

to achieve convergence. For our problem, for which we sought an error in the final guess

of the parameters of less than 10−6 for each polynomial degree, nd = 4 was the best

choice.

In some cases which are not addressed here, it may be useful to know how the

computation time varies with the number of variables nX . This variation is the same as

the variation with the degree nd because they have symmetrical roles in the expression

of the dimension of the algebra (P(nd, nX ,K), +, .,×), which is (nd+nX)!
nd!nX !

.

5. Application of the FEMPA to multiple model updating

5.1. General principle

In order to update a structure whose behavior changes due to ageing effects, we proceed

in two steps.

The first step consists in constructing an objective function which represents the

evolution of the structure’s behavior. In addition to expressing how the error varies with

the structural parameters, we are interested in its dependence on the experimental data

uexp. In order to express this dependence, we rely on the measurments before ageing.

The second step consists in updating the model for each ageing stage using its

specific measured FRF. In order to do that, we take the restriction of the objective

function to the experimental data of the ageing stage we are interested in. Thus, we get

a function whose only variables are the structural parameters and whose minimization

cost is very small.
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5.2. Construction of the objective function

During nω tests at several frequencies, the real and imaginary parts s(0) =

(s
(0)
1 , . . . , s

(0)
2ncnω

) of the measurements are collected and expressed in polynomial form:

s
(0)
i (X) = s

(0)
i (1 + Xnp+i), (42)

for i = 1, . . . , 2ncnω. (The shifted indices are due to the fact that the np unknowns are

retained for the quantities we want to update.) In order to get a Taylor series expansion

of the error e
(0)
P (X1, . . . , Xnp+2ncnω

), we solve the linear system (20) with coefficients in

P(nd, np + 2ncnω,C), then use equation (15).

5.3. Use of the objective function

For the k-th ageing stage of the structure, a test leads to 2nsnω measurements

s
(k)
1 , . . . , s

(k)
2ncnω

which are linked to the initial measurements through a set of parameters

η(k) = {ηi|i = 1, . . . , 2ncnω} such that:

s
(k)
i = s

(0)
i (1 + η

(k)
i ), (43)

for i = 1, . . . , 2ncnω. This calculation cannot be carried out if s0
i = 0, which occurs when

the sensor is on a node of the structure. In this case, it is necessary to move the sensor

or to change the frequency of the experimental test. If neither is possible, the data from

the particular sensor must be omitted in the calculation of the multi-structure error.

Then, we proceed with the calculation of the restriction of that error to the k-th

ageing stage:

e
(k)
P (X1, . . . , Xnp

) = e
(0)
P (X1, . . . , Xnp

, η
(k)
1 , . . . , η

(k)
2ncnω

). (44)

We seek the local minimum of ε
(k)
Iω

which is closest to (0, . . . , 0) and denote θ(k) when it

exists. This enables us to find the values z(k) of the quantities of the k-th ageing stage:

z
(k)
i = z

(0)
i (1 + θ

(k)
i ), (45)

for i = 1, . . . , np.

5.4. Results

We took the same example as in the previous section. The computation of the Taylor

series expansion of the error e
(0)
P (X1, . . . , Xnp+2ncnω

) took 14 seconds.

Several additional experiments were carried out with different values of the

structural parameters. Table 5 summarizes the quality of the multiple model updating

results.

5.5. Model reduction for vibration control

Vibration control requires a reduced mechanical model of the structure. The reduced

stiffness, damping and mass matrices [Kr], [Dr] and [Mr] can be calculated using
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Table 5. The model updating results

Given Result Computation

perturbation perturbation time

{1.1E, 0.9D} {1.1002E, 0.9061D} 0.04 s

{0.7E, 1.2D} {0.7012E, 1.1935D} 0.04 s

{0.8E, 1.3D} {0.7997E, 1.2922D} 0.04 s

{1.6E, 0.6D} {1.5973E, 0.6114D} 0.04 s

equations

[Kr] = [Φ]T [K][Φ], (46)

[Dr] = [Φ]T [D][Φ], (47)

[Mr] = [Φ]T [M][Φ], (48)

where [Φ] is the nω ×ndof matrix of the nω eigenmodes of the structure which lie within

some frequency range of interest. The FEMPA can be used to calculate these reduced

matrices. The coefficients of these matrices lie in P(nd, np,R) and can be updated

rapidly when {α(j)} is known.

6. Conclusion

In previous works, the MCRE was used successfully to update models of large industrial

structures. In order to do that, however, the objective function had to be approximated

very often through mechanical reduction of the model. In this work, we introduced the

finite element method over a polynomial algebra in order to calculate an approximate

value of the error mathematically. This enables one to update the model of the structure

rapidly when the structural parameters change, and also to calculate the reduced

mechanical model rapidly. This technique lends itself to multiple application fields

which should be explored in the future.
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