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Introduction

When transforming mathematical proofs into programs, the main problem is naturally
due to the azioms : indeed, it has been a long time since we know how to transform a
proof in pure (i.e. without axioms) intuitionistic logic, even at second order [B, [d, H].
The very first of these axioms is the excluded middle, and it seemed completely hopeless
for decades. The solution was given by T. Griffin [{] in 1990, and it was absolutely
surprising. It was an essential discovery in logic because, at this moment, it became clear
that all other axioms will follow, provided we can work in a suitable framework.

The theory of classical realizability is such a framework : it was developed in [, [,
where we treat the axioms of Analysis (second order arithmetic with dependent choice).
In [[[4], we attack a more difficult case of the general axiom of choice, which is the existence
of a non trivial ultrafilter on N ; the main tool is the notion of realizability structure, in
which the programs are written in A-calculus.

In the present paper, we replace it with the notion of realisability algebra, which has many
advantages : it is simpler, first order and much more practical for implementation. It is a
three-sorted variant of the usual notion of combinatory algebra. Thus, the programming
language is no longer the A-calculus, but a suitable set of combinators ; remarkably
enough, this is almost exactly the original set given by Curry. The A-terms are now
considered only as notations or abbreviations, very useful in fact : a A-term is infinitely
more readable than its translation into a sequence of combinators. The translation used
here is new, as far as I know ; its fundamental property is given in theorem P

The aim of this paper is to show how to transform into programs, the classical proofs
which use dependent choice and :

i) the existence of a non trivial ultrafilter on N ;

ii) the existence of a well ordering on R.

Of course, (ii) implies (i) but the method used for (i) is interesting, because it can give
simpler programs. This is an important point, because a new problem is appearing now,
an important and very difficult problem : to understand the programs we obtain in this
way, that is to explain their behavior. A fascinating, but probably long work.



The logical frame is given by classical second order logic, in other words the (first order)
theory of the comprehension scheme. However, since we use a binary belonging relation on
individuals, we work, in reality, in at least third order logic. Moreover, this is indispensable
since, although the axiom of dependent choice on R can be expressed as a second order
scheme, axioms (i) and (ii) cannot be expressed in this way.

By using the method expounded in [[], we can obtain the same results in ZF.

It seems clear to me that, by developing the technology of classical realizability, we shall
be able to treat all “natural” axioms introduced in set theory. It is already done for the
continuum hypothesis, which will be the topic of a forthcoming paper. In my opinion, the
axiom of choice and the generalized continuum hypothesis in ZF do not put serious issues,
except this : it will be necessary to use the proper class forcing of Easton [ inside the
realizability model, and it will probably be very painful.

A very interesting open problem is put by axioms such as the existence of measurable
cardinals or the determination axiom.

But the most important open problem is to understand what all these programs do and,
in this way, to be able to execute them. I believe that big surprises are waiting for us here.
Indeed, when we realize usual axioms of mathematics, we need to introduce, one after
the other, the very standard tools in system programming : for the law of Peirce, these
are continuations (particularly useful for exceptions) ; for the axiom of dependent choice,
these are the clock and the process numbering ; for the ultrafilter axiom and the well
ordering of R, these are no less than read and write instructions on a global memory, in
other words assignment.

It seems reasonable to conjecture that such tools are introduced for some worthwhile
purpose, and therefore that the very complex programs we obtain by means of this for-
malization work, perform interesting and useful tasks. The question is : which ones ?

Remark.

The problem of obtaining a program from a proof which uses a given axiom, must be put
correctly from the point of view of computer science. As an example, consider a proof of a
theorem of arithmetic, which uses a well ordering of P(N) : if you restrict this proof to the class
of constructible sets, you easily get a new proof of the same theorem, which does not use this
well ordering any more. Thus, it looks like you simply have to transform this new proof into a
program.

But this program would be extracted from a proof which is deeply different from the original one.
Moreover, with this method, it is impossible to associate a program with the well ordering axiom
itself. From the point of view of computer science, this is a very serious lack of modularity :
since we cannot put the well ordering axiom in a program library, we need to undertake again
the programming work with each new proof.

With the method which is explained below, we only use the A\-term extracted from the original
proof. Therefore, this term contains an unknown instruction for the well ordering axiom on
P(N), which is not yet implemented. Then, by means of a suitable compilation, we transform
this term into a true program which realizes the initial theorem.

As a corollary of this technology, we obtain a program which is associated with the well ordering
axiom, which we can put in a library for later use.



Realizability algebras

A realizability algebra is composed of three sets : A (the set of terms), IT (the set of
stacks), A x II (the set of processes) with the following operations :

(&,m) — (€)n from A® into A (application) ;

(&, m) — & .m from AxII into IT (push) ;

(&, m) — Exm from AXII into A« IT (processus) ;
7 +— k, from IT into A (continuation).

We have, in A, the distinguished elements B,C, E, I, K, W, cc, called elementary combi-
nators or instructions.

Notation. The term (... (((&)m)ne)...)n, will be also denoted by (&)mna...n, or
Emnz - M-

For example : §n¢ = (§)n¢ = (§n)¢ = ((E)n)¢.

We define on A x IT a preorder relation, denoted by . It is the least reflexive and
transitive relation such that we have, for any £, 7, € A and 7,w € II :

(E)n m>=Exn.m.
Ix&em>=Ex.

Kx&enem = Exm.

Ex&enem = ()n*m.

Wx€Eenem =Exnen.T.
Crx&eneCoem=EXxCone.
Bx&enoeCom = (&)(n) *m.
cck&em = Exky o,

ke x& o =& *.

Finally, we are given a subset 1L of A x IT which is a terminal segment for this preorder,
which means that : pe 1L, p'>=p=p' € L.
In other words, we ask that I be such that :
Emrxm ¢ L= xnem ¢ L.
Ix&em¢ L =Exme AL,
Kxéenem¢g L =Exm ¢ L.
Extenend L= (En xm ¢ L.
Wxéenemé L =Exnenem ¢ L.
Cx&eneComg L =ExConpem ¢t AL,
Bx&eneCoemd L= (E)(n)Crxm ¢ L.
ccxéemd L= Exkeem e L.

ke xEewd L =Exmd L.

c-terms and A-terms

We call c-term a term which is built with variables, the elementary combinators B,
C, E, I, K, W, cc and the application (binary function). A c-term is called closed if it
contains no variable ; it will then also be called proof-like ; a proof-like term has a value
in A.



Given a c-term ¢ and a variable x, we define inductively on ¢, a new c-term denoted by
Az t. To this aim, we apply the first possible case in the following list :

1. Axt = (K)t if t does not contain z.

Aex=1.

Az tu = (CAz(E)t)u if u does not contain .

Az tz = (E)t if t does not contain z.

Azt = (W) z(E)t (if t contains x).

Az(t)(u)v = Ax(B)tuv (if uwv contain x).

We easily see that this rewriting is finite, for any given c-term ¢ : indeed, during the
rewriting, no combinator is introduced inside ¢, but only in front of it. Moreover, the only
changes in t are for parentheses. Now, rules 1 to 5 strictly decrease the part of ¢ which
remains under Az, and rule 6 can be applied consecutively only finitely many.

AR ol

The A-terms are defined as usual. But, in this paper, we consider A-terms only as a
notation for particular c-terms, by means of the above translation. This notation is
essential, because almost every c-term we shall use, will be given as a A-term. Theorem
gives the fundamental property of this translation.

Lemma 1. Ift is a c-term with the only variables x,y, ..., Y, and if € n1,...,n, € A,
then : ()\ZE t)[nl/yla s 777n/yn] *5 o T > t[g/xa nl/yla ce ann/yn] * .

To lighten the notation, let us put u* = u[n;/y1,...,n./yns] for each c-term u ; thus, we
have :
w[é/x] = ul§/z m/yr, 0/ Yn)-
The proof is done by induction on the number of rules 1 to 6 used to translate the term
Az t. Consider the rule used first.
If it is rule 1, then we have (Azt)*x&.m = (K)t* o =t x7
=t[&/x,m /Y1, - s Mn/Yn) * T since x is not in ¢.
If it isrule 2, we have t = z and (A\xt)*x{ e = [xE e = Exm = HE /2,1 /Y1, -+ N/ Yn]*
.
If it is rule 3, we have t = wv and (Azt)* x&.m = (CAx(E)u) v* *x o
= Cx (Ax(B)u)* ev* oo = (Ax(B)u)* x £ ov* o = (E)u*[¢/z] x v* « 7 (by induction
hypothesis) = E x u*[¢/x] « v* e 7w = (u*[{/x])0* x T = [l /2,01 /Y1, - - - s M/ Yn] * T since x
1s not in v.
If it is rule 4, we have t = uz and (Azt)**x{.m = (E)u* % em = Exu* & om = u*E*m
=tl&/x,m /Y1, .- Mn/Yn] * T since u does not contain z.
If it is rule 5, we have t = ur and (Mxt)* x&em = (WAx(F)u)* x e = W x
Ae(BE)u)* e &om
= (Ax(EYu)* x €& om = (E)u*[/2z] £ « m (by induction hypothesis)
o Exu[6]a] o € o > (u[€/2])E % T = HE/5, /31, -+ ] %
If it is rule 6, we have t = (u)(v)w and (Azt)**x&.m = (Ax(B)uvw)* € .7
= (B)u*[¢/x]v*[€/z|w*[/z] * T (by induction hypothesis)
= Brurlg/a]vt€/a] cw[§/a] o o= (ur[E/x]) (07[E /2w [§/x] 4 m
=t/ z,m /Y, Yn] X T

Q.E.D.



Theorem 2. Ift is a c-term with the only variables x1,...,x,, and if &, ..., &, € A,
then A\xq .. ATt *& o oo o&pom =& m1, ... & /Tp) * .

Proof by induction on n ; the case n = 0 is trivial.
We have Azq ... ATp AT t%E e ot o &1 e&nom = (Axpt)[&1/21, . 6n/Tn 1] % & e T
(by induction hypothesis) > t[&1/x1,. .., &n—1/Tn-1,&/Tn] * T by lemma I

Q.E.D.

Natural deduction

Before giving the formal language that we shall use, it is perhaps useful to describe
informally the structures (models) we have in mind. They are second order structures,
with two types of objects : individuals also called conditions and predicates (of various
arity). Since we remain at an intuitive level, we only consider full models.

Such a model consists of :

e an infinite set P (the set of individuals or conditions).

e the set of k-ary predicates is P(P*) (full model).

e some functions from P¥ into P.

In particular, there is an individual 0 and a bijective function s: P — (P \ {0}). This
enables us to define the set of integers N as the least set which contains 0 and which is
closed for s.

There is also a condition denoted by 1 and an application denoted by A from P? into P.
e some relations (fixed predicates) on P. In particular, we have the equality relation on
individuals and the subset C of non trivial conditions.

C[paq] reads as : “p and g are two compatibles conditions”.

We now come to the formal language, in order to write formulas and proofs about such
structures. It consists of :

o individual variables or variables of condition called z,y,...or p,q,...

e predicate variables or second order variables X,Y,...; each predicate variable has an
arity which is in N.

e function symbols on individuals f,g,...; each one has an arity which is in N.

In particular, there is a function symbol of arity k for each recursive function f : N¥ — N.
This symbol will also be written as f.

There is also a constant symbol 1 (which represents the greatest condition) and a binary
function symbol A (which represents the inf of two conditions).

The terms are built in the usual way with variables and function symbols.

The atomic formulas are the expressions X (t1,...,t,), where X is an n-ary predicate
variable, and tq,...,t, are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols —,V :
e cach atomic formula is a formula ;

e if A, B are formulas, then A — B is a formula ;

e if Ais a formula, then Voz A and VX A are formulas.

Notations.
The formula A; — (As — (... (A, — B)...) will be written Ay, Ay, ..., A, — B.



The usual logical symbols are defined as follows :

(X is a predicate variable of arity 0, also called propositional variable)
1=VXX;-A=A—-1;AvB=(A—-1),B—-1)—1;ANB=(AB—1)—
€L
JyF =Vy(F — 1) — L (where y is an individual or predicate variable).
More generally, we shall write 3 y{F,..., F} for Vy(Fy,...,Fp,— 1) — L.
We shall sometimes write F for a finite sequence of formulas Fi,..., F} ;

Then, we shall also write Jy{F} and Vy(F — 1) — L.
x =y is the formula VZ(Zx — Zy), where Z is a unary predicate variable.

