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Introduction

When transforming mathematical proofs into programs, the main problem is naturally
due to the axioms : indeed, it has been a long time since we know how to transform a
proof in pure (i.e. without axioms) intuitionistic logic, even at second order [2, 7, 4].
The very first of these axioms is the excluded middle, and it seemed completely hopeless
for decades. The solution was given by T. Griffin [5] in 1990, and it was absolutely
surprising. It was an essential discovery in logic because, at this moment, it became clear
that all other axioms will follow, provided we can work in a suitable framework.

The theory of classical realizability is such a framework : it was developed in [11, 12],
where we treat the axioms of Analysis (second order arithmetic with dependent choice).
In [14], we attack a more difficult case of the general axiom of choice, which is the existence
of a non trivial ultrafilter on N ; the main tool is the notion of realizability structure, in
which the programs are written in λ-calculus.
In the present paper, we replace it with the notion of realisability algebra, which has many
advantages : it is simpler, first order and much more practical for implementation. It is a
three-sorted variant of the usual notion of combinatory algebra. Thus, the programming
language is no longer the λ-calculus, but a suitable set of combinators ; remarkably
enough, this is almost exactly the original set given by Curry. The λ-terms are now
considered only as notations or abbreviations, very useful in fact : a λ-term is infinitely
more readable than its translation into a sequence of combinators. The translation used
here is new, as far as I know ; its fundamental property is given in theorem 2.

The aim of this paper is to show how to transform into programs, the classical proofs
which use dependent choice and :
i) the existence of a non trivial ultrafilter on N ;
ii) the existence of a well ordering on R.
Of course, (ii) implies (i) but the method used for (i) is interesting, because it can give
simpler programs. This is an important point, because a new problem is appearing now,
an important and very difficult problem : to understand the programs we obtain in this
way, that is to explain their behavior. A fascinating, but probably long work.
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The logical frame is given by classical second order logic, in other words the (first order)
theory of the comprehension scheme. However, since we use a binary belonging relation on
individuals, we work, in reality, in at least third order logic. Moreover, this is indispensable
since, although the axiom of dependent choice on R can be expressed as a second order
scheme, axioms (i) and (ii) cannot be expressed in this way.
By using the method expounded in [10], we can obtain the same results in ZF.

It seems clear to me that, by developing the technology of classical realizability, we shall
be able to treat all “natural” axioms introduced in set theory. It is already done for the
continuum hypothesis, which will be the topic of a forthcoming paper. In my opinion, the
axiom of choice and the generalized continuum hypothesis in ZF do not put serious issues,
except this : it will be necessary to use the proper class forcing of Easton [3] inside the
realizability model, and it will probably be very painful.
A very interesting open problem is put by axioms such as the existence of measurable
cardinals or the determination axiom.

But the most important open problem is to understand what all these programs do and,
in this way, to be able to execute them. I believe that big surprises are waiting for us here.
Indeed, when we realize usual axioms of mathematics, we need to introduce, one after
the other, the very standard tools in system programming : for the law of Peirce, these
are continuations (particularly useful for exceptions) ; for the axiom of dependent choice,
these are the clock and the process numbering ; for the ultrafilter axiom and the well
ordering of R, these are no less than read and write instructions on a global memory, in
other words assignment.
It seems reasonable to conjecture that such tools are introduced for some worthwhile
purpose, and therefore that the very complex programs we obtain by means of this for-
malization work, perform interesting and useful tasks. The question is : which ones ?

Remark.

The problem of obtaining a program from a proof which uses a given axiom, must be put

correctly from the point of view of computer science. As an example, consider a proof of a

theorem of arithmetic, which uses a well ordering of P(N) : if you restrict this proof to the class

of constructible sets, you easily get a new proof of the same theorem, which does not use this

well ordering any more. Thus, it looks like you simply have to transform this new proof into a

program.

But this program would be extracted from a proof which is deeply different from the original one.

Moreover, with this method, it is impossible to associate a program with the well ordering axiom

itself. From the point of view of computer science, this is a very serious lack of modularity :

since we cannot put the well ordering axiom in a program library, we need to undertake again

the programming work with each new proof.

With the method which is explained below, we only use the λ-term extracted from the original

proof. Therefore, this term contains an unknown instruction for the well ordering axiom on

P(N), which is not yet implemented. Then, by means of a suitable compilation, we transform

this term into a true program which realizes the initial theorem.

As a corollary of this technology, we obtain a program which is associated with the well ordering

axiom, which we can put in a library for later use.
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Realizability algebras

A realizability algebra is composed of three sets : Λ (the set of terms), Π (the set of
stacks), Λ ⋆Π (the set of processes) with the following operations :

(ξ, η) 7→ (ξ)η from Λ2 into Λ (application) ;
(ξ, π) 7→ ξ .π from Λ×Π into Π (push) ;
(ξ, π) 7→ ξ ⋆ π from Λ×Π into Λ ⋆Π (processus) ;
π 7→ kπ from Π into Λ (continuation).

We have, in Λ, the distinguished elements B,C,E, I,K,W, cc, called elementary combi-
nators or instructions.

Notation. The term (. . . (((ξ)η1)η2) . . .)ηn will be also denoted by (ξ)η1η2 . . . ηn or
ξη1η2 . . . ηn.
For example : ξηζ = (ξ)ηζ = (ξη)ζ = ((ξ)η)ζ .

We define on Λ ⋆ Π a preorder relation, denoted by ≻. It is the least reflexive and
transitive relation such that we have, for any ξ, η, ζ ∈ Λ and π,̟ ∈ Π :

(ξ)η ⋆ π ≻ ξ ⋆ η .π.
I ⋆ ξ .π ≻ ξ ⋆ π.
K ⋆ ξ . η .π ≻ ξ ⋆ π.
E ⋆ ξ . η .π ≻ (ξ)η ⋆ π.
W ⋆ ξ . η . π ≻ ξ ⋆ η . η . π.
C ⋆ ξ . η . ζ .π ≻ ξ ⋆ ζ . η . π.
B ⋆ ξ . η . ζ . π ≻ (ξ)(η)ζ ⋆ π.
cc ⋆ ξ .π ≻ ξ ⋆ kπ . π.
kπ ⋆ ξ .̟ ≻ ξ ⋆ π.

Finally, we are given a subset ⊥⊥ of Λ ⋆Π which is a terminal segment for this preorder,
which means that : p ∈ ⊥⊥, p′ ≻ p ⇒ p′ ∈ ⊥⊥.
In other words, we ask that ⊥⊥ be such that :

(ξ)η ⋆ π /∈ ⊥⊥ ⇒ ξ ⋆ η .π /∈ ⊥⊥.
I ⋆ ξ .π /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.
K ⋆ ξ . η .π /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.
E ⋆ ξ . η .π /∈ ⊥⊥ ⇒ (ξ)η ⋆ π /∈ ⊥⊥.
W ⋆ ξ . η . π /∈ ⊥⊥ ⇒ ξ ⋆ η . η .π /∈ ⊥⊥.
C ⋆ ξ . η . ζ .π /∈ ⊥⊥ ⇒ ξ ⋆ ζ . η .π /∈ ⊥⊥.
B ⋆ ξ . η . ζ . π /∈ ⊥⊥ ⇒ (ξ)(η)ζ ⋆ π /∈ ⊥⊥.
cc ⋆ ξ .π /∈ ⊥⊥ ⇒ ξ ⋆ kπ .π /∈ ⊥⊥.
kπ ⋆ ξ .̟ /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.

c-terms and λ-terms

We call c-term a term which is built with variables, the elementary combinators B,
C, E, I, K, W , cc and the application (binary function). A c-term is called closed if it
contains no variable ; it will then also be called proof-like ; a proof-like term has a value
in Λ.
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Given a c-term t and a variable x, we define inductively on t, a new c-term denoted by
λx t. To this aim, we apply the first possible case in the following list :

1. λx t = (K)t if t does not contain x.
2. λxx = I.
3. λx tu = (Cλx(E)t)u if u does not contain x.
4. λx tx = (E)t if t does not contain x.
5. λx tx = (W )λx(E)t (if t contains x).
6. λx(t)(u)v = λx(B)tuv (if uv contain x).

We easily see that this rewriting is finite, for any given c-term t : indeed, during the
rewriting, no combinator is introduced inside t, but only in front of it. Moreover, the only
changes in t are for parentheses. Now, rules 1 to 5 strictly decrease the part of t which
remains under λx, and rule 6 can be applied consecutively only finitely many.

The λ-terms are defined as usual. But, in this paper, we consider λ-terms only as a
notation for particular c-terms, by means of the above translation. This notation is
essential, because almost every c-term we shall use, will be given as a λ-term. Theorem 2
gives the fundamental property of this translation.

Lemma 1. If t is a c-term with the only variables x, y1, . . . , yn, and if ξ, η1, . . . , ηn ∈ Λ,
then : (λx t)[η1/y1, . . . , ηn/yn] ⋆ ξ .π ≻ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π.

To lighten the notation, let us put u∗ = u[η1/y1, . . . , ηn/yn] for each c-term u ; thus, we
have :
u∗[ξ/x] = u[ξ/x, η1/y1, . . . , ηn/yn].
The proof is done by induction on the number of rules 1 to 6 used to translate the term
λx t. Consider the rule used first.
If it is rule 1, then we have (λx t)∗ ⋆ ξ . π ≡ (K)t∗ ⋆ ξ . π ≻ t∗ ⋆ π
≡ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π since x is not in t.
If it is rule 2, we have t = x and (λx t)∗⋆ξ .π ≡ I ⋆ξ . π ≻ ξ⋆π ≡ t[ξ/x, η1/y1, . . . , ηn/yn]⋆
π.
If it is rule 3, we have t = uv and (λx t)∗ ⋆ ξ .π ≡ (Cλx(E)u)∗v∗ ⋆ ξ . π
≻ C ⋆ (λx(E)u)∗ . v∗ . ξ .π ≻ (λx(E)u)∗ ⋆ ξ . v∗ . π ≻ (E)u∗[ξ/x] ⋆ v∗ .π (by induction
hypothesis) ≻ E ⋆ u∗[ξ/x] . v∗ .π ≻ (u∗[ξ/x])v∗ ⋆ π ≡ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π since x
is not in v.
If it is rule 4, we have t = ux and (λx t)∗ ⋆ ξ . π ≡ (E)u∗ ⋆ ξ . π ≻ E ⋆ u∗ . ξ . π ≻ u∗ξ ⋆ π
≡ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π since u does not contain x.
If it is rule 5, we have t = ux and (λx t)∗ ⋆ ξ .π ≡ (Wλx(E)u)∗ ⋆ ξ . π ≻ W ⋆
(λx(E)u)∗ . ξ . π
≻ (λx(E)u)∗ ⋆ ξ . ξ .π ≻ (E)u∗[ξ/x] ⋆ ξ .π (by induction hypothesis)
≻ E ⋆ u∗[ξ/x] . ξ . π ≻ (u∗[ξ/x])ξ ⋆ π ≡ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π.
If it is rule 6, we have t = (u)(v)w and (λx t)∗ ⋆ ξ .π ≡ (λx(B)uvw)∗ ⋆ ξ . π
≻ (B)u∗[ξ/x]v∗[ξ/x]w∗[ξ/x] ⋆ π (by induction hypothesis)
≻ B ⋆ u∗[ξ/x] . v∗[ξ/x] .w∗[ξ/x] .π ≻ (u∗[ξ/x])(v∗[ξ/x])w∗[ξ/x] ⋆ π
≡ t[ξ/x, η1/y1, . . . , ηn/yn] ⋆ π.

q.e.d.
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Theorem 2. If t is a c-term with the only variables x1, . . . , xn, and if ξ1, . . . , ξn ∈ Λ,
then λx1 . . . λxn t ⋆ ξ1 . . . . . ξn .π ≻ t[ξ1/x1, . . . , ξn/xn] ⋆ π.

Proof by induction on n ; the case n = 0 is trivial.
We have λx1 . . . λxn−1λxn t ⋆ ξ1 . . . . . ξn−1 . ξn . π ≻ (λxnt)[ξ1/x1, . . . , ξn−1/xn−1] ⋆ ξn . π
(by induction hypothesis) ≻ t[ξ1/x1, . . . , ξn−1/xn−1, ξn/xn] ⋆ π by lemma 1.

q.e.d.

Natural deduction

Before giving the formal language that we shall use, it is perhaps useful to describe
informally the structures (models) we have in mind. They are second order structures,
with two types of objects : individuals also called conditions and predicates (of various
arity). Since we remain at an intuitive level, we only consider full models.
Such a model consists of :
• an infinite set P (the set of individuals or conditions).
• the set of k-ary predicates is P(P k) (full model).
• some functions from P k into P .
In particular, there is an individual 0 and a bijective function s : P → (P \ {0}). This
enables us to define the set of integers N as the least set which contains 0 and which is
closed for s.
There is also a condition denoted by 1 and an application denoted by ∧ from P 2 into P .
• some relations (fixed predicates) on P . In particular, we have the equality relation on
individuals and the subset C of non trivial conditions.
C[p∧q] reads as : “p and q are two compatibles conditions”.

We now come to the formal language, in order to write formulas and proofs about such
structures. It consists of :

• individual variables or variables of condition called x, y, . . . or p, q, . . .
• predicate variables or second order variables X, Y, . . . ; each predicate variable has an
arity which is in N.
• function symbols on individuals f, g, . . . ; each one has an arity which is in N.
In particular, there is a function symbol of arity k for each recursive function f : Nk → N.
This symbol will also be written as f .
There is also a constant symbol 1 (which represents the greatest condition) and a binary
function symbol ∧ (which represents the inf of two conditions).

The terms are built in the usual way with variables and function symbols.

The atomic formulas are the expressions X(t1, . . . , tn), where X is an n-ary predicate
variable, and t1, . . . , tn are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols →, ∀ :
• each atomic formula is a formula ;
• if A,B are formulas, then A→ B is a formula ;
• if A is a formula, then ∀xA and ∀X A are formulas.

Notations.
The formula A1 → (A2 → (. . . (An → B) . . .) will be written A1, A2, . . . , An → B.
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The usual logical symbols are defined as follows :
(X is a predicate variable of arity 0, also called propositional variable)
⊥ ≡ ∀X X ; ¬A ≡ A→ ⊥ ; A ∨B ≡ (A→ ⊥), (B → ⊥)→ ⊥ ; A ∧B ≡ (A,B → ⊥)→
⊥ ;
∃ yF ≡ ∀y(F → ⊥)→ ⊥ (where y is an individual or predicate variable).
More generally, we shall write ∃ y{F1, . . . , Fk} for ∀ y(F1, . . . , Fk → ⊥)→ ⊥.

We shall sometimes write ~F for a finite sequence of formulas F1, . . . , Fk ;
Then, we shall also write ∃ y{~F} and ∀ y(~F → ⊥)→ ⊥.

x = y is the formula ∀Z(Zx→ Zy), where Z is a unary predicate variable.

The rules of natural deduction are the following (the Ai’s are formulas, the xi’s are
variables of c-term, t, u are c-terms) :

1. x1 : A1, . . . , xn : An ⊢ xi : Ai.
2. x1 : A1, . . . , xn : An ⊢ t : A → B, x1 : A1, . . . , xn : An ⊢ u : A ⇒ x1 : A1, . . . , xn :
An ⊢ tu : B.
3. x1 : A1, . . . , xn : An, x : A ⊢ t : B ⇒ x1 : A1, . . . , xn : An ⊢ λx t : A→ B.
4. x1 : A1, . . . , xn : An ⊢ t : A ⇒ x1 : A1, . . . , xn : An ⊢ t : ∀xA for every variable x

(individual or predicate) which does not appear in A1, . . . , An.
5. x1 : A1, . . . , xn : An ⊢ t : ∀xA ⇒ x1 : A1, . . . , xn : An ⊢ t : A[τ/x] where x is an
individual variable and τ is a term.
6. x1 : A1, . . . , xn : An ⊢ t : ∀X A ⇒ x1 : A1, . . . , xn : An ⊢ t : A[F/Xy1 . . . yk] where
X est a predicate variable of arity k and F an arbitrary formula.

Remark.

In the notation A[F/Xy1 . . . yk], the variables y1, . . . , yk are bound. A more usual notation is :

A[λy1 . . . λyk F/X]. I prefer this one, to avoid confusion with the λ defined for c-terms.

Realizability

Given a realizability algebra A = (Λ,Π,Λ⋆Π,⊥⊥), a A-modelM consists of the following
data :
• An infinite set P which is the domain of variation of individual variables.
• The domain of variation of k-ary predicate variables is P(Π)P

k

.
• We associate with k-ary each k-ary function symbol f , a function from P k into P ,
denoted by f or even f if there is no ambiguity.
In particular, there is a distinguished element 0 in P and a function s : P → P (which
is the interpretation of the symbol s). We suppose that s is a bijection from P onto
P \ {0}.Then, we can identify sn0 ∈ P with the integer n, and therefore, we have N ⊂ P .
Each recursive function f : Nk → N is, by hypothesis, a function symbol. Of course, we
assume that its interpretation f : P k → P takes the same values as f on N

k.
Finally, we have also a condition 1 ∈ P and a binary function ∧ from P 2 into P .

A closed term (resp. a closed formula) with parameters in the modelM is, by definition,
a term (resp. a formula) in which all free occurrences of each variable have been replaced
with a parameter, i.e. an object of the same type in the model M : a condition for an
individual variable, an application from P k into P(Π) for a k-ary predicate variable.
Each closed term t, with parameters inM has a value t ∈ P .
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An interpretation I is an application which associates an individual (condition) with each
individual variable and a parameter of arity k with each second order k-ary variable.
I[x ← p] (resp. I[X ← X ]) is, by definition, the interpretation obtained by changing,
in I, the value of the variable x (resp. X) and giving to it the value p ∈ P (resp.
X ∈ P(Π)P

k

).
For each formula F (resp. term t), we denote by F I (resp. tI) the closed formula (resp.
term) with parameters obtained by replacing each free variable with the value given by
I.

For each closed formula F I with parameters inM, we define two truth values :
‖F I‖ ⊂ Π and |F I| ⊂ Λ.
|F I| is defined as follows : ξ ∈ |F I| ⇔ (∀π ∈ ‖F I‖) ξ ⋆ π ∈ ⊥⊥.
‖F I‖ is defined by recurrence on F :
• F is atomic : then F I has the form X (t1, . . . , tk) where X : P k → P(Π) and the ti’s
are closed terms with parameters inM. We set ‖X (t1, . . . , tk)‖ = X (t1, . . . , tk).
• F ≡ A→ B : we set ‖F I‖ = {ξ .π ; ξ ∈ |AI |, π ∈ ‖BI‖}.
• F ≡ ∀xA : we set ‖F I‖ =

⋃
{‖AI[x←p]‖ ; p ∈ P}.

• F ≡ ∀X A : we set ‖F I‖ =
⋃
{‖AI[X←X ]‖ ; X ∈ P(Π)P

k

} if X is a k-ary predicate
variable.

Notation. We shall write ξ ||−F for ξ ∈ |F |.

Theorem 3 (Adequacy lemma).
If x1 : A1, . . . , xk : Ak ⊢ t : A and if ξ1 ||−AI1 , . . . , ξk ||−A

I
k , where I is an interpretation,

then t[ξ1/x1, . . . , ξk/xk] ||−AI .
In particular, if A is closed and if ⊢ t : A, then t ||−A.

Proof by recurrence on the length of the derivation of x1 : A1, . . . , xn : An ⊢ t : A.
We consider the last used rule.

1. We have t = xi, A ≡ Ai. Now, we have assumed that ξi ||−AIi ; and it is the desired
result.

2. We have t = uv and we already obtained :
x1 : A1, . . . , xk : Ak ⊢ u : B → A and x1 : A1, . . . , xk : Ak ⊢ v : B.
Given π ∈ ‖AI‖, we must show (uv)[ξ1/x1, . . . , ξk/xk] ⋆ π ∈ ⊥⊥.
By hypothesis on ⊥⊥, it is sufficient to show u[ξ1/x1, . . . , ξk/xk] ⋆ v[ξ1/x1, . . . , ξk/xk] . π ∈
⊥⊥.
By the induction hypothesis, we have v[ξ1/x1, . . . , ξk/xk] ||−BI and therefore :
v[ξ1/x1, . . . , ξk/xk] .π ∈ ‖BI → AI‖.
But, by the induction hypothesis, we have also u[ξ1/x1, . . . , ξk/xk] ||−B

I → AI , hence
the result.

3. We have A = B → C, t = λxu. We must show λxu[ξ1/x1, . . . , ξk/xk] ||−BI → CI ;
thus, we suppose ξ ||−BI , π ∈ ‖CI‖ and we have to show λxu[ξ1/x1, . . . , ξk/xk]⋆ξ .π ∈ ⊥⊥.
By hypothesis on ⊥⊥ and lemma 1, it suffices to show u[ξ/x, ξ1/x1, . . . , ξk/xk] ⋆ π ∈ ⊥⊥.
But this follows from the induction hypothesis applied to x1 : A1, . . . , xn : An, x : B ⊢ u :
C.

4. We have A ≡ ∀X B, and X is not free in A1, . . . , An. We must show :
t[ξ1/x1, . . . , ξk/xk] ||− (∀X B)I , i.e. t[ξ1/x1, . . . , ξk/xk] ||−BJ with J = I[X ← X ]. But,
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by hypothesis, ξi ||−AIi therefore ξi ||−A
J
i : indeed, since X is not free in Ai, we have :

‖AIi ‖ = ‖A
J
i ‖. Then, the induction hypothesis gives the result.

6. We have A = B[F/Xy1 . . . yn] and we must show :
t[ξ1/x1, . . . , ξk/xk] ||−B[F/Xy1 . . . yn]

I assuming that t[ξ1/x1, . . . , ξk/xk] ||− (∀X B)I .
This follows from lemma 4.

q.e.d.

Lemma 4. ‖B[F/Xy1 . . . yn]
I‖ = ‖BI[X←X ]‖ where X : P n → P(Π) is defined by :

X (p1, . . . , pn) = ‖F
I[y1←p1,...,yn←pn]‖.

The proof is by induction on B. That is trivial if X is not free in B. Indeed, the only
non trivial case of the induction is B = ∀Y C ; and then, we have Y 6= X and :
‖B[F/Xy1 . . . yn]

I‖ = ‖(∀Y C[F/Xy1 . . . yn])I‖ =
⋃
Y ‖C[F/Xy1 . . . yn]

I[Y←Y ]‖.

By induction hypothesis, this gives
⋃
Y ‖C

I[Y←Y ][X←X ]‖, that is
⋃
Y ‖C

I[X←X ][Y←Y ]‖ i.e.

‖(∀Y C)I[X←X ]‖.
q.e.d.

Lemma 5. Let X ,Y ⊂ Π be truth values. If π ∈ X , then kπ ||−X → Y.

Suppose ξ ||−X and ρ ∈ Y ; we must show kπ ⋆ ξ . ρ ∈ ⊥⊥, that is ξ ⋆ π ∈ ⊥⊥, which is
clear.

q.e.d.

Proposition 6 (Law of Peirce). cc ||−∀X∀Y (((X → Y )→ X)→ X).

We want to show that cc ||− ((X → Y) → X )→ X . Thus, we take ξ ||− (X → Y) → X
and π ∈ X ; we must show that cc ⋆ ξ . π ∈ ⊥⊥, that is ξ ⋆ kπ .π ∈ ⊥⊥. By hypothesis on
ξ and π, it is sufficient to show that kπ ||−X → Y , which results from lemma 5.

q.e.d.

Proposition 7.
i) If ξ ||−A→ B, then ∀η(η ||−A⇒ ξη ||−B).
ii) If ∀η(ξ ||−A⇒ ξη ||−B), then (E)ξ ||−A→ B.

i) From ξη ⋆ π ≻ ξ ⋆ η .π.
ii) From (E)ξ ⋆ η .π ≻ ξη ⋆ π.

q.e.d.