The rules of natural deduction are the following (the A;’s are formulas, the x;’s are
variables of c-term, ¢, u are c-terms) :

1.xy Ay, o o, Ay B s A,

2.1 Ay, oyt A bt A— B, x Aoyt Ay ut A = ox Ay o
A, Ftu:B.

3.x1:A1,...,x, Ay, ARt B = x1:A,...,x, Ay F et A— B.

4.oxy: Ayyooox A FtE A = xp Ay x, s Ay E T VXA for every variable x
(individual or predicate) which does not appear in Ay, ..., A,.

S5.x1: Ay, x  Ag bt Ve A = xp s Ayl x, s Ay Bt Alr/x] where x is an
individual variable and 7 is a term.

6. 21 : A1, x A F VXA = xp i Ay Ap bt A[F/ Xyr .. yk] where
X est a predicate variable of arity £ and F' an arbitrary formula.

Remark.
In the notation A[F/Xyj ...yg|, the variables yi,...,y; are bound. A more usual notation is :
AN ... Xy F/X]. T prefer this one, to avoid confusion with the A defined for c-terms.

Realizability

Given a realizability algebra A = (A, IT, AxII, 1), a A-model M consists of the following
data :

e An infinite set P which is the domain of variation of individual variables.

e The domain of variation of k-ary predicate variables is P(IT)" "

e We associate with k-ary each k-ary function symbol f, a function from P* into P,
denoted by f or even f if there is no ambiguity.

In particular, there is a distinguished element 0 in P and a function s : P — P (which
is the interpretation of the symbol s). We suppose that s is a bijection from P onto
P\ {0}.Then, we can identify s"0 € P with the integer n, and therefore, we have N C P.
Each recursive function f : N¥ — N is, by hypothesis, a function symbol. Of course, we
assume that its interpretation f : P¥ — P takes the same values as f on NF.

Finally, we have also a condition 1 € P and a binary function A from P? into P.

A closed term (resp. a closed formula) with parameters in the model M is, by definition,
a term (resp. a formula) in which all free occurrences of each variable have been replaced
with a parameter, i.e. an object of the same type in the model M : a condition for an
individual variable, an application from P* into P(II) for a k-ary predicate variable.
Each closed term ¢, with parameters in M has a value t € P.



An interpretation Z is an application which associates an individual (condition) with each
individual variable and a parameter of arity & with each second order k-ary variable.
Iz < p] (resp. Z[X « X]) is, by definition, the interpretation obtained by changing,
in Z, the value of the variable z (resp. X) and giving to it the value p € P (resp.
X € P(IT)™").

For each formula F' (resp. term t), we denote by FZ (resp. %) the closed formula (resp.
term) with parameters obtained by replacing each free variable with the value given by

7.

For each closed formula FZ with parameters in M, we define two truth values :

|FZ|| € I and |FZ| C A.

|FZ| is defined as follows : & € |FZ| & (Vm € ||FE|)Exm e L.

| FZ|| is defined by recurrence on F :

e [ is atomic : then FZ has the form X(t,...,t;) where X : P* — P(II) and the t;’s
are closed terms with parameters in M. We set || X (t1,... )| = X (L1, ..., k).

e F=A— B:weset |[F*||={¢.7; € |At|,me| B}

o F=VrA: weset ||FT||=U{|A=; pe P}.

o F=VXA: weset ||[FZ||=J{]|ATX¥<Y]|; X e P(IT)P*} if X is a k-ary predicate
variable.

Notation. We shall write ¢ |- F for £ € |F|.

Theorem 3 (Adequacy lemma).
If wp: Ay, o s Apbtc A and if & [ AT & [ AE, where T is an interpretation,

then t[gl/xla cee 7€k/xk] H_ AI‘
In particular, if A is closed and if 1t : A, thent || A.

Proof by recurrence on the length of the derivation of z;: Ay,... 2z, : A, Ft: A
We consider the last used rule.

1. We have t = x;, A = A;. Now, we have assumed that & || AZ ; and it is the desired
result.

2. We have t = uv and we already obtained :

1A, o Ay u:B— A and x: Ay, .. 1 Ao Bl

Given 7 € ||A%||, we must show (uv)[& /2y, .., & /o] *m € L.

By hypothesis on L, it is sufficient to show w[&i/x1, ..., & /xe] *v[&1 /21, ... & /xy] o €
A.

By the induction hypothesis, we have v[&;/x1,...,& /2] | BE and therefore :
v/, &fa] o € | BT — AT

But, by the induction hypothesis, we have also u[&; /21, ..., & /2] F BY — A%, hence
the result.

3. We have A = B — C, t = Axu. We must show Az uléi/zy, ..., &/x] - BT — C*
thus, we suppose & |- BZ, 7 € ||C?|| and we have to show Az u[& /@1, . .., &/ zp]x€ e € L.
By hypothesis on I and lemma [ll, it suffices to show u[/z, & /2y, ..., &/ap] xm € L.
But this follows from the induction hypothesis applied to =7 : Ay,...,x,: A,,x: BFu:
C.

4. We have A =VX B, and X is not free in Aq,..., A,. We must show :

ter /o, Efan] |- (VX BT, ie. tl& )z, ... &/ I BT with J = Z[X « X]. But,

7



by hypothesis, & |- AF therefore & |- A7 : indeed, since X is not free in A;, we have :
|AZ|| = ||A7||. Then, the induction hypothesis gives the result.
6. We have A = B[F/Xy; ...y,] and we must show :

té /oy, .. & /o] I B[F/ Xy ... yo|* assuming that t[¢/zy, ..., &/x] - (VX B)Z.
This follows from lemma, .
Q.E.D.

Lemma 4. || B[F/ Xy ...y J*|| = [|BHXY|| where X : P" — P(IL) is defined by :
X(pr,. .. pp) = [|[FHoEPLimepal],

The proof is by induction on B. That is trivial if X is not free in B. Indeed, the only
non trivial case of the induction is B = VY C'; and then, we have Y # X and :
IBIF/ Xy ..yl = (VY CIF/Xyr . yn)) Il = Uy ICIF/ Xyy .y P
By induction hypothesis, this gives Jy, [|CTF X that is (J,, |CTX YY) e,
I(vY CYFE=).

Q.E.D.

Lemma 5. Let X,y C IT be truth values. If 1 € X, then k, [FX — ).

Suppose ¢ X and p € )Y ; we must show k,*x&.p € L, that is {7 € L, which is
clear.
Q.E.D.

Proposition 6 (Law of Peirce). cc FVXVY (X = Y) = X) = X).

We want to show that cc |- (X = V) = X) — &X. Thus, we take ¢ [ (X = V) = X
and 7 € X ; we must show that ccx&.m € I, that is { xk, . 7 € L. By hypothesis on
¢ and 7, it is sufficient to show that k, |- X — Y, which results from lemma f.

Q.E.D.

Proposition 7.

i) If € |-A— B, then ¥n(y |- A= & | B).
1) If V(& |- A=y | B). then (E)E |- A— B.

i) From {n*m>=E&xn.m.
ii) From (E){xn.m > E&nx.
Q.E.D.

Predicate symbols

In the following, we shall use extended formulas which contain predicate symbols (or

predicate constants) on individuals R,S,... Each one has an arity, which is an integer.
In particular, we have a unary predicate symbol C (which represents the set of non trivial
conditions).

We have to add some rules of construction of formulas :

e If F'is a formula, R is a n-ary predicate constant and tq,...,t, are terms, then
R(ty,...,t,) = F and R(ty,...,t,) — F are formulas.
e T is an atomic formula.



In the definition of a A-model M, we add the following clause :

e With each relation symbol R of arity n, we associate an application, denoted by Ry or
R, from P" into P(A). We shall also write |R(p1,...,p,)|, instead of R(py,...,pn), for

p17"'7pnep- o
In particular, we have an application C: P — P(A), which we denote as |C[p]|.

We define as follows the truth value in M of an extended formula :

ITI = 0.

IR, 1) = Y| = {t .7 t € [R(E, ... 45)|, 7 € [|FZ||}.
[(R(ty, ... ty) = F)Y|| = |FZ| if I € [R(tE, ... t1)] ;

|(R(t1,- .., tn) = F)E|| = 0 otherwise.

Proposition 8.

i) Ae(x)I VXV .. Vo, [(R(xy, ..., 2,) = X) = (R(zq, ..., 2,) = X)].

ii) If we have |R(p1,...,pn)| #0 = 1 € |R(p1,...,pn)| for every pi,...,p, € P, then :
K [FVXVzy .. Vo, [(R(xy, ..., 2,) = X) = (R(z1, ..., 2,) = X)].

Trivial.
Q.E.D.

Remark. By means of proposition [}, we see that, if the application R:P"— P(A) takes only
the values {1} and 0, we can replace R(ti,...,t,) = F with R(t1,...,t,) — F.

We define the binary predicate ~ by putting |[p ~ ¢q| = {[} if p=¢q and |p~q|=0if
p# 4

By the above remark, we can replace p ~ g — F with p ~ g — F. The proposition f
shows that we can also replace p=¢q — F with p~q+— F.

Notations. We shall write p = ¢ +— F instead of p ~ ¢ — F. Thus, we have :
lp=q— Fl|=|F| ifp=q; [p=q— F|=0 ifp#q

We shall write p # q for p= ¢+ L. Thus, we have :

lp#ql =M ifp=gand [p#q|=0ifp#q.

Using p = q+— F instead of p=¢g — F, and p # ¢ instead of p = ¢ — L, greatly
simplifies the computation of the truth value of a formula which contains the symbol =.

Proposition 9.
i) \eal FVXVaVy((r =y = X) = (e =y — X)) ;
it) \edyyx [FVXVaVy((z =y — X)),z =y — X).

i)Leta,be P, X CILL{ fFa=b— X and 7€ |la=b— X]|.
Then, we have a = b, thus I |- a = b, therefore { x [ o7 € 1L, thus Azl x€£.m € L.
ii) Now let n - (a=b— X), ( fFa=0band p € || X]|.
We show that AzAyyxr*n.(.p € 1L in other words (xn.pe L.
Ifa=0b,thenn X, ( VY (Y = Y). Wehave n.p € [|X — X||, thus (*n.p € L.
Ifa#b,then ( T — L, thus (xn.pe L.
In both cases, we get the desired result.
Q.E.D.

Remark.
Let R be a subset of P¥ and 1 : P¥ — {0,1} its characteristic function, defined as follows :

9



1g(p1,-.-,pn) =1 (resp. =0) if (p1,...,pn) € R (resp. (p1,...,pn) ¢ R).
Let us define the predicate R in the model M by putting :

|R(p1, - .. ,pn)| = {I} (resp. = 0) if (p1,...,pn) € R (vesp. (p1,...,pn) & R).
By propositions § and [, we see that R(x1,...,2,) and 1g(x1,...,2,) = 1 are interchangeable.
More precisely, we have : [ |-VXVx...Va,(R(z1,...,2,) = X) < (1g(x1,...,2y) =1 —
X)).

For each formula A[xq,..., x|, we can define the k-ary predicate symbol Ny, by putting
INa(p1s .- k)| = {ke; ™ € ||Alp1, ..., p&)||}. Proposition [ below shows that N4 and
—A are interchangeable ; this may simplify truth value computations.

Proposition 10.
i) IVoy.. Vep(Na(xy, ... ¢r) = 2A(x, ..., 28)) 5
it) cc [FVay .. Vaep((Na(xy, ... 25) = L) = Az, ..., 2))-

i) Let p1,....,pp € P, m € ||A(p1, ..., p)lls € F A(pr, - .., pk) and p € II. We must show :
Ixk,.&epe 1L, that is ¢ x7m € 1L, which is obvious.
ii) Let n - Na(p1,...,pr) = L and 7€ [|A(p1,...,pr)||. We must show :
ccknem € L ie nxk,m € L, which is clear, since k; € |[Na(p1,-..,pr)l
Q.E.D.

Fixed point combinator

Theorem 11. Let Y = AA with A = X a\f(f)(a)af. Then, we have Yx& o = ExYE o .
Let f: P? — P such that f(x,y) =1 is a well founded relation on P. Then :
i) Y FVX{Vz[Vy(f(y,z) =1 — Xy) > Xa| — Ve Xz},
i) Y VX, . VX,
{Ve[Vy(Xyy,..., Xpy = f(y,x) # 1), Xhz, ..., Xpx — L] = Vo (Xqz, ..., X — L)}

The property Yx&om = &% YE o7 is immediate, from theorem [

i) We take X : P — P(II), p € P and & |FVz[Vy(f(y,z) =1+ Xy) — Xzx|]. We show,
by induction on the well founded relation f(x,y) = 1, that Yx£ .7 € L for every m € Xp.
Let 7 € Xp ; from (i), we get Y *x&.m > £ * Y, .7 and thus, it is sufficient to prove
that £ *xY¢.m € L. By hypothesis, we have & | Vy(f(y,p) =1+ Xy) — Xp ; thus, it
suffices to show that Y¢ || f(¢,p) = 1 — Xq for every g € P. This is clear if f(q,p) # 1,
by definition of +.

If f(g,p) = 1, we must show Y¢ [ Xq, ie. Y*Eop € I for every p € Xq. But this
follows from the induction hypothesis.

ii) The proof is almost the same : take &7, ..., Xy : P — P(II), p € P and
¢ Ve Vy(Xy, ..., Ny — fly,x) # 1), Xz, ..., o — L]. We show, by induction on
the well founded relation f(x,y) = 1, that Y*{ .7 € I forevery = € || Xip, ..., Xkp — L||.
As before, we have to show that : Y¢ || Xiq, ..., kg — f(q,p) # 1 forallqge P ;
this is obvious if f(q,p) # 1. If f(q,p) = 1, we must show Y¢ | Xiq,...,Xkg — L, or
else :
Y*x&.p e L for every p € ||Xiq,...,Xkqg — L||. But this follows from the induction
hypothesis.

Q.E.D.
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Integers, storage and recursive functions

Recall that we have a constant symbol 0 and a unary function symbol s which is inter-
preted, in the model M by a bijective function s : P — (P \ {0}).
And also, that we have identified s"0 with the integer n ; thus, we suppose N C P.

We denote by int(x) the formula VX (Vy(Xy — Xsy), X0 — Xx).

Let u = (uy)nen be a sequence of elements of A. We define the unary predicate symbol
e, by putting : e, (s"0)| = {u,} ; |e.(p)|=0if p ¢ N.

Theorem 12. Let T,, S, € A be such that S, (T — L), T — L and :
TuxPelVeT =VUxSyeatigeTm ; Su*0 ey o= Y *Upyy1 o™

for every v, ¢, € A and m € II. Then :

T, | VXVzl(e,(x) = X), int(x) — X].

T, is called a storage operator.

Let pe P, ¢ [Feu(p) = X, v [Fint(p) and 7 € || X]||. We must show T, *¢p.v.m € 1L
i.e. I/*Suuqsquuﬂ-EJ.l_.

e If p ¢ N we define the unary predicate Y by putting :

Y(@)=TifqgeN; Y(g)=T — Lifg¢N.

Thus, we have obviously ¢ |- Y (0) and ug .7 € ||Y(p)]|.

But, by hypothesis on v, we have v [Vy(Yy — Ysy), Y0 — Yp.

Thus, it is sufficient to show that :

Su FYy(Yy — Ysy),ie. Sy FY(q) = Y(sq) for every q € P.

This is clear if ¢ € N, since we have ||Y (sq)| = 0.

If ¢ ¢ N, we must show S, [F(T — L), T — L, which follows from the hypothesis.

e If p € N, we have p = sP0 ; we define the unary predicate Y by putting :
|V s0|| = {up_i.m}for 0 <i<pand|Yq|=0if ¢ ¢ {s0; 0 <i<p}.
By hypothesis on v, ¢, 7w, we have :
vIFYy(Yy - Ysy), YO = YsP0; ¢ FY0; uy.m € ||YsPO].
Thus, it suffices to show that S, |FVy(Yy — Ysy),ie. S, |FYq— Ysqforeveryqe P.
This is clear if ¢ ¢ {s'0; 0 < i < p}, since then |[|Ysq| = 0.
If g = s'0 with i < p, let & ||-Yq; we must show S, *Eeup ; 1.7€ L.
But we have S, x&eup_jq+m > E*uy_; o« m which is in I, by hypothesis on &.
Q.E.D.
Notation. We define the closed c-terms 0 = AzAyy ; o = AnAfAz(f)(n)fz ; and, for
each n € N, we put n = (0)"0. We define the unary predicate symbol ent(x) by putting :
lent(n)| = {n} if n € N;
lent(p)| =0 if p ¢ N.

In other words, ent(x) is the predicate e,(z) when the sequence u is (1n),en.

Theorem 13.

We put T = AfAn(n)Sf0, with S = AgAz(g)(o)x. Then, we have :
i) T |-VXVz((ent(z) — X), int(x) — X).

it) I [-Vx((ent(x) —int(x)).

Therefore, T' is a storage operator (theorem [[2).
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i) We immediately have, by theorem [ :

Txpevem=v*xSepe0em; Sxvve(0)"Qerm=t*(o)" 0.7

for every v, ¢,9 € A and 7 € IL.

Now, we check that S | (T — L), T — L : indeed, if { - T — L, then S*x&.nem >
Exon.me L for every n € A and 7 € IT (by theorem B).

Then, the result follows immediately, from theorem [I2.

ii) We must show [ | ent(p) — int(p) for every p € P. We may suppose p € N

(otherwise ent(p) = () and the result is trivial). Then, we must show :

I xcP0.p € L knowing that p € ||int(s”0)]|.

Therefore, we can find a unary predicate X : P — P(Il), ¢ |- Vy(Xy — Xsy), w [ X0

and 7 € || X sP0|| such that p = ¢« w«m. We must show (0)’0xp.w.m € L. In fact,

we show by recurrence on p, that (0)P0*¢p.w.m € 1L for all 7 € || XsP0|.

If p=0,let 7 € || X0] ; we must show Ox¢p.w.m € L, ie. wrm € L, which is clear,

since w [} X0.

To move up from p to p+ 1, let 7 € || XsPT10||. We have :

P xpew.m=(0)(0)P0xPewem=0*x0P0edew.T > ¢*(cP0)pw . .

But, by induction hypothesis, we have 6?0x¢ . w « p € L for every p € || X sP0]|. It follows

that (070)¢w |- X sP0. Since ¢ |- X sP0 — X sPT10, we obtain ¢ x (0P0)¢w « m € L.
Q.E.D.

Theorem [[3 shows that we can use the predicate ent(x) instead of int(z), which greatly
simplifies many computations. In particular, we define the universal quantifier restricted
to integers VYa™ by putting V2™ F = Va(int(z) — F).

Thus, we can replace it with the universal quantifier restricted to ent(x) defined as follows :
Vot F' = Vz(ent(z) — F). Then, we have [[V2®™ F|| = {n.m; n € N,7 € |[F[s"0/z]||}.
Therefore, the truth value of the formula V2™ I is much simpler than the one of the
formula vz F.

Theorem 14. Let ¢ : N — N be a recursive function. There exists a closed A-term 6
such that, if m € N, n = ¢(m) and f is a A\-variable, then Omf reduces into fn by weak
head reduction.

This is a variant of the theorem of representation of recursive functions by A-terms. It is
proved in [[[2.
Q.E.D.

Theorem 15. Let ¢ : N¥ — N be a recursive function. We define, in M, a function
symbol f, by putting f(s™0,...,s™0) = s"0 with n = ¢(my,...,my) ; we extend f on
PE\ N¥ in an arbitrary way. Then, there exists a proof-like term 0 such that :

O V.. Vei[int(zy), ..., nt(xy) —int(f(z, ..., 2%))]

For simplicity, we assume k = 1. By theorem [[J, it suffices to find a proof-like term 6
such that 6 | Vz[ent(x), (ent(f(x)) — L) — L]. In other words :

0 |ent(p), (ent(f(p)) — L) — L for every p € P.

We can suppose that p = s™0 (otherwise, —ent(p)| = 0 and the result is trivial).

Thus, we have ent(p) = {m} ; we must show :

Oxm.&eme L forall m € IT and € || ent(s"0) — L, with n = ¢(m).
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Take the A-term @ given by theorem [[4. From this theorem, we get :
Oxm.&oem>=Exnom, which is in L, by hypothesis on &.

Q.E.D.
Remark. We have now found proof-like terms which realize all the axioms of second order
arithmetic, with a function symbol for each recursive function.

Standard algebras

A realizability algebra A is called standard if its set of terms A and its set of stacks II are

defined as follows :

We have a countable set IIy which is the set of stack constants.

The terms and the stacks of A are finite sequences of elements of the set :
HOU{BvchvLKvaanXvX,vkv(u)v [7]7 '}

which are obtained by the following rules :

B,C,E,I,K,W,cc,,x,X are terms ;

each element of Il is a stack ;

if £, are terms, then (§)n is a term ;

if £ is a term and 7 a stack, then £ . 7 is a stack ;

e if 7 is a stack, then k|| is a term.

A term of the form k|| is called continuation. It will also be denoted as k.

The set of processes of the algebra A is A x1I.
If £ € A and 7 € 11, the ordered pair (£, 7) is denoted as & x .

Therefore, a stack has the form 7 =¢& . ... &, «m, where &,...,&, € A and 7y € Il
(mo is a stack constant).
Given a term 7, we put 77 =& . ... o &y o T o M.

We choose a recursive bijection from II onto N, which is written 7 +— n,.

We define a preorder relation >, on AxIL. It is the least reflexive and transitive relation
such that, for all £,n,( € A and 7, w € II, we have :

(En m=Exn.m.
Ix&em>=Exm.

K*x&enem = Exm.

Ex&enem = (§)n*m.

Wx&enem>=Exnen.m.

Crx&eneCoem=EXxCone.

Br€an.Com = () x.

ccx&em > Exky o

kp*& o > ExT.

CrEem>=Exn, o

XA EemT = EXxT o

X *EeToem=ExT.

Finally, we have a subset 1 of A % II which is a final segment for this preorder, which
means that : pe 1, p'=p=p € 1.

In other words, we ask that 1L has the following properties :
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Emrxm g L =Exnem ¢ L.
I« L =Exmeg AL,
Kxfener ¢ L= Exm g L.
Exéenen¢ L= ({n*m ¢ L.
Wxéenem¢d L=Exnenem ¢ L.
Cx&eneCoemg L =ExCenem g L.
Bx&eneCoemd L= (E)(n)Crxm ¢ L.
ccxlem g L= Exkeem g L.
kexfew ¢ L=Exm et L.

sx&em¢ L=>Exn om ¢ L.

X Eemm g L =ExToem e .

X * &eTem @ L= Exa™ ¢ AL
Remark. Thus, the only free element in a standard realizability algebra is the set I of
processes.

The axiom of choice for individuals (ACI)

Let A be a standard realizability algebra and M a A-model, the set of individuals of
which is denoted as P. Then, we have :

Theorem 16 (ACI). For each closed formula Vzxi...Vr,Yy F with parameters, there
exists a function f : P™tt — P such that :

i) s V.. Vo, (Ve(int(x) — Ff(x1,...,2m,2)/y]) = Yy F).

it) ¢ Vi ... Vo,(Ve(ent(x) — F[f(z1,...,2m,2)/y]) = Yy F).

For p1,...,pm, k € P, we define f(p1,...,pm, k) in an arbitrary way if k& ¢ N.
If k£ € N, we have k = n,,_ for one and only one stack m; € II.
We define the function f(p1,...,pm, k) by means of the axiom of choice, in such a way
that, if there exists ¢ € P such that :
Tk € || Fp1y- -+, Pm, q]]], then we have 7, € [|[Flp1, .- Pm, [(P1,- -, Pms B)]||-
i) We must show ¢ |- Va(int(x) — Flp1, ..., pm, f(P1s- -, Dmsx)]) = Flp1, ..., Pm, ql, for
every pi,...,Pm,q € P.
Thus, let & | Va(int(z) = Flp1,. .., Pn, f(P1, .. Pn,x)]) and 7 € ||Fp1, ..., Pm, q]| ; we
must show ¢ x .7 € 1L, thatis £%n_.7m € 1. But we have :
¢ int(ng) = Flp1, .-, Pm, f(P1;- - -, Pm, Ny )] by hypothesis on & ;
n, [F-int(n,) by theorem [J ;
m €| F[p1,---,Pm, f(P1, -+, Pm,nx)]|| by hypothesis on 7w and by definition of f.
ii) The proof is the same ; we simply observe that n_ € |ent(n,)|.
Q.E.D.