Predicate symbols

In the following, we shall use extended formulas which contain predicate symbols (or
predicate constants) on individuals R,S,. . . Each one has an arity, which is an integer.
In particular, we have a unary predicate symbol C (which represents the set of non trivial
conditions).
We have to add some rules of construction of formulas :

• If F is a formula, R is a n-ary predicate constant and t1, . . . , tn are terms, then
R(t1, . . . , tn)→ F and R(t1, . . . , tn) 7→ F are formulas.
• ⊤ is an atomic formula.
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In the definition of a A-modelM, we add the following clause :

• With each relation symbol R of arity n, we associate an application, denoted by RM or
R, from P n into P(Λ). We shall also write |R(p1, . . . , pn)|, instead of R(p1, . . . , pn), for
p1, . . . , pn ∈ P .
In particular, we have an application C : P → P(Λ), which we denote as |C[p]|.

We define as follows the truth value inM of an extended formula :

‖⊤‖ = ∅.
‖(R(t1, . . . , tn)→ F )I‖ = {t .π; t ∈ |R(tI1 , . . . , tIn)|, π ∈ ‖F I‖}.
‖(R(t1, . . . , tn) 7→ F )I‖ = ‖F I‖ if I ∈ |R(tI1 , . . . , t

I
n)| ;

‖(R(t1, . . . , tn) 7→ F )I‖ = ∅ otherwise.

Proposition 8.
i) λx(x)I ||−∀X∀x1 . . .∀xn[(R(x1, . . . , xn)→ X)→ (R(x1, . . . , xn) 7→ X)].
ii) If we have |R(p1, . . . , pn)| 6= ∅ ⇒ I ∈ |R(p1, . . . , pn)| for every p1, . . . , pn ∈ P , then :
K ||−∀X∀x1 . . .∀xn[(R(x1, . . . , xn) 7→ X)→ (R(x1, . . . , xn)→ X)].

Trivial.
q.e.d.

Remark. By means of proposition 8, we see that, if the application R : Pn → P(Λ) takes only

the values {I} and ∅, we can replace R(t1, . . . , tn)→ F with R(t1, . . . , tn) 7→ F .

We define the binary predicate ≃ by putting |p ≃ q| = {I} if p = q and |p ≃ q| = ∅ if
p 6= q.
By the above remark, we can replace p ≃ q → F with p ≃ q 7→ F . The proposition 9
shows that we can also replace p = q → F with p ≃ q 7→ F .

Notations. We shall write p = q 7→ F instead of p ≃ q 7→ F . Thus, we have :
‖p = q 7→ F‖ = ‖F‖ if p = q ; ‖p = q 7→ F‖ = ∅ if p 6= q.
We shall write p 6= q for p = q 7→ ⊥. Thus, we have :
‖p 6= q‖ = Π if p = q and ‖p 6= q‖ = ∅ if p 6= q.

Using p = q 7→ F instead of p = q → F , and p 6= q instead of p = q → ⊥, greatly
simplifies the computation of the truth value of a formula which contains the symbol =.

Proposition 9.
i) λxxI ||−∀X∀x∀y((x = y → X)→ (x = y 7→ X)) ;
ii) λxλy yx ||−∀X∀x∀y((x = y 7→ X), x = y → X).

i) Let a, b ∈ P , X ⊂ Π, ξ ||− a = b→ X and π ∈ ‖a = b 7→ X‖.
Then, we have a = b, thus I ||− a = b, therefore ξ ⋆ I .π ∈ ⊥⊥, thus λxxI ⋆ ξ . π ∈ ⊥⊥.
ii) Now let η ||− (a = b 7→ X ), ζ ||− a = b and ρ ∈ ‖X‖.
We show that λxλy yx ⋆ η . ζ . ρ ∈ ⊥⊥ in other words ζ ⋆ η . ρ ∈ ⊥⊥.
If a = b, then η ||−X , ζ ||−∀Y (Y → Y ). We have η . ρ ∈ ‖X → X‖, thus ζ ⋆ η . ρ ∈ ⊥⊥.
If a 6= b, then ζ ||−⊤ → ⊥, thus ζ ⋆ η . ρ ∈ ⊥⊥.
In both cases, we get the desired result.

q.e.d.

Remark.

Let R be a subset of P k and 1R : P k → {0, 1} its characteristic function, defined as follows :
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1R(p1, . . . , pn) = 1 (resp. = 0) if (p1, . . . , pn) ∈ R (resp. (p1, . . . , pn) /∈ R).

Let us define the predicate R in the modelM by putting :

|R(p1, . . . , pn)| = {I} (resp. = ∅) if (p1, . . . , pn) ∈ R (resp. (p1, . . . , pn) /∈ R).

By propositions 8 and 9, we see that R(x1, . . . , xn) and 1R(x1, . . . , xn) = 1 are interchangeable.

More precisely, we have : I ||− ∀X∀x1 . . . ∀xn((R(x1, . . . , xn) 7→ X) ↔ (1R(x1, . . . , xn) = 1 7→

X)).

For each formula A[x1, . . . , xk], we can define the k-ary predicate symbol NA, by putting
|NA(p1, . . . , pk)| = {kπ; π ∈ ‖A[p1, . . . , pk]‖}. Proposition 10 below shows that NA and
¬A are interchangeable ; this may simplify truth value computations.

Proposition 10.
i) I ||−∀x1 . . .∀xk(NA(x1, . . . , xk)→ ¬A(x1, . . . , xk)) ;
ii) cc ||−∀x1 . . .∀xk((NA(x1, . . . , xk)→ ⊥)→ A(x1, . . . , xk)).

i) Let p1, . . . , pk ∈ P , π ∈ ‖A(p1, . . . , pk)‖, ξ ||−A(p1, . . . , pk) and ρ ∈ Π. We must show :
I ⋆ kπ . ξ . ρ ∈ ⊥⊥, that is ξ ⋆ π ∈ ⊥⊥, which is obvious.
ii) Let η ||−NA(p1, . . . , pk)→ ⊥ and π ∈ ‖A(p1, . . . , pk)‖. We must show :
cc ⋆ η . π ∈ ⊥⊥, i.e. η ⋆ kπ . π ∈ ⊥⊥, which is clear, since kπ ∈ |NA(p1, . . . , pk)|.

q.e.d.

Fixed point combinator

Theorem 11. Let Y = AA with A = λaλf(f)(a)af . Then, we have Y⋆ξ . π ≻ ξ⋆Yξ . π.
Let f : P 2 → P such that f(x, y) = 1 is a well founded relation on P . Then :
i) Y ||−∀X{∀x[∀y(f(y, x) = 1 7→ Xy)→ Xx]→ ∀xXx}.
ii) Y ||−∀X1 . . .∀Xk

{∀x[∀y(X1y, . . . , Xky → f(y, x) 6= 1), X1x, . . . , Xkx→ ⊥]→ ∀x(X1x, . . . , Xkx→ ⊥)}.

The property Y ⋆ ξ .π ≻ ξ ⋆ Yξ .π is immediate, from theorem 2.
i) We take X : P → P(Π), p ∈ P and ξ ||− ∀x[∀y(f(y, x) = 1 7→ X y)→ Xx]. We show,
by induction on the well founded relation f(x, y) = 1, that Y⋆ξ .π ∈ ⊥⊥ for every π ∈ X p.
Let π ∈ X p ; from (i), we get Y ⋆ ξ .π ≻ ξ ⋆ Yξ . π and thus, it is sufficient to prove
that ξ ⋆ Yξ .π ∈ ⊥⊥. By hypothesis, we have ξ ||− ∀y(f(y, p) = 1 7→ X y)→ X p ; thus, it
suffices to show that Yξ ||− f(q, p) = 1 7→ X q for every q ∈ P . This is clear if f(q, p) 6= 1,
by definition of 7→.
If f(q, p) = 1, we must show Yξ ||−X q, i.e. Y ⋆ ξ . ρ ∈ ⊥⊥ for every ρ ∈ X q. But this
follows from the induction hypothesis.

ii) The proof is almost the same : take X1, . . . ,Xk : P → P(Π), p ∈ P and
ξ ||−∀x[∀y(X1y, . . . ,Xky → f(y, x) 6= 1),X1x, . . . ,Xkx → ⊥]. We show, by induction on
the well founded relation f(x, y) = 1, that Y⋆ξ .π ∈ ⊥⊥ for every π ∈ ‖X1p, . . . ,Xkp→ ⊥‖.
As before, we have to show that : Yξ ||−X1q, . . . ,Xkq → f(q, p) 6= 1 for all q ∈ P ;
this is obvious if f(q, p) 6= 1. If f(q, p) = 1, we must show Yξ ||−X1q, . . . ,Xkq → ⊥, or
else :
Y ⋆ ξ . ρ ∈ ⊥⊥ for every ρ ∈ ‖X1q, . . . ,Xkq → ⊥‖. But this follows from the induction
hypothesis.

q.e.d.
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Integers, storage and recursive functions

Recall that we have a constant symbol 0 and a unary function symbol s which is inter-
preted, in the modelM by a bijective function s : P → (P \ {0}).
And also, that we have identified sn0 with the integer n ; thus, we suppose N ⊂ P .

We denote by int(x) the formula ∀X(∀y(Xy → Xsy), X0→ Xx).

Let u = (un)n∈N be a sequence of elements of Λ. We define the unary predicate symbol
eu by putting : |eu(sn0)| = {un} ; |eu(p)| = ∅ if p /∈ N.

Theorem 12. Let Tu, Su ∈ Λ be such that Su ||− (⊤ → ⊥),⊤ → ⊥ and :
Tu ⋆ φ . ν . π ≻ ν ⋆ Su .φ .u0 . π ; Su ⋆ ψ .un . π ≻ ψ ⋆ un+1 . π
for every ν, φ, ψ ∈ Λ and π ∈ Π. Then :
Tu ||−∀X∀x[(eu(x)→ X), int(x)→ X ].
Tu is called a storage operator.

Let p ∈ P , φ ||− eu(p)→ X , ν ||− int(p) and π ∈ ‖X‖. We must show Tu ⋆φ . ν .π ∈ ⊥⊥
i.e. ν ⋆ Su .φ .u0 . π ∈ ⊥⊥.
• If p /∈ N, we define the unary predicate Y by putting :
Y (q) ≡ ⊤ if q ∈ N ; Y (q) ≡ ⊤ → ⊥ if q /∈ N.
Thus, we have obviously φ ||−Y (0) and u0 .π ∈ ‖Y (p)‖.
But, by hypothesis on ν, we have ν ||−∀y(Y y → Y sy), Y 0→ Y p.
Thus, it is sufficient to show that :
Su ||−∀y(Y y → Y sy), i.e. Su ||−Y (q)→ Y (sq) for every q ∈ P .
This is clear if q ∈ N, since we have ‖Y (sq)‖ = ∅.
If q /∈ N, we must show Su ||− (⊤ → ⊥),⊤ → ⊥, which follows from the hypothesis.

• If p ∈ N, we have p = sp0 ; we define the unary predicate Y by putting :
‖Y si0‖ = {up−i .π} for 0 ≤ i ≤ p and ‖Y q‖ = ∅ if q /∈ {si0; 0 ≤ i ≤ p}.
By hypothesis on ν, φ, π, we have :
ν ||−∀y(Y y → Y sy), Y 0→ Y sp0 ; φ ||−Y 0 ; u0 .π ∈ ‖Y sp0‖.
Thus, it suffices to show that Su ||−∀y(Y y → Y sy), i.e. Su ||−Y q → Y sq for every q ∈ P .
This is clear if q /∈ {si0; 0 ≤ i < p}, since then ‖Y sq‖ = ∅.
If q = si0 with i < p, let ξ ||−Y q ; we must show Su ⋆ ξ .up−i−1 . π ∈ ⊥⊥.
But we have Su ⋆ ξ .up−i−1 . π ≻ ξ ⋆ up−i .π which is in ⊥⊥, by hypothesis on ξ.

q.e.d.

Notation. We define the closed c-terms 0 = λxλy y ; σ = λnλfλx(f)(n)fx ; and, for
each n ∈ N, we put n = (σ)n0. We define the unary predicate symbol ent(x) by putting :
|ent(n)| = {n} if n ∈ N ;
|ent(p)| = ∅ if p /∈ N.
In other words, ent(x) is the predicate eu(x) when the sequence u is (n)n∈N.

Theorem 13.
We put T = λfλn(n)Sf0, with S = λgλx(g)(σ)x. Then, we have :
i) T ||−∀X∀x((ent(x)→ X), int(x)→ X).
ii) I ||−∀x((ent(x)→int(x)).

Therefore, T is a storage operator (theorem 12).
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i) We immediately have, by theorem 2 :
T ⋆ φ . ν .π ≻ ν ⋆ S .φ . 0 . π ; S ⋆ ψ . (σ)n0 . π ≻ ψ ⋆ (σ)n+10 . π
for every ν, φ, ψ ∈ Λ and π ∈ Π.
Now, we check that S ||− (⊤ → ⊥),⊤ → ⊥ : indeed, if ξ ||−⊤ → ⊥, then S ⋆ ξ . η .π ≻
ξ ⋆ ση .π ∈ ⊥⊥ for every η ∈ Λ and π ∈ Π (by theorem 2).
Then, the result follows immediately, from theorem 12.

ii) We must show I ||− ent(p) → int(p) for every p ∈ P . We may suppose p ∈ N

(otherwise ent(p) = ∅ and the result is trivial). Then, we must show :
I ⋆ σp0 . ρ ∈ ⊥⊥ knowing that ρ ∈ ‖int(sp0)‖.
Therefore, we can find a unary predicate X : P → P(Π), φ ||−∀y(Xy → Xsy), ω ||−X0
and π ∈ ‖Xsp0‖ such that ρ = φ .ω . π. We must show (σ)p0 ⋆ φ .ω .π ∈ ⊥⊥. In fact,
we show by recurrence on p, that (σ)p0 ⋆ φ .ω . π ∈ ⊥⊥ for all π ∈ ‖Xsp0‖.
If p = 0, let π ∈ ‖X0‖ ; we must show 0 ⋆ φ .ω .π ∈ ⊥⊥, i.e. ω ⋆ π ∈ ⊥⊥, which is clear,
since ω ||−X0.
To move up from p to p+ 1, let π ∈ ‖Xsp+10‖. We have :
σp+10 ⋆ φ .ω . π ≡ (σ)(σ)p0 ⋆ φ .ω .π ≻ σ ⋆ σp0 .φ .ω .π ≻ φ ⋆ (σp0)φω .π.
But, by induction hypothesis, we have σp0⋆φ .ω . ρ ∈ ⊥⊥ for every ρ ∈ ‖Xsp0‖. It follows
that (σp0)φω ||−Xsp0. Since φ ||−Xsp0→ Xsp+10, we obtain φ ⋆ (σp0)φω . π ∈ ⊥⊥.

q.e.d.

Theorem 13 shows that we can use the predicate ent(x) instead of int(x), which greatly
simplifies many computations. In particular, we define the universal quantifier restricted
to integers ∀xint by putting ∀xintF ≡ ∀x(int(x)→ F ).
Thus, we can replace it with the universal quantifier restricted to ent(x) defined as follows :
∀xent F ≡ ∀x(ent(x) → F ). Then, we have ‖∀xent F‖ = {n . π; n ∈ N, π ∈ ‖F [sn0/x]‖}.
Therefore, the truth value of the formula ∀xent F is much simpler than the one of the

formula ∀x
int
F .

Theorem 14. Let φ : N → N be a recursive function. There exists a closed λ-term θ
such that, if m ∈ N, n = φ(m) and f is a λ-variable, then θmf reduces into fn by weak
head reduction.

This is a variant of the theorem of representation of recursive functions by λ-terms. It is
proved in [12].

q.e.d.

Theorem 15. Let φ : Nk → N be a recursive function. We define, in M, a function
symbol f , by putting f(sm10, . . . , smk0) = sn0 with n = φ(m1, . . . , mk) ; we extend f on
P k \ Nk in an arbitrary way. Then, there exists a proof-like term θ such that :
θ ||−∀x1 . . .∀xk[int(x1), . . . , int(xk)→int(f(x1, . . . , xk))].

For simplicity, we assume k = 1. By theorem 13, it suffices to find a proof-like term θ
such that θ ||−∀x[ent(x), (ent(f(x)) → ⊥)→ ⊥]. In other words :
θ ||− ent(p), (ent(f(p))→ ⊥)→ ⊥ for every p ∈ P .
We can suppose that p = sm0 (otherwise, —ent(p)| = ∅ and the result is trivial).
Thus, we have ent(p) = {m} ; we must show :
θ ⋆ m . ξ .π ∈ ⊥⊥ for all π ∈ Π and ξ ||− ent(sn0)→ ⊥, with n = φ(m).
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Take the λ-term θ given by theorem 14. From this theorem, we get :
θ ⋆ m . ξ .π ≻ ξ ⋆ n . π, which is in ⊥⊥, by hypothesis on ξ.

q.e.d.

Remark. We have now found proof-like terms which realize all the axioms of second order

arithmetic, with a function symbol for each recursive function.

Standard algebras

A realizability algebra A is called standard if its set of terms Λ and its set of stacks Π are
defined as follows :
We have a countable set Π0 which is the set of stack constants.
The terms and the stacks of A are finite sequences of elements of the set :

Π0 ∪ {B,C,E, I,K,W, cc, ς, χ, χ′, k, (, ), [, ], . }
which are obtained by the following rules :

• B,C,E, I,K,W, cc, ς, χ, χ′ are terms ;
• each element of Π0 is a stack ;
• if ξ, η are terms, then (ξ)η is a term ;
• if ξ is a term and π a stack, then ξ . π is a stack ;
• if π is a stack, then k[π] is a term.

A term of the form k[π] is called continuation. It will also be denoted as kπ.

The set of processes of the algebra A is Λ×Π.
If ξ ∈ Λ and π ∈ Π, the ordered pair (ξ, π) is denoted as ξ ⋆ π.

Therefore, a stack has the form π = ξ1 . . . . . ξn . π0, where ξ1, . . . , ξn ∈ Λ and π0 ∈ Π0

(π0 is a stack constant).
Given a term τ , we put πτ = ξ1 . . . . . ξn . τ .π0.
We choose a recursive bijection from Π onto N, which is written π 7→ nπ.

We define a preorder relation ≻, on Λ ⋆Π. It is the least reflexive and transitive relation
such that, for all ξ, η, ζ ∈ Λ and π,̟ ∈ Π, we have :

(ξ)η ⋆ π ≻ ξ ⋆ η .π.
I ⋆ ξ .π ≻ ξ ⋆ π.
K ⋆ ξ . η .π ≻ ξ ⋆ π.
E ⋆ ξ . η .π ≻ (ξ)η ⋆ π.
W ⋆ ξ . η . π ≻ ξ ⋆ η . η . π.
C ⋆ ξ . η . ζ .π ≻ ξ ⋆ ζ . η . π.
B ⋆ ξ . η . ζ . π ≻ (ξ)(η)ζ ⋆ π.
cc ⋆ ξ .π ≻ ξ ⋆ kπ . π.
kπ ⋆ ξ .̟ ≻ ξ ⋆ π.
ς ⋆ ξ . π ≻ ξ ⋆ nπ .π.
χ ⋆ ξ . πτ ≻ ξ ⋆ τ . π.
χ′ ⋆ ξ . τ .π ≻ ξ ⋆ πτ .

Finally, we have a subset ⊥⊥ of Λ ⋆ Π which is a final segment for this preorder, which
means that : p ∈ ⊥⊥, p′ ≻ p ⇒ p′ ∈ ⊥⊥.
In other words, we ask that ⊥⊥ has the following properties :

13



(ξ)η ⋆ π /∈ ⊥⊥ ⇒ ξ ⋆ η .π /∈ ⊥⊥.
I ⋆ ξ .π /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.
K ⋆ ξ . η .π /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.
E ⋆ ξ . η .π /∈ ⊥⊥ ⇒ (ξ)η ⋆ π /∈ ⊥⊥.
W ⋆ ξ . η . π /∈ ⊥⊥ ⇒ ξ ⋆ η . η .π /∈ ⊥⊥.
C ⋆ ξ . η . ζ .π /∈ ⊥⊥ ⇒ ξ ⋆ ζ . η .π /∈ ⊥⊥.
B ⋆ ξ . η . ζ . π /∈ ⊥⊥ ⇒ (ξ)(η)ζ ⋆ π /∈ ⊥⊥.
cc ⋆ ξ .π /∈ ⊥⊥ ⇒ ξ ⋆ kπ .π /∈ ⊥⊥.
kπ ⋆ ξ .̟ /∈ ⊥⊥ ⇒ ξ ⋆ π /∈ ⊥⊥.
ς ⋆ ξ . π /∈ ⊥⊥ ⇒ ξ ⋆ nπ . π /∈ ⊥⊥.
χ ⋆ ξ . πτ /∈ ⊥⊥ ⇒ ξ ⋆ τ .π /∈ ⊥⊥.
χ′ ⋆ ξ . τ .π /∈ ⊥⊥ ⇒ ξ ⋆ πτ /∈ ⊥⊥.

Remark. Thus, the only free element in a standard realizability algebra is the set ⊥⊥ of
processes.

The axiom of choice for individuals (ACI)

Let A be a standard realizability algebra and M a A-model, the set of individuals of
which is denoted as P . Then, we have :

Theorem 16 (ACI). For each closed formula ∀x1 . . .∀xm∀y F with parameters, there
exists a function f : Pm+1 → P such that :
i) ς ||−∀x1 . . .∀xm(∀x(int(x)→ F [f(x1, . . . , xm, x)/y])→ ∀y F ).
ii) ς ||−∀x1 . . .∀xm(∀x(ent(x)→ F [f(x1, . . . , xm, x)/y])→ ∀y F ).

For p1, . . . , pm, k ∈ P , we define f(p1, . . . , pm, k) in an arbitrary way if k /∈ N.
If k ∈ N, we have k = nπk

for one and only one stack πk ∈ Π.
We define the function f(p1, . . . , pm, k) by means of the axiom of choice, in such a way
that, if there exists q ∈ P such that :
πk ∈ ‖F [p1, . . . , pm, q]‖, then we have πk ∈ ‖F [p1, . . . , pm, f(p1, . . . , pm, k)]‖.

i) We must show ς ||−∀x(int(x)→ F [p1, . . . , pm, f(p1, . . . , pm, x)])→ F [p1, . . . , pm, q], for
every p1, . . . , pm, q ∈ P .
Thus, let ξ ||− ∀x(int(x)→ F [p1, . . . , pn, f(p1, . . . , pn, x)]) and π ∈ ‖F [p1, . . . , pm, q]‖ ; we
must show ς ⋆ ξ .π ∈ ⊥⊥, that is ξ ⋆ nπ . π ∈ ⊥⊥. But we have :
ξ ||− int(nπ)→ F [p1, . . . , pm, f(p1, . . . , pm, nπ)] by hypothesis on ξ ;
nπ ||− int(nπ) by theorem 3 ;
π ∈ ‖F [p1, . . . , pm, f(p1, . . . , pm, nπ)]‖ by hypothesis on π and by definition of f .

ii) The proof is the same ; we simply observe that nπ ∈ |ent(nπ)|.
q.e.d.