Generic models

Given a standard realizability algebra A and a A-model M, we now build a new realiz-
ability algebra B and a B-model A/, which is called generic over M. Then, we shall define
the notion of forcing, which is a syntactic transformation on formulas ; it is the essential
tool in order to compute truth values in the generic model N.
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Thus, we consider a standard realizability algebra A and a A-model M, the set of indi-
viduals of which is P.

We have a unary predicate C : P — P(A), a binary function A : P2 — P and a distin-
guished individual 1 € P. We suppose that the data {C,,1} constitute what we call a
forcing structure in M, which means that we have the following property :

There exist six proof-like terms ag, aq, ai, 5o, B1, P2 such that :

7 € |Cl(prg)ar]| = aoT € |Clpa(gar)]] ;

7 € |C[pl| = a7 € [C[pal]| ;

T € |Clprq]| = aot € |Clq]| ;

7 € |Clp]| = Bot € |Clpap]| ;

7 € [Clprgl| = b7 € [Clanp]| ;

7 € [C[((prg)ar)as]| = Bar € |Cl(palgnr))ns]|.

We shall call C-expression any finite sequence of symbols of the form v = (d¢)(d1) . . . (0x)
where each d; is one of the proof-like terms «yg, ayq, as, B, 51, Po.

Such an expression is not a c-term, but 7 is, for every c-term 7 ;

the term 7 = (do)(01) ... (d)7 will also be written ().

Notation. A A-term is, by definition, a term which is written with the variables
P1,-- -, Pk, the constant 1 and the binary function symbol . Let t(p1, ..., pg), w(p1,- -, Pk)
be two a-terms. The notation :

v t(pla s 7pk) = u(ph cee 7pk)
means that 7 is a C-expression such that 7 € [C[t(p1,...,pr)]| = (V)7 € |Clu(ps, - - -, pr)]]-

Thus, with this notation, the above hypothesis can be written as follows :
ap  (prg)ar = pa(gar) 5 aq i p=pal 5 ag iprag = q ;
Boip = pap s Biipag = qap s Ba it ((pAg)ar)as = (pa(gnr))as.

Lemma 17. There exist C-expressions 3y, B, 55, Bs, B4 such that :
Bo i ong = (pra@)ng 5 By i (pag)ar = (grp)ar 5 By i palgar) = (pag)ar ;
3 = pA(gar) = pa(rag) 5 B3 (pa(gar))as = (pa(rag))as.

We write the sequence of transformations, with the C-expressions which perform them :

e 3y = (B1)(a2)(a0)(Bo)-

pg; Bo s (Pr@)n(prq) 5 ao s palga(pag)) 5 ag 5 qna(paq) 5 Bis (pag)ag.

o 35 = (B1)(ao)(Br)(co)(B1).

pA(gar) 5 Brs (gar)ap s oo s ga(rap) 5 Bis (Tap)ag s oo s Ta(pag) 5 B (pag)ar.

o (1 = (a2)(a0)(B2)(B1) () (a2)(B1)(B2)(B5)(B1)-

(prq@)ar 5 Brs a(paq) 5 By (ra(pag))a(paq) 5 By 5 ((ra(pa@))ap)ag 3 Br s aa((ra(pag))ap) 5
as 5 (ra(pag))ap s ag 3 Ta((prg)ap) ; Br s ((pa@)ap)ar s Ba s (palgap))ar s ag
pr((qrp)ar) 5 a5 (gap)ar.

o (3= (51)(B1)(B1)-

pa(gnr) 5 Brs (gar)ap s BL s (raq)ap s Brs pa(rag).

o (5= (B1)(B2)(B1)()(B1)-

(prlgar))ns 5 By ((gar)ap)as s ao 5 (gar)a(pas) 5 B1 s (rag)a(pas) 5 By 5 ((rag)ap)as ;
Bi; (pA(rAg))ns.

Q.E.D.

=l
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Theorem 18. Let t,u be two na-terms such that each variable of w appears in t. Then,
there exists a C-expression v such that v :: t = taru.

Lemma 19. Let t be a n-term and p a variable of t. Then, there exists a C-expression
v such that ~ ::t = tap.

Proof by induction on the number of symbols of ¢ which stand after the last occurrence
of p. If this number is 0, then ¢ = p or t = uap. Then, we have v = 3y or 8} (lemma [[7).
Otherwise, we have t = uawv ; if the last occurrence of p is in u, the recurrence hypothesis
gives 't vau = (vau)ap. Then, we have = (57)(v)(51).
If the last occurrence of p is in v, we have v = vgavy. If this occurrence is in vg, the
recurrence hypothesis gives 7' 1 ua(virvg) = (un(vinvg))ap. We put v = (55) () (Bs)
(lemma [17).
If this occurrence is in vy, the recurrence hypothesis gives
v (uavg)avy = ((uavg)avy)ap. Then, we put v = (B2)(7")(55).

Q.E.D.
We show theorem [[§ by recurrence on the length of w.
If u=1, then v = o ; if u is a variable, we apply lemma [[J.
If w = vaw, the recurrence hypothesis gives 7' :: t = tav and also 7" :: tav = (tav)aw.
Then, we put v = (ao)(v") (7).

Q.E.D.

Corollary 20. Let t,u be two a-terms such that each variable of u appears in t. Then,
there exists a C-expression v such that v :: t = w.

By theorem [[§, we have 4 :: ¢ = tau. Thus, we can put v = (ag)(7).
Q.E.D.

Corollary 21. There exist C-expressions Yo, Vi, Vi, VEs YW, YC» VB, Yee, Yk Such that :
V1A = q 5 vk In(pa(gar)) = par ;o ve s Ia(pa(gar)) = (pag)ar

yw i In(pa(gar)) = palga(gar)) 5 vo i Ia(pa(ga(ras))) = pa(ra(gas)) ;

B In(pa(ga(ras))) = (pA(gar))as ;1 Yee = 1n(pag) = pr(gnq) ;

Yk PA(GAT) = gap.

Lemma 22. For each C-expression vy, we put 7 = Az(x)\y(x'z)(7)y.
Then, we have ¥ *& o7 =& *n7.

Tis is immediate, by means of theorem fl. We could take also 7 = (x)\zAy(xy) (7).
Q.E.D.

Proposition 23. If we have ~ ::t(p1,...,pr)] = u(p1,...,px), then :
(7*& . 7T7t(p1a s 7pk;)) ~ (S*W,U(pl, s 7pk))
Suppose that (¥ x & .7, t(p1,...,pr)) ¢ AL. Thus, there exists 7 € C[t(p1,...,px)] such

that :
F*x& o ¢ 1. Therefore, we have £ x 77" ¢ 1L et v7 € Clu(py, - .., px)]. Tt follows that :

(Exmou(pr,...,pw) ¢ AL
Q.E.D.
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The algebra B

We define now a realizability algebra B : its set of terms is A = Ax P, its set of stacks is
IT =1Ix P and its set of processes is A = (A xII)x P.

The set of processes I g of this algebra is denoted by L. It is defined as follows :
(Exmp) el & (VreCp)éxn e L.

For (§,p) € A and (m,q) € II), we put :
(&,p) % (m,q) = (Exm,prg) 5

(&,p) - (m,q) = (£« 7, prq).

For (¢,p), (n,q) € A, we put :

(€, 2) (1, q) = ([@&n; prg)-

Lemma 24. We have (§,p)(n,q)* (m,r) ¢ 1L = (§,p)*(n,q) «(m,r) ¢ 1.

By hypothesis, we have (@&n *m, (paq)ar) ¢ AL ; thus, there exists 7 € C[(pag)ar] such
that :
apén* 7" ¢ 1. By lemma P, we have £ xn .77 & I ; since apr € C[pa(gar)], we have

(Exnem,pr(gar)) ¢ L and thus (&,p) % (n,q) « (m,r) ¢ 1.
Q.E.D.

We define the elementary combinators B, C, E, I, K, W, cc of the l'algebra B by
putting :

B=(B%1);C=(C"1);E=(F*1);I=(I"1);K=(K*1); W= (W*"1);cc
= (cc*, 1)

with B* = Az Ay z(Vp)(@ox)(@o)yz ; C* =7cC ; B = A y(Vg)(@o)xy 3 I = 7,1 ;

K =7 K W=7y W cc” = (x)AzAy(cc) Ak ((X'y) (vec)2) ) Az Ay (k) (X 'y) (%) 2.

We put Krp) = (kz,p) with ko = (x)AzAy(kx) (X'y) (%)

Theorem 25. For every é,ﬁ,é € A and 7,w € II, we have :

Ix€.7¢ I = Exe I ;
Kxéofjend I = Exa¢ I ;
Exé.i.ig¢gll = (ixad¢l ;
Wréojed gl = Exijofjond I
Bxl.ij.Cod Ll = ()()C*7¢ L ;
Cklefjeloiid I = ExCoijord .
ccréoid ll = Exkz.nd .
kixé.w g I = Ex7¢ .

We shall prove only the cases W, B, kz, cc

We put € = (&,p), 7= (1,9),¢ = ((,r), T = (7,5), % = (@, ).

Suppose W & .7j.7 ¢ I, and therefore (Fy W * & «n o, In(pa(qns))) ¢ L.
Thus, there exists 7 € C[1a(pa(gas))] such that FyuW x€.nen™ ¢ L.
Since Yy W k€ enenm™ = Exnenem™7 we have Exnenen™W™ & 1.
But v 7 € Clpa(ga(gas))] and it follows that £ x7j 7.7 ¢ 1.

Suppose Bx€.7.Co@ ¢ I, thatis (B**x&.n.C., 1/\(p/\(q/\(7’/\5)))) ¢ L.
Thus, there exists 7 € C[1a(pr(ga(ras)))] such that B**&eneCen” ¢ L.
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But, we have B*x&.n.C.n" = () (a@o&)(a)n¢ 7™ (by theorem P)

= (apé)(ap)n¢ x 7 (by lemma RJ). Therefore, we have (@o&)(qo)n¢ * 7757 ¢ L.

But g7 € C[(pr(grr))as] and thus, we have : o

((@o€) (@o)n¢ * m, (pa(gar))as) ¢ AL, in other words (£)(7)¢ 7 ¢ L.

Suppose ki * €. ¢ AL, that is (k% +&.w,sa(pag)) ¢ AL, Thus, there exists 7 €
C[sa(paq)] such that kI x&.w”™ ¢ 1. But we have kI *x&.@™ = AzAy(k:)(X'y)(7)x *
To&ew = (ke) (XE) (M) T * @ (by theorem B) » (') (N)T* 7T = X' % & e T o T = E T
Thus, we have £+ 7% ¢ 1L ; but, since Y7 € Clpas|, we get £x7 ¢ 1.

Suppose cc x€.7 ¢ U, that is (cc* & .7, 1a(pns)) ¢ . Thus, there exists 7 €
C[1Aa(pnrs)] such that cc* & .77 ¢ L. But we have :

e x & o = AxAY(cc) AR ((X'Y) (vee)2) ) Az AY (R) (X y) (n)z *+ T § o

= () AR((XE) (ee)T) COAZTAY (R) (X y ) () + 7

= ((XE) (1) T) OO AZAY (k) (X Y) (M) % T = X+ € e e o () AT AY (k) (X y) (1) o T

= & x 0)ATAY (k) (X'Y) (i) o 77T = Ex ko T
It follows that & x k> .77 ¢ 1. But we have ~.7 € Clpa(sas)] and it follows that we

have (€,p) (kX s) . (m,s) ¢ M, thatis &x ks .7 ¢ 1.
Q.E.D.
We have now completely defined the realizability algebra B.

For each closed c-term ¢ (proof-like term), let us denote by tz its value in the algebra
B (its value in the standard algebra A is t itself). We put ¢z = (t*,1;), where t* is a
proof-like term and 1; a condition written with 1, A and parenthesis, which are defined
as follows, by recurrence on t :

e Iftis an elementary combinator B, C, E, I, K, W, cc, then t* is already defined ; 1, = 1.
o (tu)* =aot*u* ; 14 = Linl,.

The model N

The B-model A has the same set P of individuals and the same functions as M.

By definition, the k-ary predicates of N are the applications from P* into P(II). But,
since IT = IIx P, they are the same as the applications from P**! into P(II), i.e. the
k + 1-ary predicates of the model M.

Each predicate constant R, of arity k, is interpreted, in the model M, by an application
R from P* into P(A). In the model N, this predicate constant is interpreted by the
application Ry : P¥ — P(A), where Ry (pi1,...,px) = Rum(p1, - pr) x {1}

For each closed formula F', with parameters in N, its truth value, which is a subset of II,
will be denoted by ||| F[||. We shall write (£,p) |- F' to mean that (£,p) € A realizes F,
in other words (Vm € I1)(Vqg € P)((m,q) € |F||) = (&,p) * (7,q) € 1L).

Theorem 26.
If we have Ft: A in classical second order logic, where A is a closed formula, then

s = (t%,1,) |- A.

Immediate application of theorem f (adequacy lemma) in the B-model N .
Q.E.D.
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Proposition 27.

i) If (&,1) |- F, then (3, p) | F for each p € P, with ~ :: paq = 1aq.
ii) Let £,m € A be such that & xm = n* 7 for each m € II. Then, we have :
(Exm,p) ¢ L= (nxm,p) ¢ I for everym € Il andp € P ;

(n,p) FF = (& p) [ F for every closed formula F.

i) We must show that, for each (m,q) € [|F|||, we have (F&,p)* (7, q) € 1L, that is :

(7€ xm,paq) € L. Thus, let 7 € Clpag|, so that y7 € C[1aq].

Since we have, by hypothesis, ({ xm,1aq) € L, it follows that &% 77" € 1L and therefore

YExTT e L.

ii) By hypothesis, there exists 7 € C[p| such that {x77 ¢ 1. Thus, we have nxn" ¢ L,

so that (nxm,p) ¢ L.

Let (m,q) € ||F|| ; we have (n,p) x (7, q) € AL, that is (nx m,prq) € L. From what we

have just shown, it follows that (£ x 7w, paq) € L, and therefore (§,p)* (7,q) € L.
Q.E.D.

The integers of the model N/

Recall that we have put :

o=nAfAx(f)(n)fx, 0=z yy and n = (0)"0 for every integer n.

Thus, we have oz = (¢*,1,) and ng = ((0)"0)s = (n*, 1,,).

Therefore 05 = (K1)p = (K*,1)(I*,1) and n+ 1, = ogng = (0%, 1,)(n*, 1,).
Thus, the recursive definitions of n*, 1,, are the following :

0" = @K ; (n+1)" = Foon” ;

Tg=1a1; 1, = 1,01,

We can define the unary predicate ent(x) in the model N in two distinct ways :

i) From the predicate ent(z) of the model M, by putting :

ent(s"0)| = {(n, 1)} ; [ent(p)] = 0 if p & .

ii) By using directly the definition of ent(x) in the model N ; we denote this predicate
by entys(x). Therefore, we have :

enty(s"0)] = ng : —enty(p)| = D if p & N,

From theorem [[3, applied in the model N, we know that the predicates int(z) and
enty(x) are interchangeable. Theorem P§ shows that the predicates int(x) and ent(x)
are also interchangeable. Thus, we have three predicates which define the integers in the
model A ; it is the predicate ent(z) that we shall mostly use in the sequel. In particular,
we shall often replace the quantifier Vo™ with Vze2t.

Theorem 28.

There exist two proof-like terms T, J such that :
i) (T,1) FVXVz((ent(x) — X), int(x) — X).
ii) (J,1) | Vaz(ent(x) —int(zx)).

i) We apply theorem [J to the sequence u : N — A defined by u,, = (n, 1).

We are looking for two proof-like terms 7,5 such that :

(Sv 1) * <7vb7p) ° (ﬂu 1) ° (7T,T) ~ (1/}7]7) * (n—_'_lv 1) ° (er) ) (Sv 1) ’H_ T— J-v T =1
(T,1) % (¢ p) « (v, q) « (m,7) = (v,q) % (5,1) « (&,p) « (0, 1) « (, 7).
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Then theorem [[J will give the desired result :

(T,1) [ VXVx((ent(z) — X), int(x) — X).

We put S = AfAz(Ff)(o)x, with v 2 Ta(pa(gar)) = pa(gnar).

Then, we have (S, 1) % (¢,p)« (v,q) « (m,7) = (S * ¥ e v o, 1a(pa(gar))) =

(7Y * ov « w, In(pa(gar))) (theorem B and proposition P7(ii))

= (¢ % ov o, pa(gar)) (proposition R3) = (¢, p) * (ov, q) « (, 7).

Suppose first that (¢, p) |- T — L ; then, we have (¢, p) * (ov,q) « (m,r) € 1L and thus :
(S,1) % (¢,p) « (v,q) « (m,r) € L. This shows that (S,1) [T — L, T — L.

Moreover, if we put v =n, so that ov =n+ 1, and ¢ = 1, we have shown that :

(Sv 1) * <7vb7p) * (ﬂu 1) * (71—7 T) ~ (1/}7]7) * (n—_'_lv 1) ° <7T7 T)'

Now, we put T = AfAz(7x)Sf0, with +' :: 1a(pa(gar))] = gr(Ia(pa(1ar))).

Then, we have (T,1)* (¢,p)«(v,q) .« (m,7) = (T * ¢ v ., 1n(pr(qar))) =
(Fv*Sepe0om 1a(pr(gar))) (theorem P and proposition P7(ii))

= (v xSepe0em gr(la(pa(1ar)))) (proposition B3)

= (v,q) *(S,1)« (¢,p) « (0, 1) « (m,r) which is the desired result.

ii) We are looking for a proof-like term J such that (J,1) ||~ Vz(ent(z) —int(z)). It is
sufficient to have (J,1) |- ent(s"0) —int(s"0) for each n € N, since —ent(p)| = 0 if
p¢N.

Let (m,q) € [[int(n)]| ; we must have (J,1) % (n,1).(m,q) € A, that is (J %
n.m 1n(1rg)) € L.

But, we have (n*,1,) = ((¢)"0)g |- int(s"0) (theorem B, applied in B) and therefore :
(n*,1,) x (m,q) € 1L orelse (n*xm 1,nq) € L.

Thus, let 7 € C[1a(1Aq)] ; we have then (7)"(7)7T € C[1,1q]

where vy and v are two C-expressions such that :

Yo 2 In(1nq) = (IaL)aq 5 v 2 pag = (1oAP)AG.

Indeed, we have seen that 1o = 11 and 1,4, = 1,1,. It follows that, if 7 € C[1a(1rq)],
then (79)7 € C[lgng], and therefore (7)"(70)7 € C[1,aq]. Thus, we have n*xx(M"00)7™ ¢
A.

Now, we build below two proof-like terms g, j such that, for each n € N, we have :

a) gxnelonm = Exq) 0T

b) jxn.lem=Exn* ..

Then, by putting J = Az(gz)(j)z, we have Jxn.7" = n* % 7" 007 ¢ Il which is the
desired result.

a) We put g = A\kAz(7,)(k)Jx ; from theorem B, we have :

GHFn €T = Fyx (R)FE o 77 = (n)FE x w007,

Therefore, it suffices to show that (n)¥¢ « 77 = & x 7”7 which we do by recurrence on
n.

If n =0, we have immediately 0x7.& .7 = Ex 7 since 0 = Az Ay y.

Going fromnton+1: we have (n4+ 1) *7" = (on)YE* 7 = 0 *neye& o’

=k (n)FE o™ = ()FE + 7T = €% 7" by induction hypothesis.

b) We put B =o0", U = Aghy(g)(B)y and j = MeAf(k)U f0".

Therefore, we have j*xn.&.nw > nU& % 0"« 1. We show, by recurrence on n, that :
nUEXE™ «m = Ex(n+ k)* o 7 for each integer k, which gives the desired result with & = 0.
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For n =0, we have QUE x k™ o = £ k™ o w since 0 = Ax Ay y.
Going fromn ton+1: wehave (n+ D)xU € k" em =0onxU k" em = UxnUE ok o
(since o = AnAfAx(f)(n)fx) = nUExBE em=nUlx(k+ 1) em=Ex(nt+k+ 1) om
by induction hypothesis.

Q.E.D.

Forcing

Forcing is a method to compute truth values of formulas in the generic B-model N.

For each k-ary predicate variable X, we add to the language a new predicate variable,
denoted by X, which has arity & + 1. In the A-model M, we use the variables X and
X" ; in the B-model NV, only the variables X.

With each k-ary second order parameter X : P¥ — P(IT) of the model A, we associate
a (k + 1)-ary second order parameter X : P*! — P(II) of the model M. Tt is defined
in an obvious way, since Il =IIx P ; we put :

X (pprs- o) = {7 €1IL; (7, p) € X(p1,-..,pi)}-

For each formula F' written without the variables X+, with parameters in the model N,
we define, by recurrence on F, a formula denoted by p | F (read “ p forces F 7),
with parameters in the model A, written with the variables X and a free variable p of
condition :

If F is atomic of the form X (ty,...,t), then p | Fis Vq(Clprq] — X (q,t1,...,tx)).
If F is atomic of the form X(tq,...,t), then p b Fis Vq(Clpaq] = X1 (q,t1, ..., tx)).
If = (A — B) where A, B are formulas, then p | F'is Vq(q | A — prq | B).

If F=(R(ty,...,tx) = B), where R is a predicate constant, then :

pFF est (R(ty,...,tx) = p | B).

If F=(ty =ty — B), then p} F is (t =ta—p |} B).

If F=Vz A, then p|F F is Va(p | A).

If F=VXA, then p} F is VXT(p | A).

Thus we have, in particular :

If F=V2® A then p | F est Va®(p |- A).

Lemma 29. Let F' be a formula the free variables of which are amongst Xy, ..., Xy and
let Xi,..., X be second order parameters in the model N, with corresponding arities.

Then, we have : (p | )X /X, .., X /X =0k FlX /Xy, ..., %/ X;)).

Immediate, by recurrence on F.
Q.E.D.

Theorem 30.
For each closed formula F with parameters in the model N, there exist two proof-like
terms Xr, X'z, which only depend on the propositional structure of F', such that we have :

E-EEF) = (pép) IFF

&p) -F = Xpé - FF)
for every £ € A and p € P.
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The propositional structure of F'is the simple type built with only one atom O and the
connective —, which is obtained from F' by deleting all quantifiers, all symbols — with
their hypothesis, and by identifying all atomic formulas with O.
For instance, the propositional structure of the formula :
VX Ve(Vy(f(z,y) =0— Xy) - Xx) - Ve Xzx) is (O — 0)— O.
Proof by recurrence on the length of F.
e If F is atomic, we have F' = X(ty,...,1) ; we show that xr = x et X = X'
Indeed, we have : ||p | F|| = |[Vq(Clprq] — X (q,t1,. .., )]l

— U, {7~ 7 € Clpnd), (m,0) € 1t ),
because, by definition of X*, we have 7 € || Xt (q,t1,...,t)|| & (7,q) € [|X(t1, ..., t)|l-
Therefore, we have :
(x) S EF) < (V¢ P)(Vr € Clpng)(Vr € )((m,q) € [|X(tr, ..., tx)ll =
ExTeme L).
Moreover, we have (&,p) |- F < (Vg€ P)(Vr € IT)((m,q) € ||F]| = (&,p) * (7,q) € 1)
& (Vge P)Vr e )((mr,q) € ||IF|| = (§*7,prq) € AL) and finally, by definition de L :
() (&p) IFF & (Vge P)(vr € Clpng))(Vr € ID)((7,q) € [IF[| = £+ 77 € L).
Suppose that & || (p | F). Since x&* 7" = &+ 7.7, we have from (x) :
(Vg € P)(V1 € Clpaq])(Vm € IT)((m, q) € | X (t1, .. t)|| = xExTem e L)
and therefore (x&,p) |[FF from (xx).
Conversely, suppose that (£,p) || F. By applying (x*) and X' x7 o m = {x 77, we obtain
(Vg € P)(v7 € Clpag))(vr € IN)((m,q) € [[Fl| = X' x7om € L)
and therefore X' |- (p | F) from (x).
o If F =VXA thenp F F = VX"(p b A). Therefore, we have ¢ |-(p | F) =
VXHE b (b A).
Moreover, we have (&,p) [ F =VX((&p) [FA).
Let X : P¥ — P(II) be a second order parameter in the model N, with the same arity
as X, and let X" be the corresponding parameter of the model M.
It ¢ (p b F), then we have (€ |- (p |- A)[X+/X*], thus € |- (p | A[X/X]), from
lemma P9
By the recurrence hypothesis, we have (xa&,p) | A[X/X]. Since X is arbitrary, it
follows that (xa&,p) VX A.
Conversely, if we have (&,p) | F, then (&, p) |[F A[X/X] for every X.
By the recurrence hypothesis, we have x,¢ | (p | A[X/X]), and therefore :
A& F(p | A)[XT/XT]), from lemma Y. Since X7 is arbitrary, it follows that :
Xa§ IFVXT(p | A), that is X< [ (p | VX A).
o f F=VaeA thenp | F=Vz(p | A). Therefore { FpF F=Ve(€ - (p | A)).
Moreover, (€,p) i F = ¥2((€,p) [I- A).
The result is immediate, from the recurrence hypothesis.
o fF=(t;=ty— A),thenp | F =t =t3— p | A. Therefore :

() =ti=t= @A)
Moreover, (£,p) [-F = (ti =t = (&,p) [ A).
The result is immediate, from the recurrence hypothesis.

e f F=A— B,wehave p} F=VYq(q} A — prg | B) and therefore :
() EEF) =YV - (q - A) = &n - (prg | B)).
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Suppose that ¢ |- (p |- F) and put xr = AzAy(7,) (xs) () (Xa)y-
We must show (xr&,p) A — B ; thus, let (n,q) | A and (7, 7) € || B]]|.