Generic models

Given a standard realizability algebra A and a A-modelM, we now build a new realiz-
ability algebra B and a B-model N , which is called generic overM. Then, we shall define
the notion of forcing, which is a syntactic transformation on formulas ; it is the essential
tool in order to compute truth values in the generic model N .
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Thus, we consider a standard realizability algebra A and a A-modelM, the set of indi-
viduals of which is P .
We have a unary predicate C : P → P(Λ), a binary function ∧ : P 2 → P and a distin-
guished individual 1 ∈ P . We suppose that the data {C, ∧, 1} constitute what we call a
forcing structure inM, which means that we have the following property :

There exist six proof-like terms α0, α1, α2, β0, β1, β2 such that :

τ ∈ |C[(p∧q)∧r]| ⇒ α0τ ∈ |C[p∧(q∧r)]| ;
τ ∈ |C[p]| ⇒ α1τ ∈ |C[p∧1]| ;
τ ∈ |C[p∧q]| ⇒ α2τ ∈ |C[q]| ;
τ ∈ |C[p]| ⇒ β0τ ∈ |C[p∧p]| ;
τ ∈ |C[p∧q]| ⇒ β1τ ∈ |C[q∧p]| ;
τ ∈ |C[((p∧q)∧r)∧s]| ⇒ β2τ ∈ |C[(p∧(q∧r))∧s]|.

We shall call C-expression any finite sequence of symbols of the form γ = (δ0)(δ1) . . . (δk)
where each δi is one of the proof-like terms α0, α1, α2, β0, β1, β2.
Such an expression is not a c-term, but γτ is, for every c-term τ ;
the term γτ = (δ0)(δ1) . . . (δk)τ will also be written (γ)τ .

Notation. A ∧-term is, by definition, a term which is written with the variables
p1, . . . , pk, the constant 1 and the binary function symbol ∧. Let t(p1, . . . , pk), u(p1, . . . , pk)
be two ∧-terms. The notation :

γ :: t(p1, . . . , pk)⇒ u(p1, . . . , pk)
means that γ is a C-expression such that τ ∈ |C[t(p1, . . . , pk)]| ⇒ (γ)τ ∈ |C[u(p1, . . . , pk)]|.

Thus, with this notation, the above hypothesis can be written as follows :

α0 :: (p∧q)∧r ⇒ p∧(q∧r) ; α1 :: p⇒ p∧1 ; α2 :: p∧q ⇒ q ;
β0 :: p⇒ p∧p ; β1 :: p∧q ⇒ q∧p ; β2 :: ((p∧q)∧r)∧s⇒ (p∧(q∧r))∧s.

Lemma 17. There exist C-expressions β ′0, β
′
1, β

′
2, β3, β

′
3 such that :

β ′0 :: p∧q ⇒ (p∧q)∧q ; β ′1 :: (p∧q)∧r ⇒ (q∧p)∧r ; β ′2 :: p∧(q∧r)⇒ (p∧q)∧r ;
β3 :: p∧(q∧r)⇒ p∧(r∧q) ; β ′3 :: (p∧(q∧r))∧s⇒ (p∧(r∧q))∧s.

We write the sequence of transformations, with the C-expressions which perform them :

• β ′0 = (β1)(α2)(α0)(β0).
p∧q; β0 ; (p∧q)∧(p∧q) ; α0 ; p∧(q∧(p∧q)) ; α2 ; q∧(p∧q) ; β1 ; (p∧q)∧q.

• β ′2 = (β1)(α0)(β1)(α0)(β1).
p∧(q∧r) ; β1 ; (q∧r)∧p ; α0 ; q∧(r∧p) ; β1 ; (r∧p)∧q ; α0 ; r∧(p∧q) ; β1 ; (p∧q)∧r.

• β ′1 = (α2)(α0)(β2)(β1)(α0)(α2)(β1)(β
′
2)(β

′
0)(β1).

(p∧q)∧r ; β1 ; r∧(p∧q) ; β
′
0 (r∧(p∧q))∧(p∧q) ; β ′2 ; ((r∧(p∧q))∧p)∧q ; β1 ; q∧((r∧(p∧q))∧p) ;

α2 ; (r∧(p∧q))∧p ; α0 ; r∧((p∧q)∧p) ; β1 ; ((p∧q)∧p)∧r ; β2 ; (p∧(q∧p))∧r ; α0 ;
p∧((q∧p)∧r) ; α2 ; (q∧p)∧r.

• β3 = (β1)(β
′
1)(β1).

p∧(q∧r) ; β1 ; (q∧r)∧p ; β
′
1 ; (r∧q)∧p ; β1 ; p∧(r∧q).

• β ′3 = (β ′1)(β
′
2)(β

′
1)(α0)(β

′
1).

(p∧(q∧r))∧s ; β ′1 ; ((q∧r)∧p)∧s ; α0 ; (q∧r)∧(p∧s) ; β
′
1 ; (r∧q)∧(p∧s) ; β

′
2 ; ((r∧q)∧p)∧s ;

β ′1 ; (p∧(r∧q))∧s.
q.e.d.
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Theorem 18. Let t, u be two ∧-terms such that each variable of u appears in t. Then,
there exists a C-expression γ such that γ :: t⇒ t∧u.

Lemma 19. Let t be a ∧-term and p a variable of t. Then, there exists a C-expression
γ such that γ :: t⇒ t∧p.

Proof by induction on the number of symbols of t which stand after the last occurrence
of p. If this number is 0, then t = p or t = u∧p. Then, we have γ = β0 or β ′0 (lemma 17).
Otherwise, we have t = u∧v ; if the last occurrence of p is in u, the recurrence hypothesis
gives γ′ :: v∧u⇒ (v∧u)∧p. Then, we have γ = (β ′1)(γ

′)(β1).
If the last occurrence of p is in v, we have v = v0∧v1. If this occurrence is in v0, the
recurrence hypothesis gives γ′ :: u∧(v1∧v0) ⇒ (u∧(v1∧v0))∧p. We put γ = (β ′3)(γ

′)(β3)
(lemma 17).
If this occurrence is in v1, the recurrence hypothesis gives
γ′ :: (u∧v0)∧v1 ⇒ ((u∧v0)∧v1)∧p. Then, we put γ = (β2)(γ

′)(β ′2).
q.e.d.

We show theorem 18 by recurrence on the length of u.
If u = 1, then γ = α1 ; if u is a variable, we apply lemma 19.
If u = v∧w, the recurrence hypothesis gives γ′ :: t⇒ t∧v and also γ′′ :: t∧v ⇒ (t∧v)∧w.
Then, we put γ = (α0)(γ

′′)(γ′).
q.e.d.

Corollary 20. Let t, u be two ∧-terms such that each variable of u appears in t. Then,
there exists a C-expression γ such that γ :: t⇒ u.

By theorem 18, we have γ′ :: t⇒ t∧u. Thus, we can put γ = (α2)(γ
′).

q.e.d.

Corollary 21. There exist C-expressions γ0, γI , γK, γE, γW , γC, γB, γcc, γk such that :
γI :: p∧q ⇒ q ; γK :: 1∧(p∧(q∧r))⇒ p∧r ; γE :: 1∧(p∧(q∧r))⇒ (p∧q)∧r ;
γW :: 1∧(p∧(q∧r))⇒ p∧(q∧(q∧r)) ; γC :: 1∧(p∧(q∧(r∧s)))⇒ p∧(r∧(q∧s)) ;
γB :: 1∧(p∧(q∧(r∧s)))⇒ (p∧(q∧r))∧s ; γcc :: 1∧(p∧q)⇒ p∧(q∧q) ;
γk :: p∧(q∧r)⇒ q∧p.

Lemma 22. For each C-expression γ, we put γ = λx(χ)λy(χ′x)(γ)y.
Then, we have γ ⋆ ξ .πτ ≻ ξ ⋆ πγτ .

Tis is immediate, by means of theorem 2. We could take also γ = (χ)λxλy(χ′y)(γ)x.
q.e.d.

Proposition 23. If we have γ :: t(p1, . . . , pk)]⇒ u(p1, . . . , pk), then :
(γ ⋆ ξ . π, t(p1, . . . , pk)) ≻ (ξ ⋆ π, u(p1, . . . , pk)).

Suppose that (γ ⋆ ξ . π, t(p1, . . . , pk)) /∈ ⊥⊥⊥. Thus, there exists τ ∈ C[t(p1, . . . , pk)] such
that :
γ ⋆ ξ . πτ /∈ ⊥⊥. Therefore, we have ξ ⋆ πγτ /∈ ⊥⊥ et γτ ∈ C[u(p1, . . . , pk)]. It follows that :
(ξ ⋆ π, u(p1, . . . , pk)) /∈ ⊥⊥⊥.

q.e.d.
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The algebra B

We define now a realizability algebra B : its set of terms is Λ = Λ×P , its set of stacks is
Π = Π×P and its set of processes is Λ = (Λ ⋆ Π)×P .
The set of processes ⊥⊥B of this algebra is denoted by ⊥⊥⊥. It is defined as follows :
(ξ ⋆ π, p) ∈ ⊥⊥⊥ ⇔ (∀τ ∈ C[p]) ξ ⋆ πτ ∈ ⊥⊥.

For (ξ, p) ∈ Λ and (π, q) ∈ Π), we put :

(ξ, p) ⋆ (π, q) = (ξ ⋆ π, p∧q) ;
(ξ, p) . (π, q) = (ξ . π, p∧q).
For (ξ, p), (η, q) ∈ Λ, we put :

(ξ, p)(η, q) = (α0ξη, p∧q).

Lemma 24. We have (ξ, p)(η, q) ⋆ (π, r) /∈ ⊥⊥⊥ ⇒ (ξ, p) ⋆ (η, q) . (π, r) /∈ ⊥⊥⊥.

By hypothesis, we have (α0ξη ⋆ π, (p∧q)∧r) /∈ ⊥⊥⊥ ; thus, there exists τ ∈ C[(p∧q)∧r] such
that :
α0ξη ⋆ π

τ /∈ ⊥⊥. By lemma 22, we have ξ ⋆ η . πα0τ /∈ ⊥⊥ ; since α0τ ∈ C[p∧(q∧r)], we have
(ξ ⋆ η .π, p∧(q∧r)) /∈ ⊥⊥ and thus (ξ, p) ⋆ (η, q) . (π, r) /∈ ⊥⊥⊥.

q.e.d.

We define the elementary combinators B, C, E, I, K, W, cc of the l’algebra B by
putting :

B = (B∗, 1) ; C = (C∗, 1) ; E = (E∗, 1) ; I = (I∗, 1) ; K = (K∗, 1) ; W = (W ∗, 1) ; cc
= (cc∗, 1)
with B∗ = λxλyλz(γB)(α0x)(α0)yz ; C∗ = γCC ; E∗ = λxλy(γE)(α0)xy ; I∗ = γII ;
K∗ = γKK ; W ∗ = γWW ; cc∗ = (χ)λxλy(cc)λk((χ′y)(γcc)x)(χ)λxλy(k)(χ

′y)(γk)x.

We put k(π,p) = (k∗π, p) with k∗π = (χ)λxλy(kπ)(χ
′y)(γk)x.

Theorem 25. For every ξ̃, η̃, ζ̃ ∈ Λ and π̃, ˜̟ ∈ Π, we have :
I ⋆ ξ̃ . π̃ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ π̃ /∈ ⊥⊥⊥ ;
K ⋆ ξ̃ . η̃ . π̃ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ π̃ /∈ ⊥⊥⊥ ;
E ⋆ ξ̃ . η̃ . π̃ /∈ ⊥⊥⊥ ⇒ (ξ̃)η̃ ⋆ π̃ /∈ ⊥⊥⊥ ;
W ⋆ ξ̃ . η̃ . π̃ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ η̃ . η̃ . π̃ /∈ ⊥⊥⊥.
B ⋆ ξ̃ . η̃ . ζ̃ . π̃ /∈ ⊥⊥⊥ ⇒ (ξ̃)(η̃)ζ̃ ⋆ π̃ /∈ ⊥⊥⊥ ;
C ⋆ ξ̃ . η̃ . ζ̃ . π̃ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ ζ̃ . η̃ . π̃ /∈ ⊥⊥⊥.
cc ⋆ ξ̃ . π̃ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ kπ̃ . π̃ /∈ ⊥⊥⊥.
kπ̃ ⋆ ξ̃ . ˜̟ /∈ ⊥⊥⊥ ⇒ ξ̃ ⋆ π̃ /∈ ⊥⊥⊥.

We shall prove only the cases W, B, kπ̃, cc.
We put ξ̃ = (ξ, p), η̃ = (η, q), ζ̃ = (ζ, r), π̃ = (π, s), ˜̟ = (̟, q).

Suppose W ⋆ ξ̃ . η̃ . π̃ /∈ ⊥⊥⊥, and therefore (γWW ⋆ ξ . η .π, 1∧(p∧(q∧s))) /∈ ⊥⊥⊥.
Thus, there exists τ ∈ C[1∧(p∧(q∧s))] such that γWW ⋆ ξ . η . πτ /∈ ⊥⊥.
Since γWW ⋆ ξ . η .πτ ≻ ξ ⋆ η . η .πγW τ , we have ξ ⋆ η . η . πγW τ /∈ ⊥⊥.
But γW τ ∈ C[p∧(q∧(q∧s))] and it follows that ξ̃ ⋆ η̃ . η̃ . π̃ /∈ ⊥⊥⊥.

Suppose B ⋆ ξ̃ . η̃ . ζ̃ . π̃ /∈ ⊥⊥⊥, that is (B∗ ⋆ ξ . η . ζ .π, 1∧(p∧(q∧(r∧s)))) /∈ ⊥⊥⊥.
Thus, there exists τ ∈ C[1∧(p∧(q∧(r∧s)))] such that B∗ ⋆ ξ . η . ζ . πτ /∈ ⊥⊥.
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But, we have B∗ ⋆ ξ . η . ζ . πτ ≻ (γB)(α0ξ)(α0)ηζ ⋆ π
τ (by theorem 2)

≻ (α0ξ)(α0)ηζ ⋆ π
γBτ (by lemma 22). Therefore, we have (α0ξ)(α0)ηζ ⋆ π

γBτ /∈ ⊥⊥.
But γBτ ∈ C[(p∧(q∧r))∧s] and thus, we have :
((α0ξ)(α0)ηζ ⋆ π, (p∧(q∧r))∧s) /∈ ⊥⊥⊥, in other words (ξ̃)(η̃)ζ̃ ⋆ π̃ /∈ ⊥⊥⊥.

Suppose kπ̃ ⋆ ξ̃ . ˜̟ /∈ ⊥⊥⊥, that is (k∗π ⋆ ξ .̟, s∧(p∧q)) /∈ ⊥⊥⊥. Thus, there exists τ ∈
C[s∧(p∧q)] such that k∗π ⋆ ξ .̟τ /∈ ⊥⊥. But we have k∗π ⋆ ξ .̟τ ≻ λxλy(kπ)(χ

′y)(γk)x ⋆
τ . ξ .̟ ≻ (kπ)(χ

′ξ)(γk)τ ⋆̟ (by theorem 2) ≻ (χ′ξ)(γk)τ ⋆ π ≻ χ′ ⋆ ξ . γkτ . π ≻ ξ ⋆ πγkτ .
Thus, we have ξ ⋆ πγkτ /∈ ⊥⊥ ; but, since γkτ ∈ C[p∧s], we get ξ̃ ⋆ π̃ /∈ ⊥⊥⊥.

Suppose cc ⋆ ξ̃ . π̃ /∈ ⊥⊥⊥, that is (cc∗ ⋆ ξ . π, 1∧(p∧s)) /∈ ⊥⊥⊥. Thus, there exists τ ∈
C[1∧(p∧s)] such that cc∗ ⋆ ξ . πτ /∈ ⊥⊥. But we have :
cc∗ ⋆ ξ . πτ ≻ λxλy(cc)λk((χ′y)(γcc)x)(χ)λxλy(k)(χ

′y)(γk)x ⋆ τ . ξ . π
≻ (cc)λk((χ′ξ)(γcc)τ)(χ)λxλy(k)(χ

′y)(γk)x ⋆ π
≻ ((χ′ξ)(γcc)τ)(χ)λxλy(kπ)(χ

′y)(γk)x ⋆ π ≻ χ′ ⋆ ξ . γccτ . (χ)λxλy(kπ)(χ′y)(γk)x . π
≻ ξ ⋆ (χ)λxλy(kπ)(χ

′y)(γk)x .πγccτ ≡ ξ ⋆ k∗π . πγccτ .
It follows that ξ ⋆ k∗π .πγccτ /∈ ⊥⊥. But we have γccτ ∈ C[p∧(s∧s)] and it follows that we
have (ξ, p) ⋆ (k∗π, s) . (π, s) /∈ ⊥⊥⊥, that is ξ̃⋆ kπ̃ . π̃ /∈ ⊥⊥⊥.

q.e.d.

We have now completely defined the realizability algebra B.

For each closed c-term t (proof-like term), let us denote by tB its value in the algebra
B (its value in the standard algebra A is t itself). We put tB = (t∗, 1t), where t

∗ is a
proof-like term and 1t a condition written with 1, ∧ and parenthesis, which are defined
as follows, by recurrence on t :

• If t is an elementary combinator B,C,E, I,K,W, cc, then t∗ is already defined ; 1t = 1.
• (tu)∗ = α0t

∗u∗ ; 1tu = 1t∧1u.

The model N

The B-model N has the same set P of individuals and the same functions asM.
By definition, the k-ary predicates of N are the applications from P k into P(Π). But,
since Π = Π×P , they are the same as the applications from P k+1 into P(Π), i.e. the
k + 1-ary predicates of the modelM.
Each predicate constant R, of arity k, is interpreted, in the modelM, by an application
RM from P k into P(Λ). In the model N , this predicate constant is interpreted by the
application RN : P k → P(Λ), where RN (p1, . . . , pk) = RM(p1, . . . , pk)×{1}.

For each closed formula F , with parameters in N , its truth value, which is a subset of Π,
will be denoted by ‖|F‖|. We shall write (ξ, p) ‖|−F to mean that (ξ, p) ∈ Λ realizes F ,
in other words (∀π ∈ Π)(∀q ∈ P )((π, q) ∈ ‖|F‖|)⇒ (ξ, p) ⋆ (π, q) ∈ ⊥⊥⊥).

Theorem 26.
If we have ⊢ t : A in classical second order logic, where A is a closed formula, then
tB = (t∗, 1t) ‖|−A.

Immediate application of theorem 3 (adequacy lemma) in the B-model N .
q.e.d.
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Proposition 27.
i) If (ξ, 1) ‖|−F , then (γξ, p) ‖|−F for each p ∈ P , with γ :: p∧q ⇒ 1∧q.
ii) Let ξ, η ∈ Λ be such that ξ ⋆ π ≻ η ⋆ π for each π ∈ Π. Then, we have :
(ξ ⋆ π, p) /∈ ⊥⊥⊥ ⇒ (η ⋆ π, p) /∈ ⊥⊥⊥ for every π ∈ Π and p ∈ P ;
(η, p) ‖|−F ⇒ (ξ, p) ‖|−F for every closed formula F .

i) We must show that, for each (π, q) ∈ ‖|F‖|, we have (γξ, p) ⋆ (π, q) ∈ ⊥⊥⊥, that is :
(γξ ⋆ π, p∧q) ∈ ⊥⊥⊥. Thus, let τ ∈ C[p∧q], so that γτ ∈ C[1∧q].
Since we have, by hypothesis, (ξ ⋆ π, 1∧q) ∈ ⊥⊥⊥, it follows that ξ ⋆ πγτ ∈ ⊥⊥ and therefore
γξ ⋆ πτ ∈ ⊥⊥.
ii) By hypothesis, there exists τ ∈ C[p] such that ξ ⋆πτ /∈ ⊥⊥. Thus, we have η ⋆πτ /∈ ⊥⊥,
so that (η ⋆ π, p) /∈ ⊥⊥⊥.
Let (π, q) ∈ ‖|F‖| ; we have (η, p) ⋆ (π, q) ∈ ⊥⊥⊥, that is (η ⋆ π, p∧q) ∈ ⊥⊥. From what we
have just shown, it follows that (ξ ⋆ π, p∧q) ∈ ⊥⊥, and therefore (ξ, p) ⋆ (π, q) ∈ ⊥⊥⊥.

q.e.d.

The integers of the model N

Recall that we have put :
σ = λnλfλx(f)(n)fx, 0 = λxλy y and n = (σ)n0 for every integer n.
Thus, we have σB = (σ∗, 1σ) and nB = ((σ)n0)B = (n∗, 1n).
Therefore 0B = (KI)B = (K∗, 1)(I∗, 1) and n+ 1B = σBnB = (σ∗, 1σ)(n

∗, 1n).
Thus, the recursive definitions of n∗, 1n are the following :
0∗ = α0K

∗I∗ ; (n+ 1)∗ = α0σ
∗n∗ ;

10 = 1∧1 ; 1n+1 = 1σ∧1n.

We can define the unary predicate ent(x) in the model N in two distinct ways :

i) From the predicate ent(x) of the modelM, by putting :
|ent(sn0)| = {(n, 1)} ; |ent(p)| = ∅ if p /∈ N.
ii) By using directly the definition of ent(x) in the model N ; we denote this predicate
by entN (x). Therefore, we have :
—entN (s

n0)| = nB ; —entN (p)| = ∅ if p /∈ N.
From theorem 13, applied in the model N , we know that the predicates int(x) and
entN (x) are interchangeable. Theorem 28 shows that the predicates int(x) and ent(x)
are also interchangeable. Thus, we have three predicates which define the integers in the
model N ; it is the predicate ent(x) that we shall mostly use in the sequel. In particular,
we shall often replace the quantifier ∀xint with ∀xent.

Theorem 28.
There exist two proof-like terms T, J such that :
i) (T, 1) ‖|−∀X∀x((ent(x)→ X), int(x)→ X).
ii) (J, 1) ‖|−∀x(ent(x)→int(x)).

i) We apply theorem 12 to the sequence u : N→ Λ defined by un = (n, 1).
We are looking for two proof-like terms T, S such that :
(S, 1) ⋆ (ψ, p) . (n, 1) . (π, r) ≻ (ψ, p) ⋆ (n+ 1, 1) . (π, r) ; (S, 1) ‖|−⊤ → ⊥,⊤ → ⊥.
(T, 1) ⋆ (φ, p) . (ν, q) . (π, r) ≻ (ν, q) ⋆ (S, 1) . (φ, p) . (0, 1) . (π, r).
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Then theorem 12 will give the desired result :
(T, 1) ‖|−∀X∀x((ent(x)→ X), int(x)→ X).

We put S = λfλx(γf)(σ)x, with γ :: 1∧(p∧(q∧r))⇒ p∧(q∧r).

Then, we have (S, 1) ⋆ (ψ, p) . (ν, q) . (π, r) ≡ (S ⋆ ψ . ν .π, 1∧(p∧(q∧r))) ≻
(γψ ⋆ σν . π, 1∧(p∧(q∧r))) (theorem 2 and proposition 27(ii))
≻ (ψ ⋆ σν . π, p∧(q∧r)) (proposition 23) ≡ (ψ, p) ⋆ (σν, q) . (π, r).
Suppose first that (ψ, p) ‖|−⊤ → ⊥ ; then, we have (ψ, p) ⋆ (σν, q) . (π, r) ∈ ⊥⊥⊥ and thus :
(S, 1) ⋆ (ψ, p) . (ν, q) . (π, r) ∈ ⊥⊥⊥. This shows that (S, 1) ‖|−⊤ → ⊥,⊤ → ⊥.
Moreover, if we put ν = n, so that σν = n+ 1, and q = 1, we have shown that :
(S, 1) ⋆ (ψ, p) . (n, 1) . (π, r) ≻ (ψ, p) ⋆ (n+ 1, 1) . (π, r).
Now, we put T = λfλx(γ′x)Sf0, with γ′ :: 1∧(p∧(q∧r))]⇒ q∧(1∧(p∧(1∧r))).