We must show (xp&,p) * (n,q) « (m,7) € I that is (xp€*n.m, pr(gar)) € LL.

Thus, let 7 € C[pa(gar)] ; we must show yp{xn.n” € L orelse xpx&.n.n” € L.
From the recurrence hypothesis applied to (n,q) || A, we have xn [ (¢ | A).

From (x), we have therefore (£)(x's)n - (prq | B).

Applying again the recurrence hypothesis, we get :

((xB)(€)(Xa)n, prg) I B. But since (m,7) € [|B]|, we have :

((xB)(©)(Xa)n, prg) * (1) € AL, that is ((x5)(§)(Xa)n * , (prg)ar) € L.
Since 7 € Clpa(gar)], we have o7 € C[(prg)ar] and therefore (xp)(§)(x4)n*7°7 € L.

But, by definition of xx, we have, from theorem [ :
XE*Eenem = (xB)(&)(X4)n* 77 which gives the desired result : xp*&.n.n" € L.

Suppose now that (£,p) [ A — B ; we put x% = AxAy(xz)(@x)(xa)y-

We must show x%¢ | (p | A— B) thatis Vg(xx& (¢ A — prg | B)).
Thus, let n ¢ | A and 7 € ||paq | B|| ; we must show xe&*n.m e L.

By the recurrence hypothesis, we have (xan,q) |[F A, therefore (£, p)(xan,q) |- B or
else, by definition of the algebra B : ((ao)(xa)n, prq) | B.
Applying again the recurrence hypothesis, we have (x’z)(@&)(xa)n I (prq¢ b B) and
therefore :
(XB)(@0&)(xa)n*m € L. But we have :
XpExnem = Xpx&enem = (X5)(@&)(xa)n 7 from theorem [P ; the desired result
follows.
Q.E.D.
A formula F is said to be first order if it is obtained by the following rules :
e | is first order.
e If A B are first order, then A — B is first order.
e If B is first order, R ys a symbol of predicate and ¢y,...,t; are terms with parameters,
then R(ty,...,tx) — B, t; =ty — B are first order.
e If Ais first order, then Vz A is first order (z is an individual variable).
Remarks.
i) If A is a first order formula, it is the same for Yzt A,

ii) This notion will be extended below (see proposition B7).

Theorem 31. Let F be a closed first order formula. There exist two proof-like terms
dp, 0%, which depend only on the propositional structure of F', such that we have :

§ = (Clpl = F) = (6r€,p) I F 5

& p) -F = 0p¢ |- (Clp] = F)
for every & € A andp € P.

The proof is by recurrence on the construction of F' following the above rules.

o If Flis L, we put :

d; = Ax()\y(z)(a)y with a::prg=p .

§ = dxAy(x'z)(a)y with o/ ::p = pal .

Indeed, suppose that & |- C[p] — L and let us show that (§,&,p)(m,¢q) € AL, that is :
(0.&xm,paq) € AL. Thus, let 7 € Clpag]|, so that ar € Clp|, so that {xar.m € L, by
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hypothesis on &, which gives §,&x 7" € L.

Conversely, if (£,p) |[F L, we have (&,p) * (7, 1) = (§xm,pal) € UL for every 7 € I1.
But, if 7 € C[p], we have o'7 € C[pal], therefore &x 77 € I, thus 0 éx7.m € L.
Therefore ¢ ¢ || Clp] — L.

o If Fis A— B, we put :

0asp = ArAY(x)A2((X)(05)Ad((x)(a)2)(94y) (B)2)(v)z with

a:pa(gar) = p; B palgar) = q ;v pa(gar) = 1ar.

Indeed, suppose that ¢ -C[p],A — B, (n,q) |FA and (m,r) € [|B]|.

We must show (d4-5&,p) *x (n,q) « (m,r) € I, that is (da_g& *n«m, pa(grr)) € L.
Thus, let 7 € Clpa(gar)] ; we must show 04 pE*xn.n" € L.

We have a7 € Clp], 87 € C[q] ; but, by the recurrence hypothesis, we have ¢n |- Clg] —

A, therefore (94n)(8)7 [-A and ((§)(a)T)(54n)(B)7T |- B ;

thus - Ad((§)(a)7)(04n)(B)7 |+ C[1] — B.

From the recurrence hypothesis, we have ((dg)Ad((€)(a)7)(8yn)(B)7,1) |- B, thus :
((0p)Ad((E)()7)(4n)(B)7; 1) % (7, 7) € AL, that is ((6)Ad(()()7)(04n)(B)T+7, 1ar) €
.

But, we have y7 € C[1ar], therefore (05)Ad((&)(a)7)(0"yn)(B8)T * 7™ € AL, and thus :
(X)) A((E)()T)(84m)(B)T)(y)T * 7 € L. Tt follows that :
(X)A2((X)(0B)AD((&)()2)(04n)(B)2)(y)z* 7™ € 1L so that dagE*n.n" € L.

We now put :

g = AxAyrz((d)(apz)(04)Ad z)()y with a ::p = pal.

Suppose that (£,p) [FA— B ;let 7 € Clp], n - A and 7 € || B||. We must show :

Oy gExTen.me L. We have Adn |- C[1] — A ; applying the recurrence hypothesis, we
have ()M, 1) [ A, thus (€, p)((54)Mn, 1) |- B that is ((@5€)(0a)Ad 1, pal) [} B.
Applying again the recurrence hypothesis, we find :

(0%)(@0€)(04)Adn |- C[pal] — B. Since we have at € Clpal], we get :

(0%) (@) (0a)Ndn*ar e € L and finally 0y g&xT.n.m e L.

e If F =R(q) — B, where R is a k-ary predicate symbol and '€ P*, we put :

drop = AxAy(@)(0p)Az(z)zy with « 2 pa(1ar) = par.

g = AxAyAz((d)(@)zz)(o)y with o' @t p = pal.

Suppose that & |- Clp|,R[q] — B and let n € |R[q]|, (7, r) € ||B]||. We must show :
(0rBE,p) x (M, 1) o (m,7r) € AL, that is (0gupE*xnem pa(lar)) € A. Thus, let 7 €
Clpa(1ar)] ; we must show dgp,p{*n.n" € L. But, we have A\z(¢)zn || C[p] — B, and
thus :

((0)Az(§)zn, p) |k B, by the recurrence hypothesis.

It follows that ((0p)Az(§)zn,p) * (mw,r) € AL, that is :

((0)Az(&)zn*m,par) € AL. But we have ar € C[par|, and therefore (dp)Az(§)znx7" €
A, thus (@)(0p)Az(§)zn* 7" € L, therefore g pExn.n" € L.

Suppose now that (£,p) [FR(§) — B ;let 7€ C|p],n € |IR[g]| and 7 € ||B]|.

We must show 0%  z&*7.n.7 € L. But, we have (§,p)(n,1) ||~ B, that is :

((@)én, pAl) |IF B, thus (0%)(an)én |- Clpal] — B, by recurrence hypothesis.

But, we have o't € Clpal], therefore (§%)(@o)én*a/T«m € L, hence the result.

o If F=(py =p2— B), weput dp =0p and = dj.

Indeed, suppose that & |- C[p] — (p1 = p2 — B) and (7, q) € |[|p1 = p2 — B||. We
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must show that (dp&,p) x (7, ¢) € AL. Since ||p1 = pa — B||| # 0, we have p; = ps, thus
(7, q) € ||B|| and £ |- C[p] — B. Hence the result, by the recurrence hypothesis.

Suppose now that (£,p) [Fp1 = pa — B, 7 - C[p] et © € |[p1 = p2 — B||. We must
show ¢ *7.m € L. Since ||p; = pa — B|| # 0, we have p; = po, therefore = € || B|| and
(&,p) | B. Hence the result, by the recurrence hypothesis.

o If F=VzrA weput dp =64 and 0 = 4.
Indeed, if ¢ | Cl[p] — Vx A, we have & [ C[p] — Ala/z]| for every a € P. By the
recurrence hypothesis, we have (64€,p) |- Ala/x] ; thus (54&,p) || Vz A.

If (§,p) [FVx A, we have (&,p) |- Ala/z] for every a € P. By the recurrence hypothesis,
we have 0’,¢ |- Clp] — Ala/z] ; thus §4¢ | Clp] — Va A.
Q.E.D.

The generic ideal

We define a unary predicate J : P — P(II) in the model N (second order parameter of
arity 1), by putting J(p) = IIx{p} ; we call it the generic ideal.
Thus, the binary predicate J : P? — P(II) which corresponds to it in the model M, is
such that T (p,q) = 0 (resp. II) if p # ¢ (resp. p = ¢). In other words :

Jt(p, q) is the predicate p # q.
The formula p |- J(q) is Vr(C[par] = Tt (r,q)). Therefore, we have :
Ip [T (9)]| = I-Clpad]|| ; in other words :

p I J(q) is exactly ~Clpag].

Notations.
e We denote by p C ¢ the formula Vr(—=Clgrr] — —C[par]) and by p ~ ¢ the formula
pC gAqCp, that is Vr(=Clgar] <> =C[par]).
In the sequel, we shall often write F' — C[p] instead of —C[p] — —F ;
Then p C q is written Vr(Clpar] — Clgar]) and p ~ ¢ is written Vr(Clpar] <> Clgar]).
Remark. We recall that C[p| is not a formula, but a subset of A ; in fact, in some realizability
models which will be considered below, there will exist a formula C[p] such that :
ICp]| = {7 € A¢; 7 | C[p]}. In such cases, we can identify C[p] with the formula Clp].
e If Fis a closed formula, we shall write |- F to mean that there exists a proof-like
term 6 such that (0,1) |- F. From proposition R7(i), this is equivalent to say that there
exists a proof-like term 6 such that (6,p) |- F for every p € P.

Proposition 32.

i) & IF-Clpagl = (X6, p) [FT (@) ;
& p) IFT (@) = x'¢ [ =Clpag].

i) & |=Yr(Clpa(1ar)], Clq] — L) = (x&,p) - —-Clq] ;
(&,p) I-—=Clg] = xX'¢ I-Yr(Clpa(1ar)], Clg] — L).

in) If & - —-R(ay,...,ar) then (&,p) [ —-R(a,...,ax) for allp
(R is a predicate symbol of arity k).

i) If € | =Clpnaq|, then Ex7 o m € 1L and therefore y{x7™ € L for all 7 € C[paq]. Thus, we
have : (x&*m,paq) € AL, thatis (x&,p)*(m,q) € AL for every 7 € I, i.e. (x&,p) I T (q).
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It (&, p) [ Tlq], we have (&, p)x(m, q) € L, thus ({x7, pag) € AL for all © € TI. Therefore,
we have &xn™ € I, thatis x'éx7 .7 € I foreach 7 € C[pag|. Therefore \'¢ [ —Clpaq].

i) If & |FVr(Clpa(1ar)],Clq] — L), we have { xveTom € 1L if v € C[pa(1ar)] and
7 € Clg]. Therefore x{*7.7% € A, thus (x{ *7.mpa(lar)) € AL ie. (x&,p) *
(1,1) o (m,7) € L.
But (7,1) is arbitrary in Cy[q], and therefore (x&,p) | Clg] — L.
If (¢, p) [F =Clg], we have (£, p)x(7,1) . (m,r) € 1L, and therefore ({7« 7, pa(1ar)) € AL
for each 7 € Clg]. Thus, we have {x7.7" € 1L therefore Y{*v.T.7 € I for each
v € Clpa(1ar)].
It follows that x'¢ [ Vr(C[pa(1ar)], Clq] — L).
iii) Let 7 € |R(ay,...,ax)| ; we have E x 7.7 € L for all 7 € II, thus ({*7.m a) € 1
for all a € P, and therefore (&,p)*(7,1). (7, q) € L.

Q.E.D.

Theorem 33 (Elementary properties of the generic ideal).

i) (@,1) |[F-~J (1) with «:: 1a(prg) = pal.

i) (6,1) |- ¥o(~Cla] = T(2)) where 6= a(x)My((x'x) (B)y)(@)y

with o 2 In(prq) = q and B 2 Ia(prg) = pa(1a1). B

iii) (0,1) [\=VaVy(J (zry), =T (x) = T (y)) where 6 = Axdy(a@)(y)(B)x

with o 2 INP'ANG'AG)) = ¢ A (qrp")A1) and [ :: (gap’)ap = P'A(prq).

) (0:) [ ¥a(W(=Clon] = () > ~7(@) where 8 = AyF) (Ae(0) ()=
wit.

B iprg = qrp and v Ia(ra(gar’)) = ra(1ap).

v) (0,1) [I=Vavy(J (z),y Ex = T(y))

where 6 = Az Ay((x)Az((X) (@) A2 (X')(8)2")()2)(7)z, with

a: INP'A(raq)) = (ral)a(1al) ; o = IAN(P'A(GAQ)) = qnrp’ ; B i pag = qap.

i) Let (&,p) I J(1) ; we must show that (@, 1) * (&, p) . (7, q) € AL, that is to say :
(@x&.m 1a(prq)) € AL. But, from proposition B3, we have :

(@&, In(prq)) = (Exm,prl) = (&, p) * (m,1).

Now, we have (&,p)* (m, 1) € AL by hypothesis on (£, p).

ii)Let (n,p) [[-—Clg] and (7, q) € [[T(g)[|. We must show that (6,1)*(n,p) « (7,¢) € L,
ie. (0xn.m 1a(prq)) € AL. Thus, let 7 € C[1a(paq)] ; we must show that Oxn.n" € L.
From proposition B2, we have x'n |- C[pa(121)],Clg] — L.

Now, we have 57 € C[pa(1a1)] and at € C|q], therefore x'n * f7.ar.7m € 1L thus
COAY (XM (B)y)(@)y* 77 € L thus Oxn.7" € L.

i) Le (§,7) =T (prg), (n.¢) [f-~T(p) and (m,q) € [|T(q)||- We must show that :
(0,1) % (§,0') « (0, ") o (m,q) € U, ie. (0%Eemem In(p'A(¢'Aq))) € L.

From propositions P7(ii) and B3}, it suffices to show :

(@M (B)E 7, In(p'a(q'rq))) € AL then (1% BE .7, ¢'a((grp')a1)) € L, that is :

(n,q) > (BE, qnp’) « (m, 1) € L. _

By hypothesis on (7,¢’), we have now to show that (8¢, qnp’) | T (p), i.e. :

(BE, qnp’) * (w2, p) € AL, or else (BE * @, (gap’)ap) € AL for all @ € I1.

But, by proposition P3, we have :

(BEx @, (grp)ap) = (§x @, p'A(prg)) = (€,1) * (w,pAg) € AL by hypothesis on (£, p').
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iv) Let (£,q9) [ J(p) and (n,r) | Vq(=Clprq] — T (q)) ; we must show that :

0, 1) % (n, 1)« (§,q) « (m,r") € A, that is (@ *n«&.m, 1a(ra(gar’))) € L.

From proposition BA(i), we have x'¢ [ —Clgap]. Let 7 € Clpaq], thus p7 € Clgap]
therefore Y'&* 7 .p € L for every p € II. Therefore, we have Az(x'&)(B)xxT.p € L,
thus

Az(X'€)(B)z | —Clpag]. From proposition B(iii), we have (Az(x'€)(5)z,1) [ —=Clpaq].
By hypothesis on (1, 7), we thus have (n,7)* (Az(X’§)(8)z,1) .« (7, q) € I, ie. :

(1% A= (XE)(B)2 « 7, 7r(1ag)) € L, thus (D)A=(CENB)2 * 7, 1n(ra(gnr™)) € 1L
(proposition R3) and therefore (0 xn.&.m, La(ra(gar’))) € AL.

v) Let (&,9) | T (p) and (n,7) |- ¢ C p ; we must show that :

(0,1) % (&,9)) « (n,7) « (m,q) € AL for all m € TI, that is (@ x & «n .7, 1Ia(p'A(T7q))) € L.
From proposition B3(i), we have x'¢ | =C[p'ap], thus Az'(x’€)(B8)z" | =Clpap'] : indeed, if
7 € Clpap’] and p € II, we have A2/ (X')(8)2'*7 « p = (X&) (B)T*p € L since S € C[p'ap].
Then, from proposition B3(iii), we have (\z'(x'€)(8)z’,1) [ =C[pap']. But, by hypothesis
on (n,r), we have (n,r) | (=C[prp’] — —Clgrp’]). It follows that :

(1, )M (B, 1) [ ~Clanp) ie. (@A (XENB), 1) - ~Claap].

From proposition B3(ii), we have (x)(@on) Az’ (X'€)(B)2" [ C[(ral)a(1a1)], Clgap'] — L.
Let 7 € C[1a(p'A(raq))], therefore ar € C[(ral)a(1a1)] and o/ € Clgap/]. Thus, we
have :

() @A (XEN(B)) (@)7)(7)7 * 7 € L, therefore :

BN @A (VE) ()2)(@)2) (o) % 77 € IL. Tn other words -

(COA(((X) @A (XE)(B)2')(a)z)(a')z x m, La(p'a(rag))) € L
or else, from proposition P7(ii) : (0% & «n.m, In(p'a(raq))) € L.

Q.E.D.

Theorem 34 (Density).
For each function ¢ : P — P, we have :
(0,1) |- Va(=Clzrd(z)] — ( ), Vo J (zrd(x)) — L

where 0 = (B)A\xAy(z)(D)y, I = (x)AdAzAy(xX'x)(a)y ;
with o 2 gar = ga(gnr) B 1/\(]?/\((]/\7“)) = pr(1AQ).

Let (¢, p) [f-Vo(=Clznd(x)] = T (), (1,9) [}z T (zrd(z)) and (x,7) € IL
we must show that (0 x&.n.m, In(pa(gar))) € AL ; thus, let 79 € C[1a(pa(gar))]. We

must show Ox&.n.n™ € 1.
We first show that (9n,1) [ —Clgro(q)].
Thus, let (w,r’) € IT and 7 € Clgrg(q)] ; we must show (In,1) % (7,1) .« (co,7’) € 1L
ie. (1977*7' w, 1A(1Ar )) 6 A orelse Ipx1.w” € 1L for each 7' € C[1a(1nr")]).
Now, Inx7.w” = nxw® and a1 € Clgr(grg(q))]. Thus, it suffices to show :
(n* @, qr(gre(q))) € AL or else (1, q) * (@, grd(q)) € L.
But this follows from the hypothesis on (7, ¢), which implies (7, q) | J(gr¢(q)).
By hypothesis on &, we have (£, p) |- —=Clgro(q)] — T (q). It follows that :
(&,p)*x (N, 1)« (m,q) € UL, that is (£ x9Un.m, pr(1rq)) € L.
But we have 75 € C[1a(pa(gar))]), thus B79 € C[pa(1aq)]. Tt follows that Exvn. ™ € L.
This gives the desired result, since @ x&.n .7 = &% Un . w07,

Q.E.D.
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Countable chain condition

In this section, we consider a standard realizability algebra A and a A-model M. We
suppose that the set P (domain of variation of individual variables) has a power > 2%,
We choose a surjection € : P — P(II)Y and we define a binary predicate in the model
M, which denote also by ¢, by putting :

Inepll =e(p)(n)ifneN; |Inep|=0ifn &N
(we use, for the predicate €, the notation nep instead of e(n,p)).
Therefore, the predicate ¢ enables us to associate, with each individual, a set of integers
which are its elements. Proposition Bj shows that the following axiom is realized :

For every set, there exists an individual which has the same integer elements.

This axiom will be called aziom of representation of predicates on N and denoted by RPN.

Proposition 35 (RPN).
Az(2)00 [FVX3Iovn®(Xn < nex).

This formula is VX (Vz[Vn(ent(n), Xn — nex),Vn(ent(n),nex — Xn) — 1] — 1).

Thus, we consider a unary parameter X' : P — P(II) and a term & € A such that :

¢ | Vz[Vn(ent(n), Xn — nex),Vn(ent(n),nex — Xn) — L].

We must show that Az(x)00x&.m € L, orelse £x0.0.7 € L for every stack = € II.

By definition of ¢, there exists pg € P such that Xn = ||ne py|| for every integer n.

But, we have : ¢ |- Vn(ent(n), Xn — nepg), Vn(ent(n),nepy — Xn) — L.

Thus, it suffices to show that 0 [ Vn(ent(n), ¥n — nepy) and 0 || Vn(ent(n),nepy —

xn).

Recall that the predicate ent(z) is defined as follows :

—ent(n)] ={n} ifn €N and —ent(n)|=0ifn ¢ N.

Therefore, we have to show :

0xn.n.pell forallne N, n |FX(n) and p € ||nepo| ;

0xn.nopell foralln e N, |Fnepy and p' € X(n).

But this follows from nxp € L and n'xp’ € 1L, which is trivially true, since Xn = ||n e py||.
Q.E.D.

We suppose now that {C, A, 1} is a forcing structure in M. Then we define also the symbol

¢ in the B-model N by putting :

llnep|| = ||nepl x{1} for n,p € P. In other words

lInepll = {(m1); 7 € e(p)(n)}if n € N; [nepll| =0 if n ¢ N.

Proposition 36. The predicate £*(q,n,p) is ¢=1+ nep.
The formula qfnep is Clgrl] — nep.

Immediate, by definition of ||ne p||.
Q.E.D.

Proposition 37.
i) £ F(Clpl > neq) = (0&,p) |Fneq where 6 = Ax(x)\y(x)(a)y and «::prl =

p.
ii) (&,p)|Fneq = & (Clp] = neq) where & = Axdy(X'z)()y and o ::p =
pal.
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We have (&,p) [Fnep < (&,p)x(m,1) € UL for all w € ||nep||, or else :
& p) Fnep & £+ € L for each 7 € C[pal] and =7 € ||nep|.
i) Suppose that & |- (Clp] = neq), 7 € C[pal] and 7 € ||nep||. Then,we have :
rxm™ = Exar.m € L, since ar € C[p).
ii) Suppose that (¢,p) -negq, 7 € Clp] and =7 € ||nep||. Then,we have :
S€xTom = Exm™ € UL, since o/T € Clpal].
Q.E.D.
The notion of first order formula has been defined previously (see theorem BI]). We extend
this definition with the following clause :

e tcuw is first order, for all terms ¢, u.
Proposition B7q shows that theorem Bl remains true for this extended notion.

We say that the forcing structure {C, A, 1} satisfies the countable chain condition (in
abridged form c.c.d.) if there exists a proof-like term ccd such that :
ced =YX [V 3p X (n, p), V" Vp¥q(X (n,p), X (n,q) = p = q),

VnpYg(X (n, p), X (sn,q) = ¢ C p) —

I {Yn V(X (n, p) — 1’ E p), (VnVp(X (n,p) — Clp]) — Cp'D}.
The intuitive meaning of this formula is :
If X(n,p) is a decreasing sequence of conditions, then there exists a condition p’ which is less
than all of them ; moreover, if all these conditions are non trivial, then p’ is non trivial.

We intend, in this section to prove the :

Theorem 38 (Conservation of reals).
If the c.c.d. is verified, then there exists a proof-like term crl such that :
(crl, 1) [ VX32Vn™(Xn <> nex).

This means that the axiom RPN, which is realized in the A-model M (see proposition Bj)
is also realized in the generic B-model N

Notation.

The formula Vq(Clpagl,q | Xn — p | Xn) reads as “ p decide Xn 7, and is denoted by
p | £Xn.

It can also be written as VqVr(Clpaq],q | Xn, Clpar] — Xt (r,n)).

If X: P — P(IlxP) is a unary predicate in the B-model N,

and X* : P2 — P(II) is the corresponding binary predicate in the standard .A-model M,
the formula Yq(Clpaq],q | Xn — p | An) is thus also denoted by p | £Xn.