Then, we have (T, 1) ⋆ (φ, p) . (ν, q) . (π, r) ≡ (T ⋆ φ . ν . π, 1∧(p∧(q∧r))) ≻
(γ′ν ⋆ S .φ . 0 .π, 1∧(p∧(q∧r))) (theorem 2 and proposition 27(ii))
≻ (ν ⋆ S .φ . 0 .π, q∧(1∧(p∧(1∧r)))) (proposition 23)
≡ (ν, q) ⋆ (S, 1) . (φ, p) . (0, 1) . (π, r) which is the desired result.

ii) We are looking for a proof-like term J such that (J, 1) ‖|−∀x(ent(x) →int(x)). It is
sufficient to have (J, 1) ‖|− ent(sn0) →int(sn0) for each n ∈ N, since —ent(p)| = ∅ if
p /∈ N.
Let (π, q) ∈ ‖|int(n)‖| ; we must have (J, 1) ⋆ (n, 1) . (π, q) ∈ ⊥⊥⊥, that is (J ⋆
n .π, 1∧(1∧q)) ∈ ⊥⊥⊥.
But, we have (n∗, 1n) = ((σ)n0)B ‖|− int(sn0) (theorem 3, applied in B) and therefore :
(n∗, 1n) ⋆ (π, q) ∈ ⊥⊥⊥ or else (n∗ ⋆ π, 1n∧q) ∈ ⊥⊥⊥.

Thus, let τ ∈ C[1∧(1∧q)] ; we have then (γ)n(γ0)τ ∈ C[1n∧q]
where γ0 and γ are two C-expressions such that :
γ0 :: 1∧(1∧q)⇒ (1∧1)∧q ; γ :: p∧q ⇒ (1σ∧p)∧q.
Indeed, we have seen that 10 = 1∧1 and 1n+1 = 1σ∧1n. It follows that, if τ ∈ C[1∧(1∧q)],

then (γ0)τ ∈ C[10∧q], and therefore (γ)n(γ0)τ ∈ C[1n∧q]. Thus, we have n∗ ⋆ π(γ)n(γ0)τ ∈
⊥⊥.
Now, we build below two proof-like terms g, j such that, for each n ∈ N, we have :
a) g ⋆ n . ξ . πτ ≻ ξ ⋆ π(γ)n(γ0)τ ;
b) j ⋆ n . ξ . π ≻ ξ ⋆ n∗ . π.
Then, by putting J = λx(gx)(j)x, we have J ⋆ n .πτ ≻ n∗ ⋆ π(γ)n(γ0)τ ∈ ⊥⊥, which is the
desired result.

a) We put g = λkλx(γ0)(k)γx ; from theorem 2, we have :
g ⋆ n . ξ .πτ ≻ γ0 ⋆ (n)γξ .πτ ≻ (n)γξ ⋆ π(γ0)τ .
Therefore, it suffices to show that (n)γξ ⋆ πτ ≻ ξ ⋆ π(γ)nτ which we do by recurrence on
n.
If n = 0, we have immediately 0 ⋆ γ . ξ .πτ ≻ ξ ⋆ πτ since 0 = λxλy y.
Going from n to n + 1 : we have (n + 1)γξ ⋆ πτ ≡ (σn)γξ ⋆ πτ ≻ σ ⋆ n . γ . ξ .πτ

≻ γ ⋆ (n)γξ . πτ ≻ (n)γξ ⋆ π(γ)τ ≻ ξ ⋆ π(γ)n+1τ by induction hypothesis.

b) We put β = α0σ
∗, U = λgλy(g)(β)y and j = λkλf(k)Uf0∗.

Therefore, we have j ⋆ n . ξ . π ≻ nUξ ⋆ 0∗ . π. We show, by recurrence on n, that :
nUξ ⋆k∗ . π ≻ ξ ⋆ (n+ k)∗ . π for each integer k, which gives the desired result with k = 0.
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For n = 0, we have 0Uξ ⋆ k∗ .π ≻ ξ ⋆ k∗ . π since 0 = λxλy y.
Going from n to n+1 : we have (n+ 1)⋆U . ξ . k∗ .π ≡ σn⋆U . ξ . k∗ . π ≻ U⋆nUξ . k∗ . π
(since σ = λnλfλx(f)(n)fx) ≻ nUξ ⋆ βk∗ .π ≡ nUξ ⋆ (k + 1)∗ . π ≻ ξ ⋆ (n+ k + 1)∗ . π
by induction hypothesis.

q.e.d.

Forcing

Forcing is a method to compute truth values of formulas in the generic B-model N .
For each k-ary predicate variable X , we add to the language a new predicate variable,
denoted by X+, which has arity k + 1. In the A-modelM, we use the variables X and
X+ ; in the B-model N , only the variables X .

With each k-ary second order parameter X : P k → P(Π) of the model N , we associate
a (k + 1)-ary second order parameter X+ : P k+1 → P(Π) of the modelM. It is defined
in an obvious way, since Π = Π×P ; we put :
X+(p, p1, . . . , pk) = {π ∈ Π; (π, p) ∈ X (p1, . . . , pk)}.

For each formula F written without the variables X+, with parameters in the model N ,
we define, by recurrence on F , a formula denoted by p []− F (read “ p forces F ”),
with parameters in the model A, written with the variables X+ and a free variable p of
condition :

If F is atomic of the form X(t1, . . . , tk), then p []− F is ∀q(C[p∧q]→ X+(q, t1, . . . , tk)).
If F is atomic of the form X (t1, . . . , tk), then p []− F is ∀q(C[p∧q]→ X+(q, t1, . . . , tk)).
If F ≡ (A→ B) where A,B are formulas, then p []− F is ∀q(q []− A→ p∧q []− B).
If F ≡ (R(t1, . . . , tk)→ B), where R is a predicate constant, then :
p []− F est (R(t1, . . . , tk)→ p []− B).
If F ≡ (t1 = t2 7→ B), then p []− F is (t1 = t2 7→ p []− B).
If F ≡ ∀xA, then p []− F is ∀x(p []−A).
If F ≡ ∀X A, then p []− F is ∀X+(p []− A).

Thus we have, in particular :
If F ≡ ∀xentA , then p []− F est ∀xent(p []−A).

Lemma 29. Let F be a formula the free variables of which are amongst X1, . . . , Xk and
let X1, . . . ,Xk be second order parameters in the model N , with corresponding arities.
Then, we have : (p []− F )[X+

1 /X
+
1 , . . . ,X

+
k /X

+
k ] ≡ (p []− F [X1/X1, . . . ,Xk/Xk]).

Immediate, by recurrence on F .
q.e.d.

Theorem 30.
For each closed formula F with parameters in the model N , there exist two proof-like
terms χF , χ

′
F , which only depend on the propositional structure of F , such that we have :

ξ ||− (p []− F ) ⇒ (χF ξ, p) ‖|−F ;
(ξ, p) ‖|−F ⇒ χ′F ξ ||− (p []− F )
for every ξ ∈ Λ and p ∈ P .
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The propositional structure of F is the simple type built with only one atom O and the
connective →, which is obtained from F by deleting all quantifiers, all symbols 7→ with
their hypothesis, and by identifying all atomic formulas with O.
For instance, the propositional structure of the formula :
∀X(∀x(∀y(f(x, y) = 0 7→ Xy)→ Xx)→ ∀xXx) is (O → O)→ O.

Proof by recurrence on the length of F .
• If F is atomic, we have F ≡ X (t1, . . . , tk) ; we show that χF = χ et χ′F = χ′.
Indeed, we have : ‖p []− F‖ = ‖∀q(C[p∧q]→ X+(q, t1, . . . , tk)‖

=
⋃

q{τ .π; τ ∈ C[p∧q], (π, q) ∈ ‖|X (t1, . . . , tk)‖|},
because, by definition of X+, we have π ∈ ‖X+(q, t1, . . . , tk)‖ ⇔ (π, q) ∈ ‖|X (t1, . . . , tk)‖|.
Therefore, we have :
(∗) ξ ||− (p []− F ) ⇔ (∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈ Π)((π, q) ∈ ‖|X (t1, . . . , tk)‖| ⇒
ξ ⋆ τ .π ∈ ⊥⊥).
Moreover, we have (ξ, p) ‖|−F ⇔ (∀q ∈ P )(∀π ∈ Π)((π, q) ∈ ‖|F‖| ⇒ (ξ, p) ⋆ (π, q) ∈ ⊥⊥⊥)
⇔ (∀q ∈ P )(∀π ∈ Π)((π, q) ∈ ‖|F‖| ⇒ (ξ ⋆π, p∧q) ∈ ⊥⊥⊥) and finally, by definition de ⊥⊥⊥ :

(∗∗) (ξ, p) ‖|−F ⇔ (∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈ Π)((π, q) ∈ ‖|F‖| ⇒ ξ ⋆ πτ ∈ ⊥⊥).

Suppose that ξ ||− (p []− F ). Since χξ ⋆ πτ ≻ ξ ⋆ τ .π, we have from (∗) :
(∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈ Π)((π, q) ∈ ‖|X (t1, . . . , tk)‖| ⇒ χξ ⋆ τ .π ∈ ⊥⊥)
and therefore (χξ, p) ‖|−F from (∗∗).
Conversely, suppose that (ξ, p) ‖|−F . By applying (∗∗) and χ′ξ ⋆ τ . π ≻ ξ ⋆πτ , we obtain
(∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈ Π)((π, q) ∈ ‖|F‖| ⇒ χ′ξ ⋆ τ . π ∈ ⊥⊥)
and therefore χ′ξ ||− (p []− F ) from (∗).

• If F ≡ ∀X A, then p []− F ≡ ∀X+(p []− A). Therefore, we have ξ ||− (p []− F ) ≡
∀X+(ξ ||− (p []− A)).
Moreover, we have (ξ, p) ‖|−F ≡ ∀X((ξ, p) ‖|−A).
Let X : P k → P(Π) be a second order parameter in the model N , with the same arity
as X , and let X+ be the corresponding parameter of the modelM.
If ξ ||− (p []− F ), then we have (ξ ||− (p []− A))[X+/X+], thus ξ ||− (p []− A[X /X ]), from
lemma 29.
By the recurrence hypothesis, we have (χAξ, p) ‖|−A[X /X ]. Since X is arbitrary, it
follows that (χAξ, p) ‖|−∀X A.
Conversely, if we have (ξ, p) ‖|−F , then (ξ, p) ‖|−A[X /X ] for every X .
By the recurrence hypothesis, we have χ′Aξ ||− (p []−A[X /X ]), and therefore :
χ′Aξ ||− (p []− A)[X+/X+]), from lemma 29. Since X+ is arbitrary, it follows that :
χ′Aξ ||− ∀X

+(p []− A), that is χ′Aξ ||− (p []− ∀X A).

• If F ≡ ∀xA, then p []− F ≡ ∀x(p []−A). Therefore ξ ||− p []− F ≡ ∀x(ξ ||− (p []− A)).
Moreover, (ξ, p) ‖|−F ≡ ∀x((ξ, p) ‖|−A).
The result is immediate, from the recurrence hypothesis.

• If F ≡ (t1 = t2 7→ A), then p []− F ≡ t1 = t2 7→ p []− A. Therefore :
ξ ||− (p []− F ) ≡ (t1 = t2 7→ ξ ||− (p []− A)).
Moreover, (ξ, p) ‖|−F ≡ (t1 = t2 7→ (ξ, p) ‖|−A).
The result is immediate, from the recurrence hypothesis.

• If F ≡ A→ B, we have p []− F ≡ ∀q(q []− A→ p∧q []− B) and therefore :
(∗) ξ ||− (p []− F ) ⇒ ∀η∀q(η ||− (q []− A)→ ξη ||− (p∧q []− B)).
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Suppose that ξ ||− (p []− F ) and put χF = λxλy(γ0)(χB)(x)(χ
′
A)y.

We must show (χF ξ, p) ‖|−A→ B ; thus, let (η, q) ‖|−A and (π, r) ∈ ‖|B‖|.
We must show (χF ξ, p) ⋆ (η, q) . (π, r) ∈ ⊥⊥⊥ that is (χF ξ ⋆ η .π, p∧(q∧r)) ∈ ⊥⊥⊥.
Thus, let τ ∈ C[p∧(q∧r)] ; we must show χF ξ ⋆ η .πτ ∈ ⊥⊥ or else χF ⋆ ξ . η .πτ ∈ ⊥⊥.

From the recurrence hypothesis applied to (η, q) ‖|−A, we have χ′Aη ||− (q []− A).
From (∗), we have therefore (ξ)(χ′A)η ||− (p∧q []− B).
Applying again the recurrence hypothesis, we get :
((χB)(ξ)(χ

′
A)η, p∧q) ‖|−B. But since (π, r) ∈ ‖|B‖|, we have :

((χB)(ξ)(χ
′
A)η, p∧q) ⋆ (π, r) ∈ ⊥⊥⊥, that is ((χB)(ξ)(χ

′
A)η ⋆ π, (p∧q)∧r) ∈ ⊥⊥⊥.

Since τ ∈ C[p∧(q∧r)], we have γ0τ ∈ C[(p∧q)∧r] and therefore (χB)(ξ)(χ
′
A)η ⋆ π

γ0τ ∈ ⊥⊥.
But, by definition of χF , we have, from theorem 2 :
χF ⋆ ξ . η .πτ ≻ (χB)(ξ)(χ

′
A)η ⋆ π

γ0τ which gives the desired result : χF ⋆ ξ . η .πτ ∈ ⊥⊥.

Suppose now that (ξ, p) ‖|−A→ B ; we put χ′F = λxλy(χ′B)(α0x)(χA)y.
We must show χ′F ξ ||− (p []−A→ B) that is ∀q(χ′F ξ ||− (q []− A→ p∧q []− B)).
Thus, let η ||− q []− A and π ∈ ‖p∧q []− B‖ ; we must show χ′F ξ ⋆ η .π ∈ ⊥⊥.
By the recurrence hypothesis, we have (χAη, q) ‖|−A, therefore (ξ, p)(χAη, q) ‖|−B or
else, by definition of the algebra B : ((α0ξ)(χA)η, p∧q) ‖|−B.
Applying again the recurrence hypothesis, we have (χ′B)(α0ξ)(χA)η ||− (p∧q []− B) and
therefore :
(χ′B)(α0ξ)(χA)η ⋆ π ∈ ⊥⊥. But we have :
χ′F ξ ⋆ η .π ≻ χ′F ⋆ ξ . η .π ≻ (χ′B)(α0ξ)(χA)η ⋆ π from theorem 2 ; the desired result
follows.

q.e.d.

A formula F is said to be first order if it is obtained by the following rules :
• ⊥ is first order.
• If A,B are first order, then A→ B is first order.
• If B is first order, R ys a symbol of predicate and t1, . . . , tk are terms with parameters,
then R(t1, . . . , tk)→ B, t1 = t2 7→ B are first order.
• If A is first order, then ∀xA is first order (x is an individual variable).

Remarks.

i) If A is a first order formula, it is the same for ∀xentA.

ii) This notion will be extended below (see proposition 37).

Theorem 31. Let F be a closed first order formula. There exist two proof-like terms
δF , δ

′
F , which depend only on the propositional structure of F , such that we have :

ξ ||− (C[p]→ F ) ⇒ (δF ξ, p) ‖|−F ;
(ξ, p) ‖|−F ⇒ δ′F ξ ||− (C[p]→ F )
for every ξ ∈ Λ and p ∈ P .

The proof is by recurrence on the construction of F following the above rules.

• If F is ⊥, we put :
δ⊥ = λx(χ)λy(x)(α)y with α :: p∧q ⇒ p .
δ′⊥ = λxλy(χ′x)(α′)y with α′ :: p⇒ p∧1 .

Indeed, suppose that ξ ||−C[p]→ ⊥ and let us show that (δ⊥ξ, p)(π, q) ∈ ⊥⊥⊥, that is :
(δ⊥ξ ⋆ π, p∧q) ∈ ⊥⊥⊥. Thus, let τ ∈ C[p∧q], so that ατ ∈ C[p], so that ξ ⋆ ατ . π ∈ ⊥⊥, by
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hypothesis on ξ, which gives δ⊥ξ ⋆ π
τ ∈ ⊥⊥.

Conversely, if (ξ, p) ‖|−⊥, we have (ξ, p) ⋆ (π, 1) ≡ (ξ ⋆ π, p∧1) ∈ ⊥⊥⊥ for every π ∈ Π.
But, if τ ∈ C[p], we have α′τ ∈ C[p∧1], therefore ξ ⋆ πα′τ ∈ ⊥⊥, thus δ′⊥ξ ⋆ τ .π ∈ ⊥⊥.
Therefore δ′⊥ξ ||−C[p]→ ⊥.

• If F is A→ B, we put :
δA→B = λxλy(χ)λz((χ′)(δB)λd((x)(α)z)(δ

′
Ay)(β)z)(γ)z with

α :: p∧(q∧r)⇒ p; β :: p∧(q∧r)⇒ q ; γ :: p∧(q∧r)⇒ 1∧r.

Indeed, suppose that ξ ||−C[p], A→ B, (η, q) ‖|−A and (π, r) ∈ ‖|B‖|.
We must show (δA→Bξ, p) ⋆ (η, q) . (π, r) ∈ ⊥⊥⊥, that is (δA→Bξ ⋆ η .π, p∧(q∧r)) ∈ ⊥⊥⊥.
Thus, let τ ∈ C[p∧(q∧r)] ; we must show δA→Bξ ⋆ η .πτ ∈ ⊥⊥.
We have ατ ∈ C[p], βτ ∈ C[q] ; but, by the recurrence hypothesis, we have δ′Aη ||−C[q]→
A, therefore (δ′Aη)(β)τ ||−A and ((ξ)(α)τ)(δ′Aη)(β)τ ||−B ;
thus λd((ξ)(α)τ)(δ′Aη)(β)τ ||−C[1]→ B.
From the recurrence hypothesis, we have ((δB)λd((ξ)(α)τ)(δ

′
Aη)(β)τ, 1) ‖|−B, thus :

((δB)λd((ξ)(α)τ)(δ
′
Aη)(β)τ, 1)⋆ (π, r) ∈ ⊥⊥⊥, that is ((δB)λd((ξ)(α)τ)(δ

′
Aη)(β)τ ⋆π, 1∧r) ∈

⊥⊥⊥.
But, we have γτ ∈ C[1∧r], therefore (δB)λd((ξ)(α)τ)(δ

′
Aη)(β)τ ⋆ π

γτ ∈ ⊥⊥, and thus :
((χ′)(δB)λd((ξ)(α)τ)(δ

′
Aη)(β)τ)(γ)τ ⋆ π ∈ ⊥⊥. It follows that :

(χ)λz((χ′)(δB)λd((ξ)(α)z)(δ
′
Aη)(β)z)(γ)z ⋆ π

τ ∈ ⊥⊥ so that δA→Bξ ⋆ η . πτ ∈ ⊥⊥.

We now put :
δ′A→B = λxλyλz((δ′B)(α0x)(δA)λd z)(α)y with α :: p⇒ p∧1.

Suppose that (ξ, p) ‖|−A→ B ; let τ ∈ C[p], η ||−A and π ∈ ‖B‖. We must show :
δ′A→Bξ ⋆ τ . η .π ∈ ⊥⊥. We have λd η ||−C[1]→ A ; applying the recurrence hypothesis, we
have ((δA)λd η, 1) ‖|−A, thus (ξ, p)((δA)λd η, 1) ‖|−B that is ((α0ξ)(δA)λd η, p∧1) ‖|−B.
Applying again the recurrence hypothesis, we find :
(δ′B)(α0ξ)(δA)λd η ||−C[p∧1]→ B. Since we have ατ ∈ C[p∧1], we get :
(δ′B)(α0ξ)(δA)λd η ⋆ ατ . π ∈ ⊥⊥ and finally δ′A→Bξ ⋆ τ . η .π ∈ ⊥⊥.
• If F ≡ R(~q)→ B, where R is a k-ary predicate symbol and ~p ∈ P k, we put :
δR→B = λxλy(α)(δB)λz(x)zy with α :: p∧(1∧r)⇒ p∧r.
δ′R→B = λxλyλz((δ′B)(α0)xz)(α

′)y with α′ :: p⇒ p∧1.

Suppose that ξ ||−C[p],R[~q]→ B and let η ∈ |R[~q]|, (π, r) ∈ ‖|B‖|. We must show :
(δR→Bξ, p) ⋆ (η, 1) . (π, r) ∈ ⊥⊥⊥, that is (δR→Bξ ⋆ η .π, p∧(1∧r)) ∈ ⊥⊥⊥. Thus, let τ ∈
C[p∧(1∧r)] ; we must show δR→Bξ ⋆ η .πτ ∈ ⊥⊥. But, we have λz(ξ)zη ||−C[p]→ B, and
thus :
((δB)λz(ξ)zη, p) ‖|−B, by the recurrence hypothesis.
It follows that ((δB)λz(ξ)zη, p) ⋆ (π, r) ∈ ⊥⊥⊥, that is :
((δB)λz(ξ)zη ⋆π, p∧r) ∈ ⊥⊥⊥. But we have ατ ∈ C[p∧r], and therefore (δB)λz(ξ)zη ⋆π

ατ ∈
⊥⊥, thus (α)(δB)λz(ξ)zη ⋆ π

τ ∈ ⊥⊥, therefore δR→Bξ ⋆ η .πτ ∈ ⊥⊥.

Suppose now that (ξ, p) ‖|−R(~q)→ B ; let τ ∈ C[p], η ∈ |R[~q]| and π ∈ ‖B‖.
We must show δ′R→Bξ ⋆ τ . η . π ∈ ⊥⊥. But, we have (ξ, p)(η, 1) ‖|−B, that is :
((α0)ξη, p∧1) ‖|−B, thus (δ′B)(α0)ξη ||−C[p∧1]→ B, by recurrence hypothesis.
But, we have α′τ ∈ C[p∧1], therefore (δ′B)(α0)ξη ⋆ α

′τ .π ∈ ⊥⊥, hence the result.

• If F ≡ (p1 = p2 7→ B), we put δF = δB and δ′F = δ′B.
Indeed, suppose that ξ ||−C[p] → (p1 = p2 7→ B) and (π, q) ∈ ‖|p1 = p2 7→ B‖|. We
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must show that (δBξ, p) ⋆ (π, q) ∈ ⊥⊥⊥. Since ‖|p1 = p2 7→ B‖| 6= ∅, we have p1 = p2, thus
(π, q) ∈ ‖|B‖| and ξ ||−C[p]→ B. Hence the result, by the recurrence hypothesis.

Suppose now that (ξ, p) ‖|− p1 = p2 7→ B, τ ||−C[p] et π ∈ ‖p1 = p2 7→ B‖. We must
show δ′B ⋆ τ . π ∈ ⊥⊥. Since ‖p1 = p2 7→ B‖ 6= ∅, we have p1 = p2, therefore π ∈ ‖B‖ and
(ξ, p) ‖|−B. Hence the result, by the recurrence hypothesis.

• If F ≡ ∀xA, we put δF = δA and δ′F = δ′A.

Indeed, if ξ ||−C[p] → ∀xA, we have ξ ||−C[p] → A[a/x] for every a ∈ P . By the
recurrence hypothesis, we have (δAξ, p) ‖|−A[a/x] ; thus (δAξ, p) ‖|−∀xA.

If (ξ, p) ‖|−∀xA, we have (ξ, p) ‖|−A[a/x] for every a ∈ P . By the recurrence hypothesis,
we have δ′Aξ ||−C[p]→ A[a/x] ; thus δ′Aξ ||−C[p]→ ∀xA.

q.e.d.

The generic ideal

We define a unary predicate J : P → P(Π) in the model N (second order parameter of
arity 1), by putting J (p) = Π×{p} ; we call it the generic ideal.
Thus, the binary predicate J + : P 2 → P(Π) which corresponds to it in the modelM, is
such that J +(p, q) = ∅ (resp. Π) if p 6= q (resp. p = q). In other words :

J +(p, q) is the predicate p 6= q.
The formula p ||−J (q) is ∀r(C[p∧r]→ J +(r, q)). Therefore, we have :
‖p ||−J (q)‖ = ‖¬C[p∧q]‖ ; in other words :

p ||−J (q) is exactly ¬C[p∧q].

Notations.
• We denote by p ⊑ q the formula ∀r(¬C[q∧r]→ ¬C[p∧r]) and by p ∼ q the formula
p ⊑ q ∧ q ⊑ p, that is ∀r(¬C[q∧r]↔ ¬C[p∧r]).
In the sequel, we shall often write F → C[p] instead of ¬C[p]→ ¬F ;
Then p ⊑ q is written ∀r(C[p∧r]→ C[q∧r]) and p ∼ q is written ∀r(C[p∧r]↔ C[q∧r]).
Remark. We recall that C[p] is not a formula, but a subset of Λ ; in fact, in some realizability

models which will be considered below, there will exist a formula C[p] such that :

|C[p]| = {τ ∈ Λc; τ ||−C[p]}. In such cases, we can identify C[p] with the formula C[p].

• If F is a closed formula, we shall write ‖|−F to mean that there exists a proof-like
term θ such that (θ, 1) ‖|−F . From proposition 27(i), this is equivalent to say that there
exists a proof-like term θ such that (θ, p) ‖|−F for every p ∈ P .

Proposition 32.
i) ξ ||−¬C[p∧q] ⇒ (χξ, p) ‖|−J (q) ;
(ξ, p) ‖|−J (q) ⇒ χ′ξ ||−¬C[p∧q].

ii) ξ ||−∀r(C[p∧(1∧r)],C[q]→ ⊥) ⇒ (χξ, p) ‖|−¬C[q] ;
(ξ, p) ‖|−¬C[q] ⇒ χ′ξ ||−∀r(C[p∧(1∧r)],C[q]→ ⊥).

iii) If ξ ||−¬R(a1, . . . , ak) then (ξ, p) ‖|−¬R(a1, . . . , ak) for all p
(R is a predicate symbol of arity k).

i) If ξ ||−¬C[p∧q], then ξ ⋆τ . π ∈ ⊥⊥ and therefore χξ ⋆πτ ∈ ⊥⊥ for all τ ∈ C[p∧q]. Thus, we
have : (χξ⋆π, p∧q) ∈ ⊥⊥⊥, that is (χξ, p)⋆(π, q) ∈ ⊥⊥⊥ for every π ∈ Π, i.e. (χξ, p) ‖|−J (q).
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If (ξ, p) ‖|−J [q], we have (ξ, p)⋆(π, q) ∈ ⊥⊥⊥, thus (ξ ⋆π, p∧q) ∈ ⊥⊥⊥ for all π ∈ Π. Therefore,
we have ξ⋆πτ ∈ ⊥⊥, that is χ′ξ⋆τ .π ∈ ⊥⊥ for each τ ∈ C[p∧q]. Therefore χ′ξ ||−¬C[p∧q].

ii) If ξ ||−∀r(C[p∧(1∧r)],C[q] → ⊥), we have ξ ⋆ υ . τ . π ∈ ⊥⊥ if υ ∈ C[p∧(1∧r)] and
τ ∈ C[q]. Therefore χξ ⋆ τ .πυ ∈ ⊥⊥, thus (χξ ⋆ τ .π, p∧(1∧r)) ∈ ⊥⊥⊥ i.e. (χξ, p) ⋆
(τ, 1) . (π, r) ∈ ⊥⊥.
But (τ, 1) is arbitrary in CN [q], and therefore (χξ, p) ‖|−C[q]→ ⊥.

If (ξ, p) ‖|−¬C[q], we have (ξ, p)⋆ (τ, 1) . (π, r) ∈ ⊥⊥⊥, and therefore (ξ ⋆τ . π, p∧(1∧r)) ∈ ⊥⊥⊥
for each τ ∈ C[q]. Thus, we have ξ ⋆ τ .πυ ∈ ⊥⊥ therefore χ′ξ ⋆ υ . τ . π ∈ ⊥⊥ for each
υ ∈ C[p∧(1∧r)].
It follows that χ′ξ ||− ∀r(C[p∧(1∧r)],C[q]→ ⊥).
iii) Let τ ∈ |R(a1, . . . , ak)| ; we have ξ ⋆ τ . π ∈ ⊥⊥ for all π ∈ Π, thus (ξ ⋆ τ .π, a) ∈ ⊥⊥⊥
for all a ∈ P , and therefore (ξ, p) ⋆ (τ, 1) . (π, q) ∈ ⊥⊥⊥.

q.e.d.

Theorem 33 (Elementary properties of the generic ideal).
i) (α, 1) ‖|−¬J (1) with α :: 1∧(p∧q)⇒ p∧1.
ii) (θ, 1) ‖|−∀x(¬C[x]→ J (x)) where θ = λx(χ)λy((χ′x)(β)y)(α)y
with α :: 1∧(p∧q)⇒ q and β :: 1∧(p∧q)⇒ p∧(1∧1).
iii) (θ, 1) ‖|−∀x∀y(J (x∧y),¬J (x)→ J (y)) where θ = λxλy(α)(y)(β)x
with α :: 1∧(p′∧(q′∧q))⇒ q′∧((q∧p′)∧1) and β :: (q∧p′)∧p⇒ p′∧(p∧q).
iv) (θ, 1) ‖|−∀x(∀y(¬C[x∧y] → J (y)) → ¬J (x)) where θ = λxλy(γ)(x)λz(χ′y)(β)z,
with
β :: p∧q ⇒ q∧p and γ :: 1∧(r∧(q∧r′))⇒ r∧(1∧p).
v) (θ, 1) ‖|−∀x∀y(J (x), y ⊑ x→ J (y))
where θ = λxλy((χ)λz(((χ′)(α0y)λz

′(χ′x)(β)z′)(α)z)(γ)z, with
α :: 1∧(p′∧(r∧q))⇒ (r∧1)∧(1∧1) ; α′ :: 1∧(p′∧(q′∧q))⇒ q∧p′ ; β :: p∧q ⇒ q∧p.

i) Let (ξ, p) ‖|−J (1) ; we must show that (α, 1) ⋆ (ξ, p) . (π, q) ∈ ⊥⊥⊥, that is to say :
(α ⋆ ξ .π, 1∧(p∧q)) ∈ ⊥⊥⊥. But, from proposition 23, we have :
(α ⋆ ξ .π, 1∧(p∧q)) ≻ (ξ ⋆ π, p∧1) ≡ (ξ, p) ⋆ (π, 1).
Now, we have (ξ, p) ⋆ (π, 1) ∈ ⊥⊥⊥ by hypothesis on (ξ, p).

ii)Let (η, p) ‖|−¬C[q] and (π, q) ∈ ‖|J (q)‖|. We must show that (θ, 1)⋆ (η, p) . (π, q) ∈ ⊥⊥⊥,
i.e. (θ⋆η . π, 1∧(p∧q)) ∈ ⊥⊥⊥. Thus, let τ ∈ C[1∧(p∧q)] ; we must show that θ⋆η .πτ ∈ ⊥⊥.
From proposition 32, we have χ′η ||−C[p∧(1∧1)],C[q]→ ⊥.
Now, we have βτ ∈ C[p∧(1∧1)] and ατ ∈ C[q], therefore χ′η ⋆ βτ .ατ . π ∈ ⊥⊥ thus
(χ)λy((χ′η)(β)y)(α)y ⋆ πτ ∈ ⊥⊥ thus θ ⋆ η . πτ ∈ ⊥⊥.

iii) Le (ξ, p′) ‖|−J (p∧q), (η, q′) ‖|−¬J (p) and (π, q) ∈ ‖|J (q)‖|. We must show that :
(θ, 1) ⋆ (ξ, p′) . (η, q′) . (π, q) ∈ ⊥⊥⊥, i.e. (θ ⋆ ξ . η . π, 1∧(p′∧(q′∧q))) ∈ ⊥⊥⊥.
From propositions 27(ii) and 23, it suffices to show :
((α)(η)(β)ξ ⋆ π, 1∧(p′∧(q′∧q))) ∈ ⊥⊥⊥ then (η ⋆ βξ . π, q′∧((q∧p′)∧1)) ∈ ⊥⊥⊥, that is :
(η, q′) ⋆ (βξ, q∧p′) . (π, 1) ∈ ⊥⊥⊥.
By hypothesis on (η, q′), we have now to show that (βξ, q∧p′) ‖|−J (p), i.e. :
(βξ, q∧p′) ⋆ (̟, p) ∈ ⊥⊥⊥, or else (βξ ⋆ ̟, (q∧p′)∧p) ∈ ⊥⊥⊥ for all ̟ ∈ Π.
But, by proposition 23, we have :
(βξ ⋆ ̟, (q∧p′)∧p) ≻ (ξ ⋆ ̟, p′∧(p∧q)) ≡ (ξ, p′) ⋆ (̟, p∧q) ∈ ⊥⊥⊥ by hypothesis on (ξ, p′).
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iv) Let (ξ, q) ‖|−J (p) and (η, r) ‖|−∀q(¬C[p∧q]→ J (q)) ; we must show that :
(θ, 1) ⋆ (η, r) . (ξ, q) . (π, r′) ∈ ⊥⊥⊥, that is (θ ⋆ η . ξ .π, 1∧(r∧(q∧r′))) ∈ ⊥⊥⊥.
From proposition 32(i), we have χ′ξ ||−¬C[q∧p]. Let τ ∈ C[p∧q], thus βτ ∈ C[q∧p]
therefore χ′ξ ⋆ βτ . ρ ∈ ⊥⊥ for every ρ ∈ Π. Therefore, we have λx(χ′ξ)(β)x ⋆ τ . ρ ∈ ⊥⊥,
thus
λz(χ′ξ)(β)z ||−¬C[p∧q]. From proposition 32(iii), we have (λz(χ′ξ)(β)z, 1) ‖|−¬C[p∧q].
By hypothesis on (η, r), we thus have (η, r) ⋆ (λz(χ′ξ)(β)z, 1) . (π, q) ∈ ⊥⊥⊥, i.e. :
(η ⋆ λz(χ′ξ)(β)z .π, r∧(1∧q)) ∈ ⊥⊥⊥, thus ((γ)(η)λz(χ′ξ)(β)z ⋆ π, 1∧(r∧(q∧r′))) ∈ ⊥⊥⊥
(proposition 23) and therefore (θ ⋆ η . ξ .π, 1∧(r∧(q∧r′))) ∈ ⊥⊥⊥.
v) Let (ξ, p′) ‖|−J (p) and (η, r) ‖|− q ⊑ p ; we must show that :
(θ, 1) ⋆ (ξ, p′) . (η, r) . (π, q) ∈ ⊥⊥⊥ for all π ∈ Π, that is (θ ⋆ ξ . η . π, 1∧(p′∧(r∧q))) ∈ ⊥⊥⊥.
From proposition 32(i), we have χ′ξ ||−¬C[p′∧p], thus λz′(χ′ξ)(β)z′ ||−¬C[p∧p′] : indeed, if
τ ∈ C[p∧p′] and ρ ∈ Π, we have λz′(χ′ξ)(β)z′⋆τ . ρ ≻ (χ′ξ)(β)τ ⋆ρ ∈ ⊥⊥ since βτ ∈ C[p′∧p].
Then, from proposition 32(iii), we have (λz′(χ′ξ)(β)z′, 1) ‖|−¬C[p∧p′]. But, by hypothesis
on (η, r), we have (η, r) ‖|− (¬C[p∧p′]→ ¬C[q∧p′]). It follows that :
(η, r)(λz′(χ′ξ)(β)z′, 1) ‖|−¬C[q∧p′], i.e. ((α0η)λz

′(χ′ξ)(β)z′, r∧1) ‖|−¬C[q∧p′].
From proposition 32(ii), we have (χ′)(α0η)λz

′(χ′ξ)(β)z′ ||−C[(r∧1)∧(1∧1)],C[q∧p′]→ ⊥.
Let τ ∈ C[1∧(p′∧(r∧q))], therefore ατ ∈ C[(r∧1)∧(1∧1)] and α′τ ∈ C[q∧p′]. Thus, we
have :
(((χ′)(α0η)λz

′(χ′ξ)(β)z′)(α)τ)(γ)τ ⋆ π ∈ ⊥⊥, therefore :
(χ)λz(((χ′)(α0η)λz

′(χ′ξ)(β)z′)(α)z)(α′)z ⋆ πτ ∈ ⊥⊥. In other words :
((χ)λz(((χ′)(α0η)λz

′(χ′ξ)(β)z′)(α)z)(α′)z ⋆ π, 1∧(p′∧(r∧q))) ∈ ⊥⊥⊥
or else, from proposition 27(ii) : (θ ⋆ ξ . η . π, 1∧(p′∧(r∧q))) ∈ ⊥⊥⊥.

q.e.d.

Theorem 34 (Density).
For each function φ : P → P , we have :
(θ, 1) ‖|−∀x(¬C[x∧φ(x)]→ J (x)), ∀xJ (x∧φ(x))→ ⊥
where θ = (β)λxλy(x)(ϑ)y, ϑ = (χ)λdλxλy(χ′x)(α)y ;
with α :: q∧r ⇒ q∧(q∧r) ; β :: 1∧(p∧(q∧r))⇒ p∧(1∧q).

Let (ξ, p) ‖|−∀x(¬C[x∧φ(x)]→ J (x)), (η, q) ‖|−∀xJ (x∧φ(x)) and (π, r) ∈ Π.
we must show that (θ ⋆ ξ . η .π, 1∧(p∧(q∧r))) ∈ ⊥⊥⊥ ; thus, let τ0 ∈ C[1∧(p∧(q∧r))]. We
must show θ ⋆ ξ . η .πτ0 ∈ ⊥⊥.
We first show that (ϑη, 1) ‖|−¬C[q∧φ(q)].
Thus, let (̟, r′) ∈ Π and τ ∈ C[q∧φ(q)] ; we must show (ϑη, 1) ⋆ (τ, 1) . (̟, r′) ∈ ⊥⊥⊥
i.e. (ϑη ⋆ τ .̟, 1∧(1∧r′)) ∈ ⊥⊥⊥ or else ϑη ⋆ τ .̟τ ′ ∈ ⊥⊥ for each τ ′ ∈ C[1∧(1∧r′)]).
Now, ϑη ⋆ τ .̟τ ′ ≻ η ⋆ ̟ατ and ατ ∈ C[q∧(q∧φ(q))]. Thus, it suffices to show :
(η ⋆ ̟, q∧(q∧φ(q))) ∈ ⊥⊥⊥ or else (η, q) ⋆ (̟, q∧φ(q)) ∈ ⊥⊥⊥.
But this follows from the hypothesis on (η, q), which implies (η, q) ‖|−J (q∧φ(q)).

By hypothesis on ξ, we have (ξ, p) ‖|−¬C[q∧φ(q)]→ J (q). It follows that :
(ξ, p) ⋆ (ϑη, 1) . (π, q) ∈ ⊥⊥⊥, that is (ξ ⋆ ϑη . π, p∧(1∧q)) ∈ ⊥⊥⊥.
But we have τ0 ∈ C[1∧(p∧(q∧r))]), thus βτ0 ∈ C[p∧(1∧q)]. It follows that ξ⋆ϑη .πβτ0 ∈ ⊥⊥.
This gives the desired result, since θ ⋆ ξ . η .πτ0 ≻ ξ ⋆ ϑη . πβτ0 .

q.e.d.
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Countable chain condition

In this section, we consider a standard realizability algebra A and a A-model M. We
suppose that the set P (domain of variation of individual variables) has a power ≥ 2ℵ0.
We choose a surjection ε : P → P(Π)N and we define a binary predicate in the model
M, which denote also by ε, by putting :

‖n ε p‖ = ε(p)(n) if n ∈ N ; ‖n ε p‖ = ∅ if n /∈ N

(we use, for the predicate ε, the notation n ε p instead of ε(n, p)).
Therefore, the predicate ε enables us to associate, with each individual, a set of integers
which are its elements. Proposition 35 shows that the following axiom is realized :

For every set, there exists an individual which has the same integer elements.

This axiom will be called axiom of representation of predicates on N and denoted by RPN.

Proposition 35 (RPN).
λx(x)0 0 ||−∀X∃x∀nent(Xn↔ n ε x).

This formula is ∀X(∀x[∀n(ent(n), Xn→ n ε x), ∀n(ent(n), n ε x→ Xn)→ ⊥]→ ⊥).
Thus, we consider a unary parameter X : P → P(Π) and a term ξ ∈ Λ such that :

ξ ||−∀x[∀n(ent(n),Xn→ n ε x), ∀n(ent(n), n ε x→ Xn)→ ⊥].

We must show that λx(x)0 0 ⋆ ξ . π ∈ ⊥⊥, or else ξ ⋆ 0 . 0 . π ∈ ⊥⊥ for every stack π ∈ Π.
By definition of ε, there exists p0 ∈ P such that Xn = ‖n ε p0‖ for every integer n.
But, we have : ξ ||− ∀n(ent(n),Xn→ n ε p0), ∀n(ent(n), n ε p0 → Xn)→ ⊥.
Thus, it suffices to show that 0 ||− ∀n(ent(n),Xn→ n ε p0) and 0 ||− ∀n(ent(n), n ε p0 →
Xn).
Recall that the predicate ent(x) is defined as follows :

—ent(n)| = {n} if n ∈ N and —ent(n)| = ∅ if n /∈ N.

Therefore, we have to show :
0 ⋆ n . η . ρ ∈ ⊥⊥ for all n ∈ N, η ||−X (n) and ρ ∈ ‖n ε p0‖ ;
0 ⋆ n . η′ . ρ′ ∈ ⊥⊥ for all n ∈ N, η′ ||−n ε p0 and ρ′ ∈ X (n).
But this follows from η⋆ρ ∈ ⊥⊥ and η′⋆ρ′ ∈ ⊥⊥, which is trivially true, since Xn = ‖n ε p0‖.

q.e.d.

We suppose now that {C, ∧, 1} is a forcing structure inM. Then we define also the symbol
ε in the B-model N by putting :
‖|n ε p‖| = ‖n ε p‖×{1} for n, p ∈ P . In other words
‖|n ε p‖| = {(π, 1); π ∈ ε (p)(n)} if n ∈ N ; ‖|n ε p‖| = ∅ if n /∈ N.

Proposition 36. The predicate ε+(q, n, p) is q = 1 7→ n ε p.
The formula q []− n ε p is C[q∧1]→ n ε p.

Immediate, by definition of ‖|n ε p‖|.
q.e.d.

Proposition 37.
i) ξ ||− (C[p] → n ε q) ⇒ (δξ, p) ‖|−n ε q where δ = λx(χ)λy(x)(α)y and α :: p∧1 ⇒
p.
ii) (ξ, p) ‖|−n ε q ⇒ δ′ξ ||− (C[p] → n ε q) where δ′ = λxλy(χ′x)(α′)y and α′ :: p ⇒
p∧1.
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We have (ξ, p) ‖|−n ε p ⇔ (ξ, p) ⋆ (π, 1) ∈ ⊥⊥⊥ for all π ∈ ‖n ε p‖, or else :
(ξ, p) ‖|−n ε p ⇔ ξ ⋆ πτ ∈ ⊥⊥ for each τ ∈ C[p∧1] and π ∈ ‖n ε p‖.
i) Suppose that ξ ||− (C[p]→ n ε q), τ ∈ C[p∧1] and π ∈ ‖n ε p‖. Then,we have :
δξ ⋆ πτ ≻ ξ ⋆ ατ .π ∈ ⊥⊥, since ατ ∈ C[p].
ii) Suppose that (ξ, p) ||−n ε q, τ ∈ C[p] and π ∈ ‖n ε p‖. Then,we have :
δ′ξ ⋆ τ .π ≻ ξ ⋆ πα′τ ∈ ⊥⊥, since α′τ ∈ C[p∧1].

q.e.d.

The notion of first order formula has been defined previously (see theorem 31). We extend
this definition with the following clause :

• t ε u is first order, for all terms t, u.

Proposition 37 shows that theorem 31 remains true for this extended notion.

We say that the forcing structure {C, ∧, 1} satisfies the countable chain condition (in
abridged form c.c.d.) if there exists a proof-like term ccd such that :

ccd ||− ∀X [∀nent∃pX(n, p), ∀nent∀p∀q(X(n, p), X(n, q)→ p = q),
∀nent∀p∀q(X(n, p), X(sn, q)→ q ⊑ p)→
∃p′{∀nent∀p(X(n, p)→ p′ ⊑ p), (∀nent∀p(X(n, p)→ C[p])→ C[p′])}].

The intuitive meaning of this formula is :

If X(n, p) is a decreasing sequence of conditions, then there exists a condition p′ which is less

than all of them ; moreover, if all these conditions are non trivial, then p′ is non trivial.

We intend, in this section to prove the :

Theorem 38 (Conservation of reals).
If the c.c.d. is verified, then there exists a proof-like term crl such that :
(crl, 1) ‖|−∀X∃x∀nent(Xn↔ n ε x).

This means that the axiom RPN, which is realized in the A-modelM (see proposition 35)
is also realized in the generic B-model N .

Notation.
The formula ∀q(C[p∧q], q []−Xn→ p []−Xn) reads as “ p decide Xn ”, and is denoted by
p []−±Xn.
It can also be written as ∀q∀r(C[p∧q], q []−Xn,C[p∧r]→ X+(r, n)).
If X : P → P(Π×P ) is a unary predicate in the B-model N ,
and X+ : P 2 → P(Π) is the corresponding binary predicate in the standard A-modelM,
the formula ∀q(C[p∧q], q []− Xn→ p []−Xn) is thus also denoted by p []−±Xn.

Theorem 39. If the c.c.d. est verified, there exists a proof-like term dec such that :
dec ||−∀X∀p0∃p′{(C[p0]→ C[p′]), p′ ⊑ p0, ∀nent(p′ []−±Xn)}.

We first show how theorem 38 can be deduced from this theorem 39.
From theorem 30, it is sufficient to find a proof-like term crl0 such that :
crl0 ||−1 []− ∀X∃x∀nent(Xn↔ n ε x)
or else, since 1 []− ¬A ≡ ∀p0((p0 []− A),C[1∧p0]→ ⊥) :
crl0 ||−∀X∀p0[(p0 []− ∀q{∀nent(Xn↔ n ε q)→ ⊥}),C[1∧p0]→ ⊥].
From theorem 39, it is sufficient to find a proof-like term crl1 such that :
crl1 ||−∀X∀p0∀p′{(C[p0]→ C[p′]), p′ ⊑ p0, ∀nent(p′ []−±Xn),
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(p0 []− ∀q(∀nent(Xn↔ n ε q)→ ⊥)),C[1∧p0]→ ⊥}.
It is sufficient to find a proof-like term crl2 such that :
crl2 ||−∀X∀p0∀p

′{(p0 []− ∀q(∀nent(Xn ↔ n ε q) → ⊥)), p′ ⊑ p0, ∀n
ent(p′ []− ±Xn),C[p′] →

⊥}.
Indeed, we take then crl1= λxλyλzλuλv((x)(crl2)uyz)(δ)v with δ :: 1∧p⇒ p ;
(recall that the formula C[p0]→ C[p′] is written, in fact, as ¬C[p′]→ ¬C[p0]).

We fix X+ : P 2 → P(Π), p0, p′ ∈ P , ξ ||− (p0 []−∀q(∀nent(Xn↔ n ε q)→ ⊥)), η ||− p′ ⊑ p0,
ζ ||−∀nent(p′ []−±Xn) and τ ∈ C[p′]. We must have (crl2)ξηζτ ||−⊥.
We choose q0 ∈ P such that we have ‖n ε q0‖ = ‖p′ []−Xn‖ for all n ∈ N, which is possible,
by definition of ε. We trivially have ξ ||− (p0 []−(∀nent(n ε q0 → Xn), ∀nent(Xn→ n ε q0)→
⊥)).
But, the formula p0 []− (∀nent(n ε q0 → Xn), ∀nent(Xn→ n ε q0)→ ⊥) is written as :
∀r∀r′(r []− ∀nent(n ε q0 → Xn), r′ []− ∀nent(Xn→ n ε q0), C[(p0∧r)∧r

′]→ ⊥).
Replacing r and r′ with p′, we obtain :
ξ ||− (p′ []− ∀nent(n ε q0 → Xn), p′ []− ∀nent(Xn→ n ε q0), C[(p0∧p

′)∧p′]→ ⊥).
From τ ∈ C[p′] and η ||−∀r(¬C[p0∧r]→ ¬C[p′∧r]), we deduce that :
λh((η)λx(h)(β)x)(α)τ ||−¬¬C[(p0∧p′)∧p′]
where α, β are C-expressions such that α : p⇒ p∧p ; β :: p∧q ⇒ (p∧q)∧q.
Thus, we have :
(1) λyλz((η)λx(ξyz)(β)x)(α)τ ||− (p′ []−∀nent(n ε q0 → Xn)), (p′ []−∀nent(Xn→ n ε q0))→
⊥.

• The formula p′ []− ∀nent(n ε q0 → Xn) is written as ∀nent∀r(r []− n ε q0 → p′∧r []− Xn).
But r []− n ε q0 ≡ C[r∧1] → n ε q0 (proposition 36) ≡ C[r∧1] → p′ []− X (n) by definition
of q0. Therefore p

′ []−∀nent(n ε q0 → Xn) ≡ ∀nent∀r((C[r∧1]→ p′ []−X (n))→ p′∧r []−Xn) ≡
∀nent∀r∀q′[∀q(C[r∧1],C[p′∧q]→ X+(q, n)),C[(p′∧r)∧q′]→ X+(q′, n)].
Thus, we have :
(2) λdλxλy((x)(α′)y)(β ′)y ||− (p′ []− ∀nent(n ε q0 → Xn))
with α′ :: (p∧r)∧q ⇒ r∧1 and β ′ :: (p∧r)∧q ⇒ p∧q.

• The formula p′ []− ∀nent(Xn→ n ε q0) is written as ∀nent∀r(r []−Xn→ p′∧r []− n ε q0),
or else : ∀nent∀r(r []− Xn,C[(p′∧r)∧1]→ n ε q0), that is, by definition of q0 :
∀nent∀r(r []− Xn,C[(p′∧r)∧1]→ p′ []− Xn). But, we have :
ζ ||−∀nent(p′ []−±Xn), in other words ζ ||− ∀nent∀r(r []−Xn,C[p′∧r]→ p′ []−Xn). Therefore :
(3) λnλxλy(ζnx)(α′′)y ||− p′ []− ∀nent(Xn→ n ε q0) with α′′ :: (p∧r)∧1⇒ p∧r.

It follows from (1,2,3) that :
((λyλz((η)λx(ξyz)(β)x)(α)τ) λdλxλy((x)(α′)y)(β ′)y) λnλxλy(ζnx)(α′′)y ||−⊥.
Therefore, we can put crl2 =
λx0λy0λz0λu((λyλz((y0)λx(x0yz)(β)x)(α)u)λdλxλy((x)(α

′)y)(β ′)y)λnλxλy(z0nx)(α
′′)y.

q.e.d.

The remaining of this section is devoted to the proof of theorem 39.

Recursive definition of sequences

In this section, we are given a fixed element p0 ∈ P and a finite sequence of formulas
with parameters ~F (n, p, p′). We are also given a proof-like term dse such that :
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dse ||− ∀n∀p∃p′ ~F (n, p, p′).

Remark. We shall apply the results of this section to a sequence ~F of length 3.

From theorem 16(ii) (axiom of choice for individuals), there exists a function f : P 3 → P

such that : ς ||−∀n∀p(∀kent(~F (n, p, f(n, p, k))→ ⊥)→ ∀p′(~F (n, p, p′)→ ⊥)).

It follows that λx(dse)(ς)x ||−∀n∀p(∀kent(~F (n, p, f(n, p, k))→ ⊥)→ ⊥).

We define a function denoted by (m¡n), from P 2 into P , by putting, for m,n ∈ P :
(m¡n) = 1 if m,n ∈ N and m < n ; (m¡n) = 0 otherwise.

Obviously, the relation (m¡n) = 1 is well founded on P .
Thus, from theorem 11(ii), we have :

Y ||−∀k(∀l(ent(l), ~F (n, p, f(n, p, l))→ (l¡k) 6= 1),ent(k), ~F (n, p, f(n, p, k))→ ⊥)

→ ∀k(ent(k), ~F (n, p, f(n, p, k))→ ⊥).
Therefore, if we set Y′ = λx(Y)λyλz(x)zy, we have :

Y′ ||− ∀kent{∀lent(~F [n, p, f(n, p, l)]→ (l¡k) 6= 1), ~F [n, p, f(n, p, k)]→ ⊥}

→ ∀kent(~F [n, p, f(n, p, k)]→ ⊥).
Thus, we have :
λx(dse)(ς)(Y′)x ||−∀kent{∀lent(~F [n, p, f(n, p, l)] → (l¡k) 6= 1), ~F [n, p, f(n, p, k)] → ⊥} →
⊥.

We define the formula G(n, p, k) ≡ ∀lent(~F (n, p, f(n, p, l)) → (l¡k) 6= 1) and the finite

sequence of formulas ~H(n, p, k) ≡ {G(n, p, k), ~F (n, p, f(n, p, k))}. Then, we have shown :

Lemma 40. dse0 ||− ∀n∀p∃kent{ ~H(n, p, k)}, with dse0 = λx(dse)(ς)(Y′)x.

Lemma 41. Let cp be a proof-like term such that, for every m,n ∈ N, we have :
cp⋆m .n . ξ . η . ζ . π ≻ ξ ⋆ π (resp. η ⋆ π, ζ ⋆ π) if m < n (resp. n < m, m = n).
Then :
i) cp ||−∀ment∀nent((m¡n) 6= 1, (n¡m) 6= 1, m 6= n→ ⊥).

ii) dse1 ||−∀n∀p∀kent∀k′ ent( ~H(n, p, k), ~H(n, p, k′), k 6= k′ → ⊥)
with dse1= λkλk′λxλ~yλx′λ~y′((cp k′k)(x)k′~y′)(x′)k~y, where ~y, ~y′ are two sequences of

distinct variables of the same length as the sequence ~F .

i) Trivial.

ii) Let ξ ||−G(n, p, k), ~η ||− ~F (n, p, f(n, p, k)), ξ′ ||−G(n, p, k′), ~η′ ||− ~F (n, p, f(n, p, k′))
et ζ ||− k 6= k′. We must show cp ⋆ k′ . k . (ξ)k′~η′ . (ξ′)k~η . ζ . π ∈ ⊥⊥.
If k = k′, it remains to prove ζ ⋆ π ∈ ⊥⊥ ; but this is true because we then have ζ ||−⊥.
If k′ < k, it remains to prove ξ ⋆ k′ . ~η′ . π ∈ ⊥⊥. This results immediately from :
ξ ||−∀k′ ent(~F (n, p, f(n, p, k′))→ (k′¡k) 6= 1) and thus ξ ||− ent(k′), ~F (n, p, f(n, p, k′))→
⊥,
since k′ < k.

q.e.d.

We now define the predicate :
Φ(x, y) ≡ ∀X(∀n∀p∀kent( ~H(n, p, k), X(n, p)→ X(sn, f(n, p, k))), X(0, p0)→ X(x, y))
and we show that Φ(x, y) is a sequence of conditions (functional relation on N) and also
some other properties of Φ.
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Lemma 42.
i) λxλy y ||−Φ(0, p0).
ii) λx(x)II ||−∀y(Φ(0, y)→ y = p0).

iii) rec ||−∀x∀y∀kent( ~H(x, y, k),Φ(x, y)→ Φ(sx, f(x, y, k)))
where rec = λkλxλ~yλx′λzλu(zkx~y)(x′)zu

and ~y is a sequence of distinct variables of the same length as ~F .

i) Trivial.

ii) We define the binary predicate X : P 2 → P(Π) by putting :
X (0, q) = ‖q = p0‖ and X (p, q) = ∅ for p 6= 0.
We replace X with X in the definition of Φ(0, y). Since we have sn 6= 0 for all n ∈ P ,
we obtain ‖Φ(0, y)‖ ⊃ ‖⊤, p0 = p0 → y = p0‖ ; hence the result.

iii) Let ξ ||−G(x, y, k), ~η ||− ~F (x, y, f(x, y, k)), ξ′ ||−Φ(x, y),

ζ ||−∀n∀p∀kent( ~H(n, p, k), X(n, p)→ X(sn, f(n, p, k))),
υ ||−X(0, p0) and π ∈ ‖X(sx, f(x, y, k))‖.
Then ξ′ζυ ||−X(x, y), therefore ζ ⋆ k . ξ . ~η . ξ′ζυ .π ∈ ⊥⊥ i.e. (rec)kξ~ηξ′ζυ ⋆ π ∈ ⊥⊥.

q.e.d.

Lemma 43. ccd1 ||− ∀nent∃pΦ(n, p) where :
ccd1= λn((n)λxλy(x)λz(cd1)zy)λx(x)λxλy y
with cd1= λxλy(dse0)λlλ~z(y)(rec)l~zx ;

~z is a sequence of distinct variables of the same length as ~H.

Proof by recurrence on n ; we have λxλy y ||−Φ(0, p0), therefore λx(x)λxλy y ||−∃yΦ(0, y).
We now show that cd1 ||−Φ(x, y)→ ∃yΦ(sx, y).
Thus, we consider ξ ||−Φ(x, y), η ||−∀y(Φ(sx, y)→ ⊥).

We have rec ||−∀lent( ~H(x, y, l),Φ(x, y)→ Φ(sx, f(x, y, l))) (lemma 42iii),
η ||− (Φ(sx, f(x, y, l))→ ⊥), and therefore :

λlλ~z(η)(rec)l~zξ ||− ||−∀lent( ~H(x, y, l)→ ⊥), where ~z has the same length as ~H .

Now, we have dse0 ||− ∃kent{ ~H(x, y, k)} (lemma 40) ; therefore :
(dse0)λlλ~z(η)(rec)l~zξ ||−⊥, that is (cd1)ξη ||−⊥.

Thus, we have shown that cd1 ||− ∀y(Φ(x, y)→ ∃yΦ(sx, y)), and it follows that :
λxλy(x)λz(cd1)zy ||−∃yΦ(x, y)→ ∃yΦ(sx, y).

q.e.d.

Lemma 44. There exists a proof-like term ccd2 such that :
ccd2 ||− ∀nent∀p∀q(Φ(n, p),Φ(n, q)→ p = q).

We give a detailed proof, by recurrence on n. It enables us to write explicitly the proof-like
term ccd2.

For n = 0, the lemma 42(ii) gives the result : Φ(0, p),Φ(0, q)→ p = q.
Let us fix m and suppose that ∀p∀q(Φ(m, p),Φ(m, q)→ p = q).
We define the binary predicate :
Ψ(n, q) ≡ ∀p∀kent(n = sm, ~H(m, p, k),Φ(m, p)→ q = f(m, p, k)).
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We show that ||− ∀p∀kent( ~H(n, p, k),Φ(n, p)→ Ψ(sn, f(n, p, k))), that is to say :
||−∀p∀q∀kent∀lent

{ ~H(n, p, k),Φ(n, p), sn = sm, ~H(m, q, l),Φ(m, q)→ f(n, p, k) = f(m, q, l)}.
But we have ‖sn = sm‖ = ‖n = m‖, Φ(m, p),Φ(m, q) → p = q by hypothesis of

recurrence ; ~H(m, p, k), ~H(m, p, l)→ k = l (lemma 41(ii)), and it follows that f(n, p, k) =
f(m, q, l).

If we put Ψ′(x, y) ≡ Φ(x, y) ∧Ψ(x, y), we have :

||−∀p∀kent( ~H(n, p, k),Ψ′(n, p) → Ψ′(sn, f(n, p, k))) ; we have also ||−Ψ′(0, p0). This
shows that ||− (Φ(x, y)→ Ψ′(x, y)) by making X ≡ Ψ′ in the definition of Φ.

Thus, we have ||−Φ(sm, q)→ ∀p∀kent( ~H(m, p, k),Φ(m, p)→ q = f(m, p, k)).
It follows that :
||−Φ(sm, q),Φ(sm, q′)→

∀p∀kent( ~H(m, p, k),Φ(m, p)→ (q = f(m, p, k)) ∧ (q′ = f(m, p, k)))

and therefore ||−Φ(sm, q),Φ(sm, q′)→ ∀p∀kent( ~H(m, p, k),Φ(m, p)→ q = q′).
Thus, we obtain ||−Φ(sm, q),Φ(sm, q′)→ q = q′, since we have ccd1 ||−∃pΦ(m, p) by

lemma 43 and dse0 ||−∀p∃kent{ ~H(m, p, k)} by lemma 40.
q.e.d.

End of the proof of theorem 39

In order to show theorem 39, we fix p0 ∈ P and a binary predicate X : P 2 → P(Π).
We have to find a proof-like term dec such that :
dec ||− ∃p′{(C[p0]→ C[p′]), p′ ⊑ p0, ∀nent(p′ []−±Xn)}.

We apply the above results, taking for ~F (n, p, p′) the sequence of three formulas :
{(C[p]→ C[p′]), (p′ ⊑ p), p′ []−±Xn}.

Lemma 45 below gives a proof-like term dse such that dse ||−∀n∀p∃p′{~F (n, p, p′)}.

Lemma 45. dse ||−∀p∃p′{~F (n, p, p′)}
where dse= λa(λh(aII)λxλy h)λz(cc)λk((aλx xz)β ′)λxλy(k)(y)(α)x
with β ′ = λxλy(x)(β)y, α :: (p∧q)∧r ⇒ r∧q and β :: (p∧q)∧r ⇒ p∧r.

The formula we consider is written as ∀p′[(C[p]→ C[p′]), p′ ⊑ p , (p′ []−±Xn)→ ⊥]→ ⊥.
Thus, let ξ ||−∀p′[(C[p]→ C[p′]), p′ ⊑ p , (p′ []−±Xn)→ ⊥]. We must show (dse)ξ ||−⊥.

• We show that λh(ξII)λxλy h ||−¬(p []−Xn) :
Let ζ ||− (p []− Xn) ; therefore, we have λxλy ζ ||− (p []−±Xn) ; indeed :
p []−±Xn ≡ ∀q(C[p∧q], q []− Xn→ p []−Xn).
But, we have ξ ||− (C[p]→ C[p]), p ⊑ p , (p []−±Xn)→ ⊥ ;
we have I ||−C[p]→ C[p] and I ||− p ⊑ p (since p′ ⊑ p ≡ ∀q(¬C[p∧q]→ ¬C[p′∧q])).
Thus (ξII)λxλy ζ ||−⊥, hence the result.

• We now show λz(cc)λk((ξλx xz)β ′)λxλy(k)(y)(α)x ||− (p []−Xn).
Thus, let τ ∈ C[p∧q] and π ∈ X+(q, n). We must show :
((ξλx xτ)β ′)λxλy(kπ)(y)(α)x ⋆ π ∈ ⊥⊥. But, we have λxxτ ||−¬¬C[p∧q],
β ′ ||− p∧q ⊑ p (lemma 46) and ξ ||− (¬C[p∧q]→ ¬C[p]), p∧q ⊑ p , (p∧q []−±Xn)→ ⊥ ; thus :
(ξλx xτ)β ′ ||− ((p∧q []−±Xn)→ ⊥). Therefore, it is sufficient to show :
λxλy(kπ)(y)(α)x ||− (p∧q []−±Xn), i.e. :
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λxλy(kπ)(y)(α)x ||− ∀r(C[(p∧q)∧r], r []− Xn→ p∧q []− Xn). In fact, we show :
λxλy(kπ)(y)(α)x ||− ∀r(C[(p∧q)∧r], r []− Xn→ ⊥).
Thus, let υ ∈ C[(p∧q)∧r] and η ||− (r []− Xn). We must show :
(kπ)(η)(α)υ ⋆ ρ ∈ ⊥⊥ for all ρ ∈ Π, i.e. (η)(α)υ ⋆ π ∈ ⊥⊥. But, we have (α)υ ∈ C[r∧q],
therefore (η)(α)υ ||−X+(q, n), hence the result, since π ∈ X+(q, n).

• It follows that (λh(ξII)λxλy h)λz(cc)λk((ξλx xz)β ′)λxλy(k)(y)(α)x ||−⊥
i.e. (dse)ξ ||−⊥, which completes the proof.

q.e.d.

Lemma 46. Let β :: (p∧q)∧r ⇒ p∧r. Then λxλy(x)(β)y ||−∀p∀q((p∧q) ⊑ p).

This formula is written ∀p∀q∀r(¬C[p∧r],C[(p∧q)∧r]→ ⊥).
Therefore, let ξ ||−¬C[p∧r], τ ∈ C[(p∧q)∧r], thus βτ ∈ C[p∧r] and (ξ)(β)τ ||−⊥.
Thus, we obtain λxλy(x)(β)y ⋆ ξ . τ .π ∈ ⊥⊥ for every π ∈ Π.

q.e.d.

We propose now to apply the countable chain condition to the binary predicate Φ(x, y).
Lemmas 43 and 44 show that the first two hypothesis of the c.c.d. are realized by ccd1

and ccd2. The third one is given by lemma 47 below.

Lemma 47. There exist two proof-like terms ccd3 and for such that :
i) ccd3 ||−∀nent∀p∀q(Φ(n, p),Φ(sn, q)→ q ⊑ p).
ii) for ||− ∀nent∀q(Φ(sn, q)→ q []− ±Xn).

By lemma 42(iii), we have :

rec ||− ∀kent( ~H(n, p, k),Φ(n, p)→ Φ(sn, f(n, p, k))). Using ccd2 (lemma 44), we get :

||−∀kent( ~H(n, p, k),Φ(n, p),Φ(sn, q)→ q = f(n, p, k)).

Now, ~H(n, p, k) is a sequence of four formulas, the last two of which are :
f(n, p, k) ⊑ p and f(n, p, k) []−±Xn.

i) It follows first that ||−∀kent( ~H(n, p, k),Φ(n, p),Φ(sn, q)→ q ⊑ p).

Hence the result, since we have dse0 ||−∃kent{ ~H(n, p, k)} (lemma 40).

ii) It follows also that ||−∀kent( ~H(n, p, k),Φ(n, p),Φ(sn, q)→ q []−±Xn).
Thus, we obtain ||− ∀nent∀q(Φ(sn, q)→ q []−±Xn) since we have ccd1 ||− ∀nent∃pΦ(n, p)

(lemma 43) and dse0 ||−∀n∀p∃kent{ ~H(n, p, k)} (lemma 40).
q.e.d.

We can now apply the c.c.d. to the predicate Φ(x, y), which gives a proof-like term ccd0

such that ccd0 ||−∃p′{~Ω(n, p, p′)} with :
~Ω(n, p, p′) ≡ {∀nent∀p(Φ(n, p)→ p′ ⊑ p), ∀nent∀p(Φ(n, p),¬C[p]→ ⊥),¬C[p′]→ ⊥}.

Therefore, in order to complete the proof of theorem 39, it is sufficient to find proof-like
terms
dec0,dec1,dec2 such that :

dec0 ||− ∀p′(~Ω(n, p, p′),¬C[p0],C[p′]→ ⊥) ;

dec1 ||− ∀p′(~Ω(n, p, p′)→ p′ ⊑ p0) ;

dec2 ||− ∀p′(~Ω(n, p, p′)→ ∀nent(p′ []−±Xn)).

Thus, let ω0, ω1 ∈ Λ be such that :
ω0 ||−∀nent∀p(Φ(n, p)→ p′ ⊑ p) and ω1 ||− ∀nent∀p(Φ(n, p),¬C[p]→ ⊥),¬C[p′]→ ⊥
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Applying lemma 42(i) with n = 0, p = p0, we obtain (ω0)λxλy y ||− p′ ⊑ p0.
Therefore, we can take dec1 = λaλb(a)λxλy y.

Lemma 48. ccd4 ||− (C[p0]→ ∀nent∀p(Φ(n, p),¬C[p]→ ⊥))
where ccd4= λaλbλc((bλx0λx1λx2λx3λxλy(x)(x1)y)λxxa)c.

Let τ ∈ C[p0], ξ ||−Φ(n, p) and η ||−¬C[p].
Making X(x, y) ≡ ¬¬C[y] in the definition de Φ, we get :

ξ ||−∀n′∀p′∀kent(G[n′, p′, k], ~F [n′, p′, f(n′, p′, k)],¬¬C[p′]→ ¬¬C[f(n′, p′, k)]),
¬¬C[p0],¬C[p]→ ⊥.

We have λx(x)τ ||−¬¬C[p0].

Moreover, since ~F [n′, p′, q] ≡ {(¬C[q]→ ¬C[p′]), (q ⊑ p′), q []−±Xn}, we easily get :
λx0λx1λx2λx3λxλy(x)(x1)y ||−

∀n′∀p′∀kent(G[n′, p′, k], ~F [n′, p′, f(n′, p′, k)],¬¬C[p′]→ ¬¬C[f(n′, p′, k)]).
It follows that ((ξλx0λx1λx2λx3λxλy(x)(x1)y)λx(x)τ)η ||−⊥, i.e. (ccd4)τξη ||−⊥.

q.e.d.

From lemma 48, we immediately deduce λx(ω1)(ccd4)x ||−C[p0],¬C[p′]→ ⊥.
Therefore, we can put dec0 = λaλbλx(b)(ccd4)x.

Lemma 49.
i) lef0 ||− ∀p∀q(p []− Xn, q ⊑ p→ q []− Xn) with lef0= λxλyλz(cc)λk((y)λu(k)(x)u)z.
ii) lef1 ||−∀p∀q(p []− ±Xn, q ⊑ p→ q []−±Xn) with
lef1= λxλyλzλu((lef0)(cc)λh((y)λv(h)(x)vu)z.

i) This is immediate, if we write explicitly the formulas :
p []−Xn ≡ ∀r(C[p∧r]→ X+(r, n)) ;
q ⊑ p ≡ ∀r(¬C[p∧r]→ ¬C[q∧r]) ;
q []−Xn ≡ ∀r(C[q∧r]→ X+(r, n)).
We declare x : p []−Xn, y : q ⊑ p, z : C[q∧r], k : ¬X+n.
ii) We write down the formulas :
p []−±Xn ≡ ∀r(C[p∧r], r []− Xn→ p []− Xn) ;
q ⊑ p ≡ ∀r(¬C[p∧r]→ ¬C[q∧r]) ;
q []−±Xn ≡ ∀r(C[q∧r], r []−Xn→ q []− Xn).
We declare x : p []−±Xn, y : q ⊑ p, z : C[q∧r], u : r []− Xn, v : C[p∧r], h : ¬(p ||−Xn).

q.e.d.

By means of lemmas 47(ii) and 49 and also ω0 ||− ∀nent∀p(Φ(n, p)→ p′ ⊑ p), we obtain :
λnλx((lef1)(for)nx)(ω0)nx ||−∀nent∀q(Φ(sn, q)→ p′ []−±Xn).
But, we have ccd1 ||−∀nent∃pΦ(n, p) (lemma 43) ; it follows that :
λn(cc)λk((ccd1)(s)n)λx(k)((lef1)(for)nx)(ω0)nx ||−∀nent(pX []−±Xn).
Thus, we can put dec2 = λaλbλn(cc)λk((ccd1)(s)n)λx(k)((lef1)(for)nx)(a)nx.

This completes the proof of theorem 39.
q.e.d.

The ultrafilter axiom on N

Let us consider a standard realizability algebra A and a A-modelM in which the indi-
vidual set (which is also the set of conditions) is P = P(Π)N.
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The binary relation ε is defined by ‖n ε p‖ = p(n) if n ∈ N ; otherwise ‖n ε p‖ = ∅.
1 is defined by 1(n) = ∅ for every n ∈ N ;
∧ is defined by ‖n ε (p∧q)‖ = ‖n ε p ∧ n ε q‖ for every n ∈ N.

The axiom of representation of predicates on N (RPN)

We define the following recursive function of arity k, denoted by (n1, . . . , nk) (coding of
k-uples) : (n1, n2) = n1 + (n1 +n2)(n1 +n2 +1)/2 ; (n1, . . . , nk+1) = ((n1, . . . , nk), nk+1).

Proposition 50. ||−∀X∃x∀yint1 . . .∀yintk ((y1, . . . , yk) ε x ↔ X(y1, . . . , yk)) where X is a
predicate variable of arity k.

Let X : P k → P(Π) be a predicate of arity k. We define a ∈ P by putting :
a(n) = X (n1, . . . , nk) for n ∈ N, n = (n1, . . . , nk). Then, we have immediately :
I ||− ∀yent1 . . .∀yentk ((y1, . . . , yk) ε a→ X (y1, . . . , yk)) and
I ||− ∀yent1 . . .∀yentk (X (y1, . . . , yk)→ (y1, . . . , yk) ε a).
It follows that :
λx(x)I ||−∀X∃x∀yent1 . . .∀yentk ((y1, . . . , yk) ε x→ X(y1, . . . , yk)) and
λx(x)I ||−∀X∃x∀yent1 . . .∀yentk (X(y1, . . . , yk)→ (y1, . . . , yk) ε x).

Then, it suffices to apply theorem 13.
q.e.d.

The comprehension scheme for N (CSN)

Let F [y, x1, . . . , xk] be a formula the free variables of which are taken among y, x1, . . . , xk.
We define a k-ary function gF : P k → P , in other words gF : P k×N→ P(Π) by putting
gF (p1, . . . , pk)(n) = ‖F [n, p1, . . . , pk]‖ for every n ∈ N.

Proposition 51. We have ||−∀x1 . . .∀xk∀yint(y ε gF (x1, . . . , xk)↔ F [y, x1, . . . , xk]) for
every formula F [y, x1, . . . , xk].

Indeed, we have trivially :
I ||− ∀x1 . . .∀xk∀yent(y ε gF (x1, . . . , xk)→ F [y, x1, . . . , xk]) and
I ||− ∀x1 . . .∀xk∀yent(F [y, x1, . . . , xk]→ y ε gF (x1, . . . , xk)).

Then, it suffices to apply theorem 13.
q.e.d.

Remark. The binary function symbol ∧ is obtained by applying CSN to the formula y ε x1 ∧

y ε x2.

The generic model

We denote by C[x] the formula ∀mint∃nint(m+n) ε x, which says that the set x of integers
is infinite. The predicate C is defined by this formula : for every p ∈ P , |C[p]| is, by
definition, the set {τ ∈ Λ; τ ||−C[p]}.
It follows that the condition γ :: t(p1, . . . , pn) ⇒ u(p1, . . . , pn) is written as :
λx γx ||−∀p1 . . .∀pn(C[t(p1, . . . , pn)]→ C[u(p1, . . . , pn)]).
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Therefore, in order to complete the definition of the algebra B (and of the B-model N ),
it remains to find proof-like terms α0, α1, α2, β0, β1, β2 such that :

α0 ||−∀p∀q∀r(C[(p∧q)∧r]→ C[p∧(q∧r)]) ; α1 ||− ∀p(C[p]→ C[p∧1]) ;
α2 ||−∀p∀q(C[p∧q]→ C[q]) ; β0 ||− ∀p(C[p]→ C[p∧p]) ; β1 ||− ∀p∀q(C[p∧q]→ C[q∧p]) ;
β2 ||− ∀p∀q∀r∀s(C[((p∧q)∧r)∧s]→ C[(p∧(q∧r))∧s]).

Now, we easily have, in natural deduction :
⊢ θ : ∀n(n ε x→ n ε x′)→ (C[x]→ C[x′]) with θ = λfλuλmλh(um)λnλx(hn)(f)x.
Therefore, by theorem 3 (adequacy lemma), we can put αi = θα∗i and βi = θβ∗i , with
proof-like terms α∗i , β

∗
i (0 ≤ i ≤ 2) such that :

⊢ α∗0 : ∀X∀Y ∀Z{(X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z)} ; ⊢ α∗1 : ∀X{X → X ∧ ⊤} ; ⊢ α∗2 :
∀X∀Y {X ∧ Y → Y } ; ⊢ β∗0 : ∀X{X → X ∧X} ; ⊢ β∗1 : ∀X∀Y {X ∧ Y → Y ∧X} ;
⊢ β∗2 : ∀X∀Y ∀Z∀U{((X ∧ Y ) ∧ Z) ∧ U → (X ∧ (Y ∧ Z)) ∧ U}.

The countable chain condition

In this section, we show the :

Theorem 52.
The forcing structure {C, ∧, 1} satisfies the countable chain condition inM.

We have to find a proof-like term ccd such that :
ccd ||− ∀X∃x{∀nent∃pX(n, p), ∀nent∀p∀q(X(n, p), X(n, q)→ p = q),

∀nent∀p∀q(X(n, p), X(sn, q)→ q ⊑ p)→
∀nent∀p(X(n, p)→ x ⊑ p) ∧ (∀nent∀p(X(n, p)→ C[p])→ C[x])}

where p ⊑ q is the formula ∀r(C[p∧r]→ C[q∧r]).

By theorem 13, this amounts to find a proof-like term ccd’ such that :

ccd’ ||− ∀X∃x{∀nint∃pX(n, p), ∀nint∀p∀q(X(n, p), X(n, q)→ p = q),
∀nint∀p∀q(X(n, p), X(sn, q)→ q ⊑ p)→
∀nint∀p(X(n, p)→ x ⊑ p) ∧ (∀nint∀p(X(n, p)→ C[p])→ C[x])}.

By theorem 3 (adequacy lemma), given a formula F , we can use the following method to
show ||−F :
First, show ||−A1, . . . , ||−Ak, then
show A1, . . . , Ak ⊢ F by means of the rules of classical second order natural deduction
(which contains the comprehension scheme), and of the following axioms which are realized
by proof-like terms in the A-modelM :

• t 6= u for all closed terms t, u which take distinct values inM.
• ∀xint1 . . . ∀xintk (t(x1, . . . , xk) = u(x1, . . . , xk)) for all the equations between terms which
are true in N.
• The foundation scheme (SCF, see theorem 11ii) which consists of the formulas :
∀X1 . . .∀Xk{∀xint[∀yint(X1y, . . . , Xky → f(y, x) 6= 1), X1x, . . . , Xkx→ ⊥]

→ ∀xint(X1x, . . . , Xkx→ ⊥)}
where f : P 2 → P is such that the relation f(y, x) = 1 is well founded on N.
• The axiom of choice scheme for individuals (ACI, see theorem 16) which consists of the
formulas ∀~x(∀yintF (~x, fF (~x, y))→ ∀y F (~x, y)) ;
~x = (x1, . . . , xk) is a finite sequence of variables, ∀~x∀yintF is an arbitrary closed formula,
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and fF is a function symbol of arity k + 1.
• The axiom of representation of predicates on N (RPN, see proposition 50) which consists
of the formulas ∀X∃x∀~yint((y1, . . . , yk) ε x↔ X~y) ;
~y = (y1, . . . , yk) is a sequence of k variables and X is a predicate variable of arity k.
• The comprehension scheme for integers (CSN, see proposition 51), which consists of
the formulas ∀~x∀yint(y ε gF (~x)↔ F [y, ~x]) ;
~x = (x1, . . . , xk) is a sequence of k variables, ∀~x∀yintF is an arbitrary closed formula, and
gF is a function symbol of arity k.

Lemma 53. ⊢ ∀p∀q(p ⊑ q ↔ ∃mint∀nint(n +mε p→ n+mε q)).

We apply the CSN to the formula F [y, x] ≡ y ε/ x ; thus, we obtain :

⊢ ∀x∀yint(y ε¬x↔ y ε/ x)
using the notation ¬x for gF (x).

We have p ⊑ q ≡ ∀r(C[p∧r]→ C[q∧r]) and therefore p ⊑ q ⊢ C[p∧¬q]→ C[q∧¬q].
But, we have C[q∧¬q] ⊢ ∀mint∃nint(m+ n ε q ∧m+ n ε/ q) ⊢ ⊥, and thus :
p ⊑ q ⊢ ¬C[p∧¬q], that is ⊢ p ⊑ q → ∃mint∀nint¬(m+ n ε p ∧ ¬(m+ n ε q)).

Conversely, from the hypothesis :
∀n′ int(m′ + n′ ε p→ m′ + n′ ε q), ∀mint∃nint(m+ n ε p ∧m+ n ε r), we deduce :
∀mint∃nint((m′ +m) + n ε p ∧ (m′ +m) + n ε r), then :
∀mint∃nint(m+ (m′ + n) ε q ∧m+ (m′ + n) ε r) then :
∀mint∃nint(m+ n ε q ∧m+ n ε r). Therefore :
∀n′ int(m′ + n′ ε p→ m′ + n′ ε q) ⊢ C[p∧r]→ C[q∧r] and thus :
∃m′∀n′ int(m′ + n′ ε p→ m′ + n′ ε q) ⊢ C[p∧r]→ C[q∧r].

q.e.d.

Applying RPN and the comprehension scheme, we obtain :
||−∀X∃hD(h,X) with D(h,X) ≡ ∀kint∀nint((k, n) ε h ↔ ∀q∀iint(i ≤ n,X(i, q) →
k ε q)).
Remark. The intuitive meaning of D(h,X) is : h is the individual associated with the

decreasing sequence of conditions X ′, the n-th term of which is the intersection of the n first

terms of the sequence X.

We apply CSN to the formula F (k, n, h) ≡ (k, n) ε h. Thus, we obtain :
⊢ ∀n∀h∀kint∀n(k ε gF (n, h)↔ (k, n) ε h).
We shall use the notation hn for gF (n, h). Therefore, we have :

⊢ ∀n∀h∀kint(k ε hn ↔ (k, n) ε h).

and it follows that :
D(h,X) ⊢ ∀kint∀nint(k ε hn ↔ ∀q∀iint(i ≤ n,X(i, q)→ k ε q))

We put Φ(k, h, n) ≡ ∃iint{∀jint(j + n ε hn → (j < i) 6= 1), i+ n ε hn, k = i+ n}.
Remark. The intuitive meaning of Φ(k, h, n) is : “ k is the first element of hn which is ≥ n ”.

We apply CSN to the formula F (k, h) ≡ ∃nintΦ(k, h, n). Thus, we obtain :
⊢ ∀h∀kint(k ε gF (h)↔ ∃nint Φ(k, h, n)).
We shall use the notation inf(h) for gF (h). Therefore, we have :

⊢ ∀h∀kint(k ε inf(h)↔ ∃nint Φ(k, h, n)).

The hypothesis of the c.c.d. are :
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H0[X ] ≡ ∀nint∃pX(n, p) ;
H1[X ] ≡ ∀nint∀p∀q(X(n, p), X(n, q)→ p = q) ;
H2[X ] ≡ ∀nint∀p∀q(X(n, p), X(sn, q)→ q ⊑ p) ;
H3[X ] ≡ ∀nint∀p(X(n, p)→ C[p]).

We put ~H [X ] ≡ {H0[X ], H1[X ], H2[X ], H3[X ]} and ~H∗[X ] = {H0[X ], H1[X ], H2[X ]}.

Thus, it is sufficient to show :
D(h,X), ~H∗[X ] ⊢ ∀nint∀p(X(n, p)→ inf(h) ⊑ p) and

D(h,X), ~H[X ] ⊢ C[inf(h)].

Notation. The formula ∀nint(n ε p→ n ε q) is denoted by p ⊆ q.

Lemma 54. D(h,X) ⊢ ∀mint∀nint(hn+m ⊆ hn).

This formula is written ∀mint∀nint∀kint(k ε hn+m → k ε hn). Now, we have :

D(h,X) ⊢ ∀mint∀nint∀kint(k ε hn+m → ∀q∀i
int(i ≤ n+m,X(i, q)→ k ε q)) ;

⊢ ∀mint∀nint∀kint[∀q∀iint(i ≤ n +m,X(i, q)→ k ε q)→ ∀q∀iint(i ≤ n,X(i, q)→ k ε q)] :
D(h,X) ⊢ ∀mint∀nint∀kint(∀q∀iint(i ≤ n,X(i, q)→ k ε q)→ k ε hn).

q.e.d.

Lemma 55. D(h,X), H0[X ], H1[X ] ⊢ ∀nint∀kint∀p(X(sn, p), k ε p, k ε hn → k ε hsn).

We have D(h,X), int(k), int(n) ⊢ ∀p∀iint(i ≤ sn,X(i, p)→ k ε p)→ k ε hsn.
But, we have int(n), int(i), i ≤ sn ⊢ i ≤ n ∨ i = sn, and therefore :
int(n), ∀p∀iint(i ≤ n,X(i, p)→ k ε p), ∀p(X(sn, p)→ k ε p) ⊢

∀p∀iint(i ≤ sn,X(i, p)→ k ε p).
It follows that :
D(h,X), int(k), int(n) ⊢ ∀p∀iint(i ≤ n,X(i, p) → k ε p), ∀p(X(sn, p) → k ε p) → k ε hsn,
i.e. :
D(h,X), int(k), int(n) ⊢ k ε hn, ∀p(X(sn, p)→ k ε p)→ k ε hsn. Therefore :
D(h,X), int(k), int(n), H0[X ], H1[X ] ⊢ ∀p(k ε hn, X(sn, p), k ε p→ k ε hsn).

q.e.d.

Lemma 56. D(h,X), ~H∗[X ] ⊢ ∀nint∀p(X(n, p)→ p ⊑ hn).

Proof by recurrence on n. We must show :
D(h,X), ~H∗[X ], int(n) ⊢ ∀p∃mint∀lint(X(n, p), l +mε p→ l +mεhn).
For n = 0, we have D(h,X) ⊢ ∀kint(∀q(X(0, q) → k ε q) → k ε h0). Thus, it suffices to
show :
D(h,X), ~H∗[X ] ⊢ ∀p∃mint∀lint∀q(X(0, p), l +mε p,X(0, q)→ l +mε q),
which follows, in fact, from H1[X ], that is X(0, p), X(0, q)→ p = q.
The recurrence hypothesis is ∀p(X(n, p)→ p ⊑ hn) ;
H2[X ] is ∀p∀q(X(n, p), X(sn, q)→ q ⊑ p) ; H0[X ] is ∃pX(n, p).
Moreover, we have easily q ⊑ p, p ⊑ r ⊢ q ⊑ r. Thus, it follows that :
∀p(X(sn, p)→ p ⊑ hn), i.e. ∀p∃mint∀lint(X(sn, p), l +mε p→ l +mεhn).
Now, we have, by lemma 55 :
D(h,X), H0[X ], H1[X ] ⊢ X(sn, p), l +mε p, l +mεhn → l +mεhsn.
Therefore, we have ∀p∃mint∀lint(X(sn, p), l +mε p→ l +mεhsn) that is :
∀p(X(sn, p)→ p ⊑ hsn), which is the desired result.

q.e.d.
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Lemma 57. D(h,X), ~H(X) ⊢ ∀nintC[hn].

We have ∀nint∀p(X(n, p)→ C[p]) from H3. Moreover, we have easily :
⊢ ∀p∀q(C[p], p ⊑ q → C[q]). Thus, applying lemma 56, we obtain :

D(h,X), ~H(X) ⊢ ∀nint∀p(X(n, p)→ C[hn]). Hence the result, from H0[X ].
q.e.d.

Lemma 58. D(h,X), ~H[X ] ⊢ ∀nint∃kintΦ(k, h, n).

By the foundation scheme (SCF), we have :
⊢ ∀iint{∀jint(j + n ε hn → (j¡i) 6= 1), i+ n ε hn → ⊥} → ∀iint(i+ n ε hn → ⊥).

But, we have D(h,X), ~H[X ] ⊢ ∀nintC[hn] (lemma 57), therefore :

D(h,X), ~H[X ] ⊢ ∀nint∃iinti+ n ε hn. It follows that :

D(h,X), ~H[X ] ⊢ ∀nint∃iint{∀jint(j + n ε hn → (j¡i) 6= 1), i+ n ε hn}.
q.e.d.

Lemma 59. D(h,X), ~H[X ] ⊢ C[inf(h)].

We have C[inf(h)] ≡ ∀mint∃iint(i+mε inf(h)).
Now, by definition of the function symbol inf, we have :
⊢ ∀h∀kint(k ε inf(h)↔ ∃nintΦ(k, h, n)).
Therefore ⊢ C[inf(h)]↔ ∀mint∃iint∃nintΦ(i+m, h, n).
By definition de Φ, we have trivially ⊢ ∀nint∀kint(Φ(k, h, n)→ ∃iint(k = i+ n)).

Moreover, we have D(h,X), ~H[X ] ⊢ ∀nint∃kintΦ(k, h, n) (lemma 58).

Therefore D(h,X), ~H[X ] ⊢ ∀nint∃iint Φ(i+ n, h, n), thus D(h,X), ~H[X ] ⊢ C[inf(h)].
q.e.d.

Lemma 60.
D(h,X), ~H∗[X ] ⊢ ∀h∀kint∀k′int∀nint∀n′int(Φ(k, h, n),Φ(k′, h, n′), k′ > k → n′ > n).

We have Φ(k, h, n) ≡ ∃iint~Ψ(k, h, n, i), with :
~Ψ(k, h, n, i) ≡ {∀jint(j + n ε hn → (j¡i) 6= 1), i+ n ε hn, k = i+ n}.
Thus, we have to show :
D(h,X), ~H∗[X ], int(k), int(k′), int(n), int(n′), int(i), int(i′) ⊢ ~Ξ(h, k, n, i, k′, n′, i′)→ ⊥

with ~Ξ(h, k, n, i, k′, n′, i′) ≡ {~Ψ(k, h, n, i), ~Ψ(k′, h, n′, i′), k′ > k, n′ ≤ n} that is :
~Ξ(h, k, n, i, k′, n′, i′) ≡
{∀jint(j + n ε hn → (j¡i) 6= 1), i+ n ε hn, k = i+ n,
∀j′ int(j′ + n′ ε hn′ → (j′¡i′) 6= 1), i′ + n′ ε hn′, k′ = i′ + n′,
k′ > k, n′ ≤ n}.
From n′ ≤ n and k = i+ n, we deduce n′ ≤ k, thus k = j′ + n′.
From k′ > k, we deduce i′ + n′ > k, and thus j′ < i′.
Therefore, we have j′ + n′ ε/ hn′, i.e. k ε/ hn′. But, from n′ ≤ n, we deduce hn ⊆ hn′

(lemma 54), thus k ε/ hn, which contradicts i+ n ε hn, k = i+ n.
q.e.d.

By definition of Φ, we have trivially ⊢ ∀nint∀kint(Φ(k, h, n)→ k ε hn).

By lemmas 54 and 60, we get :

D(h,X), ~H∗[X ] ⊢ ∀h∀kint∀k′int∀nint∀n′int(Φ(k, h, n),Φ(k′, h, n′), k′ > k → k′ ε hn).
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Lemma 58 gives ∀nint∃kintΦ(k, h, n). It follows that :

D(h,X), ~H∗[X ] ⊢ ∀nint∃kint∀n′ int∀k′ int(Φ(k′, h, n′), k′ > k → k′ ε hn),

and therefore D(h,X), ~H∗[X ] ⊢ ∀nint(inf(h) ⊑ hn).

But, we have trivially D(h,X) ⊢ ∀nint∀kint∀p(k ε hn, X(n, p) → k ε p). Therefore, fi-
nally :
D(h,X), ~H∗[X ] ⊢ ∀nint∀p(X(n, p)→ inf(h) ⊑ p).

We have eventually obtained the desired proof-like term ccd’, which completes the proof
of theorem 52.

q.e.d.

The ultrafilter

In the model N , we have defined the generic ideal J , which is a unary predicate, by
putting : J (p) = Π×{p} for every p ∈ P .

By theorem 33, we have :

i) ‖|−¬J (1)
ii) ‖|−∀x(¬C[x]→ J (x))
iii) ‖|−∀x∀y(J (x∧y)→ J (x) ∨ J (y))
iv) ‖|−∀x(∀y(¬C[x∧y]→ J (y))→ ¬J (x))
v) ‖|−∀x∀y(J (x), y ⊑ x→ J (y))

By theorem 31, we have ||−F ⇔ ‖|−F for every closed first order formula F .

Remark. A “first order” formula contains quantifiers on the individuals which, by means of

the symbol ε , represent the subsets of N. Therefore, it is a second order formula from the point

of vue of Arithmetic. But it contains no quantifier on sets of individuals.

By theorems 13 and 28, we can use, in F , the quantifier ∀xint, since the quantifier ∀xent

is first order.

Therefore, we have :

vi) ‖|−C[x]↔ ∀mint∃nint(m+ n ε x)
vii) ‖|− y ⊑ x↔ ∃mint∀nint(m+ n ε y→ m+ n ε x)
viii) ‖|−∀nintn ε 1 ; ‖|−∀x∀y∀nint(n ε x∧y ↔ n ε x ∧ n ε y)

since all these formulas are first order. Properties (i) to (viii) show that, in the B-model
N , the following formula is realized :
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N which are
represented by individuals.

Now, by theorems 38 and 52, the following formula is realized in N :
Every subset of N represented by an individual.

Thus the following formula is realized in N :
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N.

Programs obtained from proofs

Let F be a formula of second order arithmetic, that is to say a second order formula every
individual quantifier of which is restricted to N and every second order quantifier of which
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is restricted to P(N).
We associate with F , a first order formula F †, defined by recurrence on F :

• If F is t = u, F † ≡ F .
• If F is Xt, F † is t εX−, where X− is an individual variable associated with the unary
predicate variable X .
• If F is A→ B, F † is A† → B†.
• If F is ∀xA, F † is ∀xintA†.
• If F is ∀X A, F † is ∀X−A†.

We note that, if F is a formula of first order arithmetic, then F † is simply the restriction
F int of F to the predicate int(x).

Let F be a closed formula of second order arithmetic and let us consider a proof of F ,
which uses the axiom of dependent choice DC and the axiom UA of ultrafilter on N, writ-
ten in the following form, with a constant J of predicate : “J is a maximal non trivial
ideal on P(N) ”.
We can transform it immediately into a proof of F † if we add the axiom RPN of repre-
sentation of predicates on N : ∀X∃x∀y(y ε x↔ Xy). Thus, we obtain :
x : UA, y : RPN, z : DC† ⊢ t[x, y, z] : F †.
Therefore, we have ⊢ u : UA, RPN → G with u = λxλyλz t[x, y, z] and G ≡ DC† → F †.
Thus, G is a first order formula.
In the previous section, we obtained proof-like terms θ, θ′ such that (θ, 1) ‖|−UA and
(θ′, 1) ‖|− RPN (theorems 38 and 52).
Therefore, theorem 26 (adequacy lemma) gives (u∗, 1u)(θ, 1)(θ

′, 1) ‖|−G, that is to say :
(v, (1u∧1)∧1) ‖|−G with v = ((α0)(α0)u

∗θ)θ′.
By theorem 31, we thus have δ′Gv ||−C[(1u∧1)∧1]→ G, that is :
δ′Gv ||−C[(1u∧1)∧1], DC† → F .
The axiom DC† is consequence of ACI (axiom of choice for individuals). Therefore, by
theorem 16, we have a proof-like term η0 ||− DC†.
Moreover, we have obviously a proof-like term ξ0 ||−C[(1u∧1)∧1].
Thus, finally, we have δ′Gvξ0η0 ||−F .
Then, we can apply to the program ζ = δ′Gvξ0η0 all the results obtained in the framework
of usual classical realizability. The case when F is an arithmetical (resp. Π1

1) formula is
considered in [12] (resp. [13]).
Let us take two very simple examples :

If F ≡ ∀X(X1, X0→ X1), we have ζ ⋆ κ .κ′ .π ≻ κ ⋆ π for all terms κ, κ′ ∈ Λ and every
stack π ∈ Π.

If F ≡ ∀mint∃nint(φ(m,n) = 0), where φ is a function symbol, then for every m ∈ N,
there exists n ∈ N such that φ(m,n) = 0 and ζ ⋆ m . Tκ .π ≻ κ ⋆ n . π′.
T is the proof-like term for integer storage, given in theorem 13(i).
π, κ are arbitrary ; therefore, by taking a constant for κ, we obtain a program which
computes n from m.
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Well ordering on R

The A-model M is the same as in the previous section : the set of individuals is P =
P(Π)N. Recall that an element of P est called sometimes an individual, sometimes a
condition, following the context.

We put (m,n) = m + (m + n)(m + n + 1)/2 (bijection of N2 on N). We define a binary
function φ : P 2 → P by putting :
φ(n, p)(i) = p(i, n) if n ∈ N ; φ(n, p) is arbitrary (for instance 0) if n /∈ N.

Notation. In the sequel, we shall write pn instead of φ(n, p). Thus, it is the same to
give an individual p or a sequence of individuals pn(n ∈ N). If i, n ∈ N, we have
‖(i, n) ε p‖ = ‖i ε pn‖.

We fix a strict (i.e. not reflexive) well ordering ⊳ on P = P(Π)N, which is isomorphic
to the cardinal 2ℵ0 : every proper initial segment of ⊳ is therefore of power < 2ℵ0 . We
define a binary function, denoted by (p ⊳ q) by putting (p ⊳ q) = 1 if p ⊳ q ; (p ⊳ q) = 0
otherwise.
Since the relation (p ⊳ q) = 1 well founded on P , we have (theorem 11) :
Y ||−∀X [∀x(∀y((y ⊳ x) = 1 7→ Xy)→ Xx)→ ∀xXx]
in the A-modelM, but also in every B-model N .
We shall write, in abridged form, y ⊳ x for (y ⊳ x) = 1.
Thus, inM and N , the relation ⊳ is well founded but, in general, not total.
It is a strict order relation, in both models, for we have immediately, in the model M :
I ||− ∀x((x ⊳ x) 6= 1) ; I ||− ∀x∀y∀z((x ⊳ y) = 1 7→ ((y ⊳ z) = 1 7→ (x ⊳ z) = 1)).
Since all these formulas are first order, by theorem 31, we have also, in the model N :
‖|−∀x((x ⊳ x) 6= 1) ; ‖|−∀x∀y∀z((x ⊳ y) = 1 7→ ((y ⊳ z) = 1 7→ (x ⊳ z) = 1)).

A condition p ∈ P is also a sequence of individuals pk. Intuitively, we shall consider it,
as “ the set of individuals pk+1 for k ε p0 ” ; we define accordingly the condition 1, the
formula C[p] which says that p is a non trivial condition, and the binary operation ∧.

1 the empty set, in other words i ε 10 (i.e. (i, 0) ε 1) must be false. Therefore, we put :
1(n) = Π for every n ∈ N.

A condition is non trivial if the set of individuals, which is associated with it, is totally
ordered by ⊳. Therefore, we put :
C[p] ≡ ∀ient∀jent(i ε p0, j ε p0 → E[pi+1, pj+1]) with :
E[x, y] ≡ (x = y ∨ x ⊳ y ∨ y ⊳ x) that is E[x, y] ≡ (x 6= y, (x ⊳ y) 6= 1, (y ⊳ x) 6= 1→ ⊥).

The set associated with p∧q is the union of the sets associated with p and with q ; therefore,
we put :
p∧q = r where r0 is defined by : ‖2i ε r0‖ = ‖i ε p0‖ ; ‖2i+ 1 ε r0‖ = ‖i ε q0‖ ;
rj+1 is defined by : r2i+1 = pi+1 ; r2i+2 = qi+1.

The notation p ⊂ q means that the set associated with q contains the one associated
with p.
Therefore, we put :
p ⊂ q ≡ ∀ient(i ε p0 → ∃j

ent{j ε q0, pi+1 = qj+1}).

Lemma 61.
i) θ ||−∀p∀q∀r(p ⊂ q, q ⊂ r → p ⊂ r) with θ = λfλgλiλxλh(fix)λjλy(g)jyh.
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ii) θ′ ||−∀p∀q∀r(p ⊂ q → p∧r ⊂ q∧r) with :
θ′ = λfλiλyλu((ei)(u)iy)(((f)(d2)iy)λj(u)(d0)j
where d0, d1, d2, e are proof-like terms representing respectively the recursive functions :
n 7→ 2n, n 7→ 2n+ 1, n 7→ [n/2], n 7→ parity of n (e takes boolean values).

i) We suppose :
f ||− ∀i(ent(i), i ε p0, ∀j(ent(j), j ε q0 → pi+1 6= qj+1)→ ⊥) ;
g ||−∀j(ent(j), j ε q0, ∀k(ent(k), k ε r0 → qj+1 6= rk+1)→ ⊥) ;
x ||− i ε p0 ; h ||−∀k(ent(k), k ε r0 → pi+1 6= rk+1) ; and we have i ∈ |ent(i)|.
It follows that fix ||−∀j(ent(j), j ε q0 → pi+1 6= qj+1)→ ⊥.
Suppose that y ||− j ε q0 and let j ∈ |ent(j)|.

If pi+1 = qj+1, then gjyh ||−⊥ ; therefore gjyh ||− pi+1 6= qj+1. We have shown :
λjλy(g)jyh ||−∀j(ent(j), j ε q0 → pi+1 6= qj+1). Therefore (fix)λjλy(g)jyh ||−⊥.

ii) We suppose :
f ||− ∀i(ent(i), i ε p0, ∀j(ent(j), j ε q0 → pi+1 6= qj+1)→ ⊥) ;
y ||− i′ ε (p∧r)0 ; u ||− ∀j′(ent(j′), j′ ε (q∧r)0 → (p∧r)i′+1 6= (q∧r)j′+1).
If we replace j′ with 2j′′, and then with 2j′′ + 1, we obtain, by definition of ∧ :

(1) (u)(d0)j
′′ ||− j′′ ε q0 → (p∧r)i′+1 6= qj′′+1 ;

(2) (u)(d1)j
′′ ||− j′′ ε r0 → (p∧r)i′+1 6= rj′′+1.

Then, there is two cases :

• If i′ = 2i′′, we have y ||− i′′ ε p0 and, by (1), (u)(d0)j
′′ ||− j′′ ε q0 → pi′′+1 6= qj′′+1.

Therefore :
λj(u)(d0)j ||−∀j(ent(j), j ε q0 → pi′′+1 6= qj+1) and it follows that :

(((f)(d2)i
′)y)λj(u)(d0)j ||−⊥.

• If i′ = 2i′′ + 1, we have y ||− i′′ ε r0 and, by (2), (u)(d1)j
′′ ||− j′′ ε r0 → ri′′+1 6= rj′′+1.

By making j′′ = i′′, we obtain (u)(d1)i
′′ ||− i′′ ε r0 → ⊥ and therefore :
(u)i′y ||−⊥.

Thus, in both cases, we get : ((ei′)(u)i′y)(((f)(d2)i
′)y)λj(u)(d0)j ||−⊥.

q.e.d.

Lemma 62.
i) θ ||−∀p∀q(p ⊂ q,C[q]→ C[p]) with
θ = λfλgλiλi′λxλx′λuλvλw(fi′x′)λj′λy′(fix)λjλy(g)jj′yy′uvw.
ii) ||− ∀p∀q∀r(p ⊂ q,C[q∧r]→ C[p∧r]) in other words ||− ∀p∀q(p ⊂ q → q ⊑ p).

i) Let f ||− p ⊂ q, g ||−C[q], that is :
f ||− ∀i(ent(i), i ε p0, ∀j(ent(j), j ε q0 → pi+1 6= qj+1)→ ⊥) ;
g ||−∀j∀j′(ent(j), ent(j′), j ε q0, j

′ ε q0 → E[qj+1, qj′+1]) with :
E[x, y] ≡ (x 6= y, (x ⊳ y) 6= 1, (y ⊳ x) 6= 1→ ⊥).
Let x ||− i ε p0, x′ ||− i′ ε p0, u ||− pi+1 6= pi′+1, v ||− (pi+1 ⊳ pi′+1) 6= 1, w ||− (pi′+1 ⊳ pi+1) 6= 1.
Let y ||− j ε q0, y′ ||− j′ ε q0.
We have gj j′yy′ ||−E[qj+1, qj′+1] ; if pi+1 = qj+1 and pi′+1 = qj′+1, then :
gj j′yy′ ||−E[pi+1, pi′+1], and therefore gj j′yy′uvw ||−⊥.
Thus, we have λjλy(g)jj′yy′uvw ||− ent(j), j ε q0 → ⊥ if pi+1 = qj+1 and pi′+1 = qj′+1.
Therefore, λjλy(g)jj′yy′uvw ||− ∀j(ent(j), j ε q0 → pi+1 6= qj+1) if pi′+1 = qj′+1, thus :
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(fix)λjλy(g)jj′yy′uvw ||−⊥ if pi′+1 = qj′+1, thus :
λj′λy′(fix)λjλy(g)jj′yy′uvw ||−∀j′(ent(j′), j′ ε q0 → pi′+1 6= qj′+1). Therefore :
(fi′x′)λj′λy′(fix)λjλy(g)jj′yy′uvw ||−⊥.

ii) Follows immediately from (i) and ||− ∀p∀q∀r(p ⊂ q → p∧r ⊂ q∧r) (lemma 61).
q.e.d.

The following lemma shows that we can build the algebra B and the B-model N .

Lemma 63. There exist six proof-like terms α0, α1, α2, β0, β1, β2 such that :
α0 ||− ∀p∀q∀r(C[(p∧q)∧r]→ C[p∧(q∧r)]) ; α1 ||−∀p(C[p]→ C[p∧1]) ;
α2 ||− ∀p∀q(C[p∧q]→ C[q]) ; β0 ||−∀p(C[p]→ C[p∧p]) ; β1 ||−∀p∀q(C[p∧q]→ C[q∧p]) ;
β2 ||− ∀p∀q∀r∀s(C[((p∧q)∧r)∧s]→ C[(p∧(q∧r))∧s]).

We only show the first case. By lemma 62(i), it suffices to find a proof-like term :
θ ||−∀p∀q∀r(p∧(q∧r) ⊂ (p∧q)∧r). Thus, we suppose :
y ||− i ε (p∧(q∧r))0 ; u ||− ∀j(ent(j), j ε ((p∧q)∧r)0 → (p∧(q∧r))i+1 6= ((p∧q)∧r)j+1).
There are three cases :
• i = 2i′ ; then, we have y ||− i′ ε p0. We make j = 2i = 4i′, therefore u ||− ent(2i), i′ ε p0 →
pi′+1 6= pi′+1. Thus, we have : (u)(d0)iy ||−⊥.
• i = 4i′ + 1 ; then, we have y ||− i′ ε q0. We make j = i+ 2 = 4i′ + 3, thus :
u ||− ent(i+ 2), i′ ε q0 → qi′+1 6= qi′+1. Thus, we have : ((u)(σ)2i)y ||−⊥.
• i = 4i′ + 3 ; then, we have y ||− i′ ε r0. We make j = i− 3 = 4i′, thus :
u ||− ent(i− 3), i′ ε r0 → ri′+1 6= ri′+1. Therefore, we have : ((u)(p)3i)y ||−⊥
(p is the program for the predecessor).
Thus, we put θ = λiλyλu(((e4i)(u)(d0)iy)((u)(σ)

2i)y)((u)(p)3i)y, where e4 is defined
by its execution rule : e4 ⋆ i . ξ . η . ζ .π ≻ ξ .π (resp. η .π, ζ . π) if i = 4i′ (resp.
4i′ + 1, 4i′ + 3).

q.e.d.

We now show the :

Theorem 64.
The forcing structure {C, ∧, 1} satisfies the countable chain condition inM.

The hypothesis of the c.c.d. are :

H0 ≡ ∀n∃pX (n, p) ;
H1 ≡ ∀nent∀p∀q{X (n, p),X (n, q)→ p = q} ;
H2 ≡ ∀nent∀p∀q(X (n, p),X (sn, q)→ q ⊑ p) ;
H3 ≡ ∀nent∀p(X (n, p)→ C[p]).

Moreover, by theorem 16, we have a binary function f : P 2 → P such that :
ς ||−∀nent(∃pX (n, p)→ ∃kentX (n, f(n, k))).
Therefore, by H0, we can also use the hypothesis :

H ′0 ≡ ∀n
ent∃kentX (n, f(n, k)).

Let us put ~H = {H0, H
′
0, H1, H2, H3} and ~H∗ = {H0, H

′
0, H1, H2}.

Lemma 65. ~H ⊢ ∀p∀q∀ment∀nent(X (m, p),X (n, q)→ C[p∧q]).
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We show ∀mint∀nint(X (m, p),X (m+ n, q)→ q ⊑ p) by recurrence on n.
For n = 0, this follows from H1, H3. For the recurrence step, we use H2.

Thus, we have ∀p∀q∀ment∀nent(X (m, p),X (n, q)→ p ⊑ q ∨ q ⊑ p).
From p ⊑ q, we deduce C[p∧p]→ C[q∧p], and the result follows, byH3 and C[p]→ C[p∧p].

q.e.d.

We define the wanted limit h by defining h0 and hm+1 for each m ∈ N.
For m = (i, n, k) (that is (i, (n, k)) ), we put ‖mεh0‖ = ‖X (n, f(n, k))∧ i ε (f(n, k))0‖ ;
then hm+1 = (f(n, k))i+1.
Intuitively, X defines a sequence of countable sets, and h is the union of these sets.

• Proof of ~H∗ ⊢ X (n, p)→ h ⊑ p.
By lemma 62(ii), it suffices to show X (n, p)→ p ⊂ h, that is :
X (n, p), i ε p0, ∀m

ent(mεh0,→ hm+1 6= pi+1)→ ⊥, for n, i ∈ N.
We fix k ∈ N and we put m = (i, n, k). By definition of h, it suffices to show :
X (n, p), i ε p0, ∀kent(X (n, f(n, k)), i ε (f(n, k))0,→ (f(n, k))i+1 6= pi+1)→ ⊥.
Now, from H1,X (n, p),X (n, f(n, k)), we deduce f(n, k) = p and therefore :
(f(n, k))0 = p0 and (f(n, k))i+1 = pi+1. Thus, it remains to show :
X (n, p), i ε p0, ∀kent(X (n, f(n, k)), i ε p0→ pi+1 6= pi+1)→ ⊥.
But this formula follows immediately from H ′0.

• Proof of ~H ⊢ C[h].
We must show C[h], that is mεh0, m

′ ε h0 → E[hm+1, hm′+1]. Now, we have :

m = (i, n, k) ; ‖mεh0‖ = ‖X (n, f(n, k)) ∧ i ε (f(n, k))0‖ ; hm+1 = (f(n, k))i+1 ;
m′ = (i′, n′, k′) ; ‖m′ ε h0‖ = ‖X (n′, f(n′, k′)) ∧ i′ ε (f(n′, k′))0‖ ; hm′+1 = (f(n′, k′))i′+1.

From X (n, f(n, k)),X (n′, f(n′, k′)), it follows that :
C[u] with u = f(n, k)∧f(n′, k′) (lemma 65). Therefore, we have :
‖i ε (f(n, k))0‖ = ‖2i ε u‖ ; ‖i′ ε (f(n′, k′))0‖ = ‖2i′ + 1 ε u‖ ;
hm+1 = u2i+1 ; hm′+1 = u2i′+2.
From C[u], we deduce E[u2i+1, u2i′+2], that is E[hm+1, hm′+1].

This completes the proof of theorem 64.
q.e.d.

The well ordering on P(N)

In the model N , we define the unary predicate G(x) ≡ ∃p∃ient{¬J (p), i ε p0, x = pi+1}.

Lemma 66. ‖|−G(x),G(y)→ E[x, y].

We must show ‖|−¬J (p),¬J (q), i ε p0, x = pi+1, j ε q0, y = qj+1 → E[x, y], that is :
‖|−¬J (p),¬J (q), i ε p0, j ε q0 → E[pi+1, qj+1].
By theorem 33(ii) and (iii), we have ‖|−¬J (p),¬J (q)→ C[p∧q].
Therefore, it is sufficient to show that ‖|−C[p∧q], i ε p0, j ε q0 → E[pi+1, qj+1].
We show below that we have I ||−C[p∧q], i ε p0, j ε q0 → E[pi+1, qj+1]. Since this is a first
order formula, this gives the desired result, by theorem 31.
Indeed, we have : pi+1 = (p∧q)2i+1 ; qj+1 = (p∧q)2j+2 ;
‖i ε p0‖ = ‖2i ε (p∧q)0‖ ; ‖j ε q0‖ = ‖2j + 1 ε (p∧q)0‖.
Therefore, it remains to show :
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I ||−C[p∧q], 2i ε (p∧q)0, 2j + 1 ε (p∧q)0 → E[(p∧q)2i+1, (p∧q)2j+2]
which is obvious, by definition of C[p∧q].

q.e.d.

Lemma 66 shows that ⊳ is a total relation on G. But, moreover, ⊳ is a well founded
relation in N . Therefore, we have :

‖|− G is well ordered by ⊳.

We define now two functions on P :

• a unary function δ : P → P by putting ‖i ε δ(p)0‖ = ‖i+ 1 ε p0‖ ; δ(p)i+1 = pi+2.
• a binary function φ : P 2 → P by putting ‖0 ε φ(p, q)0‖ = ∅ ; ‖i + 1 ε φ(p, q)0‖ =
‖i ε p0‖ ;
φ(p, q)1 = q ; φ(p, q)i+2 = pi+1 for every i ∈ N.
Therefore, we have δ(φ(p, q)) = p and φ(p, q)1 = q for all p, q ∈ P and thus :
I ||− ∀p∀q(δ(φ(p, q)) = p) ; I ‖|−∀p∀q(δ(φ(p, q)) = p) ;
I ||− ∀p∀q(φ(p, q)1 = q) ; I ‖|−∀p∀q(φ(p, q)1 = q).

Intuitively, δ(p) defines the set we obtain by removing p1 from the set associated with p ;
φ(p, q) defines the set we obtain by adding q to the set associated with p.

Lemma 67. If p, q ∈ P , there exists q′ ∈ P such that δ(q′) = q and pi ⊳ q
′ for every

i ∈ N.

For each a ∈ P , we have δ(φ(q, a)) = q. But the application a 7→ φ(q, a) is obviously
injective, since φ(q, a)1 = a. Thus, the set {φ(q, a); a ∈ P} is of cardinal 2ℵ0 . Now, by
hypothesis on ⊳, every proper initial segment of P , for the well ordering ⊳, is of cardinal
< 2ℵ0. Thus, there exists some a0 ∈ P such that pi ⊳ φ(q, a0) for every i ∈ N. Then, it
suffices to put q′ = φ(q, a0).

q.e.d.

Therefore, we can define a binary function ψ : P 2 → P such that we have :
δ(ψ(p, q)) = q and (pi ⊳ ψ(p, q)) = 1 for all p, q ∈ P and i ∈ N. Thus, we have :

I ||− ∀p∀q(δ(ψ(p, q)) = q) ; I ‖|−∀p∀q(δ(ψ(p, q)) = q).
KI ||−∀p∀q∀ient(pi ⊳ ψ(p, q)) ; KI ‖|−∀p∀q∀ient(pi ⊳ ψ(p, q)).

Lemma 68. We have ‖|−∀q∃x{G(x), δ(x) = q}.

This is written as ‖|−∀q[∀x∀p∀ient(δ(x) = q, i ε p0, x = pi+1 → J (p))→ ⊥] or else :
‖|−∀q[∀p∀ient(i ε p0, δ(pi+1) = q → J (p))→ ⊥].
By making i = 0, it is sufficient to show :
(1) ‖|−∀q[∀p(0 ε p0, δ(p1) = q → J (p))→ ⊥].

By replacing p with φ(p, ψ(p, q)) in (1), we see that it remains to show :
‖|−∀q¬∀pJ (φ(p, ψ(p, q))).

Lemma 69. ||−∀p∀q(C[p]→ C[φ(p, ψ(p, q))]).

We have C[r] ≡ ∀ient∀jent(i ε r0, j ε r0 → E[ri+1, rj+1]). Therefore, in order to show that
||−C[p]→ C[r], it suffices to show :
(1) ||−C[p]→ ∀ient∀jent(i+ 1 ε r0, j + 1 ε r0 → E[ri+2, rj+2]) and
(2) ||−C[p]→ ∀jent(0 ε r0, j + 1 ε r0 → E[r1, rj+2]).
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We apply this remark by putting r = φ(p, ψ(p, q)). Then (1) is written as ||−C[p]→ C[p]
since ‖i+ 1 ε r0‖ = ‖i ε p0‖ and ri+2 = pi+1 and the same for j.
Thus, it suffices to show (2), that is :

||−C[p]→
∀jent(0 ε φ(p, ψ(p, q))0, j + 1 ε φ(p, ψ(p, q))0→ E[φ(p, ψ(p, q))1, φ(p, ψ(p, q))j+2]).

But, we have I ||− ∀p∀q(0 ε φ(p, q)0) ; I ||− ∀p∀q(j ε p0 → j + 1 ε φ(p, ψ(p, q))0) ;
I ||− ∀p∀q(φ(p, ψ(p, q))1 = ψ(p, q)) ; I ||−∀p∀q(φ(p, ψ(p, q))j+2 = pj+1).
Therefore, it remains to show :
||−C[p]→ ∀jent(j ε p0 → E[ψ(p, q), pj+1])
which is trivial, since we have KI ||−∀p∀q∀jent(pj+1 ⊳ ψ(p, q)).

q.e.d.

Lemma 70. λiλxλy((y)(σ)i)x ||−∀p∀q(p ⊂ φ(p, q)).

This is written as :
λiλxλy((y)(σ)i)x ||−∀i(ent(i), i ε p0, ∀j(ent(j), j ε φ(p, q)0→ φ(p, q)j+1 6= pi+1)→ ⊥)
which is immediate, by making j = i+ 1.

q.e.d.

We have ||− p ⊂ φ(p, ψ(p, q)) (lemma 70), and it follows that :
||−φ(p, ψ(p, q)) ⊑ p (lemma 62ii), and thus ||−C[φ(p, ψ(p, q))]→ C[p∧φ(p, ψ(p, q))].
Therefore, by lemma 69, we have :
||−∀p∀q(C[p] → C[p∧φ(p, ψ(p, q))]). Since this is a first order formula, we have, by theo-
rem 31 : ‖|−∀p∀q(C[p]→ C[p∧φ(p, ψ(p, q))])
and therefore, by theorem 33(ii) : ‖|−∀p∀q(¬C[p∧φ(p, ψ(p, q))]→ J (p)).
Then, we apply theorem 34, which gives : ‖|−∀q¬∀pJ (φ(p, ψ(p, q)))
which is the desired result.

q.e.d.

Theorem 71. The following formulas are realized in N :
i) There exists a well ordering on the set of individuals.
ii) There exists a well ordering on the power set of N.

i) Lemma 68 shows that, in N , the function δ is a surjection from G onto the set P of
individuals. But, we have seen that the formula : “ G is well ordered by ⊳ ” is realized
in N .
ii) By theorems 38 and 64, the following formula is realized in N : “ Every subset of N

is represented by an individual ”. Hence the result, by (i).
q.e.d.

Theorem 71(ii) enables us to transform into a program any proof of a formula of second
order arithmetic, which uses the existence of a well ordering on R. The method is the
same as the one explained above for the ultrafilter axiom.
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