Theorem 39. If the c.c.d. est verified, there exists a proof-like term dec such that :
dec |- VXVpo3p'{(Clpo] — C[¥]), ' T po, V0™ (p' | £Xn)}.

We first show how theorem B can be deduced from this theorem B9.
From theorem [3{, it is sufficient to find a proof-like term crl0 such that :
crl0 -1 |- VX32vn(Xn < nex)

or else, since 1} —A =Vpo((po | A), C[1ape] — L) :

crl0 |- Y XVpol(po | Vag{Vn®™™(Xn <> neq) — L}), C[1apo] — L].

From theorem BY, it is sufficient to find a proof-like term crll such that :
crll |- VX Vpe¥p'{(Clpo] — Cp]), P’ T po, Vn™ (p' |- £Xn),
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(o0 b Ya(¥n®™ (Xn + neg) — 1)), Cliapo] — L},
It is sufficient to find a proof-like term crl2 such that :
crl2 |- VYXVpeVp'{(po |- Yq(vn®™(Xn <> neq) — 1)),p T po, Vn(p' |- £Xn), Clp/] —
1}
Indeed, we take then crll= AxAyAzAudv((z)(crl2)uyz)(d)v with 6 :: 1ap = p ;
(recall that the formula C[py] — C[p'] is written, in fact, as =C[p'] — —C[py]).

We fix X+ : P2 = P1), po,p' € P, € |- (po I Ya(vVn™ (Xn <> neq) — 1)), n =o' C po,
¢ Fvnt(p' |- £Xn) and 7 € C[p]. We must have (crl2)éndr |- L.

We choose ¢ € P such that we have ||ne gl = ||p’ | X'n|| for all n € N, which is possible,
by definition of . We trivially have & |- (poJ(Vn®(ne g — Xn), ¥n®"(Xn — neq) —
1)).

But, the formula py |- (Vn®™(ne gy — &n), ¥n®"(Xn — neqy) — L) is written as :
Ve (r - V™ (ne go — Xn), ' | Vn®Y(Xn — neqo), Cl(poar)ar’] — L).

Replacing r and ' with p’, we obtain :

E- (' V™ (neqgy — &n), p' | Vn®™(Xn = neq), Cl(porp’)ap] — L).

From 7 € C[p/] and n | Vr(=Clpoar] — =C[p'ar]), we deduce that :
M((m)Az(h)(B)x) ()T = ==Cl(porp)ap]

where «, § are C-expressions such that a: p = pap; B :: pag = (prg)aq.

Thus, we have :

(1) AyAz((m)Az(yz)(B)z) ()7 = (' $ Y (ne g — Xn)), (' " (Xn — neqo)) —
1.

e The formula p' |- Vn®™(ne gy — Xn) is written as Vn®™Wr(r |- ne gy — p'ar |- Xn).
But r | neqgo = Clral] — neqo (proposition Bol) = C[ral] — p' | X(n) by definition
of go. Therefore p' F¥nt(ne gy — Xn) = Yn"Wr((Clral] — p' FX(n)) — p'ar F&n) =
Vv Vg (Clral], Clp'ag] — X (g, 1)), Cl('ar)nd] = X (', ).

Thus, we have :

(2) AdAzdy((2)(a)y)(B)y |+ (' | V™ (ne g — Xn))

with o (par)ag = ral and (' (par)ag = pag.

e The formula p' |- V™ (Xn — neqp) is written as Vn®"Wr(r |- Xn — p'ar |- ne qo),
or else : Vn®r(r |- Xn, C[(p'ar)al] — ne qo), that is, by definition of gy :

Yy (r |- Xn, C[(p'ar)al] — p' |- Xn). But, we have :

¢ |-Vnt(p' F+£Xn), in other words ¢ |- V™ Vr(r - Xn, C[p'ar] — p' § Xn). Therefore :
(3) AnAzdy(Cnz)(a”)y [Fp' | Y (Xn — neq) with o o (par)al = par.

It follows from (1,2,3) that :

((AyAz((n)Ax(€y=)(B)z)(a)T) AddAzdy((z)(a)y)(8")y) Andzdy(Cnz)(@”)y I L.
Therefore, we can put crl2 =

AzoAYoAzoAu((AyAz((yo) Az (zoyz) (B)x) (@)u) AdAzAy((z)(a')y)(8)y) AnAz Ay (zona)(e)y.
Q.E.D.

The remaining of this section is devoted to the proof of theorem B9.

Recursive definition of sequences

In this section, we are given a fixed element p, € P and a finite sequence of formulas
with parameters F'(n,p,p’). We are also given a proof-like term dse such that :
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dse [ VrVpIp' E(n, p,p).
Remark. We shall apply the results of this section to a sequence F of length 3.

From theorem [[(ii) (axiom of choice for individuals), there exists a function f: P® — P
such that : ¢ [-VaVp(VE™ (F(n,p, f(n,p, k) = L) = Vp/(F(n,p,p') — L1)).

It follows that Az(dse)(s)z [ VnVp(VESE (F(n, p, f(n,p, k) — L) — L).

We define a function denoted by (mjn), from P? into P, by putting, for m,n € P :
(min) =1if m,n € Nand m < n ; (mjn) = 0 otherwise.
Obviously, the relation (mjn) = 1 is well founded on P.
Thus, from theorem [1|(ii), we have :
Y |- VE(Vi(ent(1), F(n,p, f(n,p,1)) = (lik) # 1),ent(k), F(n, p, f(n,p,k)) = 1)

— Vk(ent(k), F(n,p, f(n,p, k) — 1).
Therefore, if we set Y = A\x(Y)A\yz(x)zy, we have :
Y'Y (Fln, p, £ (n, )] — (1ik) # 1), Fln,p, £(n, p, K)] = 1}

— VK (Fln, p, f(n,p, k)] — L).

Thus, we have :
Az (dse)(s)(Y)a |- VRV (Fn, p, f(n,p,0)] = (lik) # 1), Fln,p, f(n,p, k)] = L} —
1.
We define the formula G(n,p, k) = VI (F(n, p, f(n,p,1)) — (lik) # 1) and the finite
sequence of formulas Fl(n,p, k) ={G(n,p, k), ﬁ(n,p, f(n,p,k))}. Then, we have shown :

Lemma 40. dse0 |- VnVp3k™{H (n,p, k)}, with dse0 = \z(dse)(<)(Y')x.

Lemma 41. Let cp be a proof-like term such that, for every m,n € N, we have :

Cpxm e o€ ool oem=Exm (Tesp. n*m, (xm)if m<n (resp. n<m, m=n).
Then :

i) cp [ YmE N ((mm) # 1, (nm) # 1,m #n — L).

ii) dsel |- VnVpVke™ ™k €t (H (n,p, k), H(n,p, k'), k #£ K — L)

with dsel = AEAALAGAT' NG ((ep K'k) () E'Y) (o)) ky, where 4,y are two sequences of
distinct variables of the same length as the sequence F.

i) Trivial.
i) Let ¢ =G(n,p,k), 7 = F(n,p, f(n,p, k), & |-Gn,p, k), 7 |- F(n,p, f(n,p, k')
et ¢k #K. Wemust show cpxk’ ok« (K7 « (E)kF.C.me L.
If k=K, it remains to prove (%7 € 1L ; but this is true because we then have ¢ |- L.
If ' <k, it remains to prove Exk' o «m € L. This results immediately from :
€ VK O (F(n, p, f(n,p, ) — (Kik) £1) and thus € |- ent(k'), F(n,p, f(n, p, k) =
1,
since k' < k.
Q.E.D.

We now define the predicate :

®(z,y) = VX (YnVpVk (H (n, p, k), X (n,p) = X (sn, f(n,p,k))), X (0,p0) = X (z,y))
and we show that ®(z,y) is a sequence of conditions (functional relation on N) and also
some other properties of ®.
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Lemma 42.

i) My y [P (0, po).-

i) Ae(z) 1 = Vy(@(0,y) =y = po).

iii) rec |- VaVyVk(H (z,y, k), ®(x,y) — D(sz, f(z,y,k)))
where rec = NkAx YA Az u(zkzy) (2')zu

and i is a sequence of distinct variables of the same length as F.

i) Trivial.

ii) We define the binary predicate X : P? — P(II) by putting :

X(0,9) = llg = pol| and X(p,q) = 0 for p # 0.

We replace X with X in the definition of ®(0,y). Since we have sn # 0 for all n € P,

we obtain ||®(0,y)|| D || T,po = po — y = pol| ; hence the result.

iii) Lot € |- G(z,y, k), 7 I F(a,y. f(z.y, k), € |- (),

C |- VnVpk (H (1, p, k), X (n, p) — X (sn, f(n, p, k),

v H_X(07p0) and 7€ ||X(Sl‘, f(xaya k)) :

Then &'Cu | X(z,y), therefore (xk & &'Cveme 1L ie. (rec)kéné’Cuoxm e L.
Q.E.D.

Lemma 43. ccdl |- Vn®3p ®(n, p) where :
ccdl = An((n)A\xAy(z)\z(cdl)zy) Az (z) Az Ay y
with cdl = AxAy(dse0)NIAZ(y)(rec)lZx ;

Z 18 a sequence of distinct variables of the same length as H.

Proof by recurrence on n ; we have AxAy y | ®(0, po), therefore Az(z)AzAyy |y (0, ).
We now show that cdl [ ®(z,y) — JyP(sz,y).
Thus, we consider ¢ |- ®(x,y), n - Vy(P(sz,y) — L).
We have rec |- VI (H (z,y,1), ®(z,y) — (sz, f(z,y,1))) (lemma [iii),
n | (®(sz, f(x,y,1)) — L), and therefore :
ANAZ(n)(rec)lZ¢ |- [ V1™ (H (x,y,1) — L), where Z has the same length as H.
Now, we have dse0 | Ik™{H (z,y, k)} (lemma [) ; therefore :
(dse0)AIAZ(n)(rec)lZ€ |- L, that is (cd1)én | L.
Thus, we have shown that cdl || Vy(®(z,y) — JyP(sx,y)), and it follows that :
Az Ay (z)Az(cdl)zy | 3yP(z,y) — JyP(szx,y).

Q.E.D.

Lemma 44. There exists a proof-like term ccd2 such that :
ced? |-V "p¥g(®(n, p), ®(n,q) = p = q).

We give a detailed proof, by recurrence on n. It enables us to write explicitly the proof-like
term ccd?2.

For n = 0, the lemma [[J(ii) gives the result : ®(0,p), ®(0,q) — p = ¢.

Let us fix m and suppose that Vp¥Vq(®(m,p), ®(m,q) = p = q).

We define the binary predicate :

U(n,q) = VpVke (n = sm, H(m,p, k), ®(m,p) = q = f(m,p, k)).
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We show that [ VpVke™ (H (n,p, k), ®(n, p) — ¥(sn, f(n,p, k))), that is to say :

- VpVgvkentyent
{H(n, p,

But we have |sn =

(n,p), sn = sm, H(m, q,1),®(m,q) = f(n,p,k) = f(m,q,1)}.
= = || ®(m,p), ®(m,q) — p = q by hypothesis of

= [ (lemma [[1|(ii)), and it follows that f(n,p, k) =

)| ||)
H(m.p,1) —

|
recurrence | H (m,p, k), H(m,
f(m, q,1).
If we put V'(z,y) = ®(x,y) A ¥(x,y), we have :
- VpVESYE (H (n, p, k), W' (n,p) — W' (sn, f(n,p,k))) ; we have also |- W'(0,p). This
shows that |- (®(z,y) — ¥/(z,y)) by making X = ¥’ in the definition of ®.
Thus, we have |- ®(sm, q) — VpVke (H (m, p, k), ®(m, p) — ¢ = f(m,p, k)).
It follows that :
= ®(sm, q), ®(sm,q') —

\v/p\v/kent(ﬁ(mapa k)? @(m,p)_}—) (q = f(mapa k:)) A (q/ = f(mapa k:)))

and therefore |- ®(sm, q), ®(sm,q') — YpVE Y (H (m, p, k), ®(m,p) = ¢ = ¢).
Thus, we obtain |- ®(sm, q), ®(sm,q') — ¢ = ¢, since we have ccdl |- Ip &(m,p) by
lemma [ and dse0 |- VpIk ™ {H (m, p, k)} by lemma [0,

Q.E.D.

End of the proof of theorem

In order to show theorem BY, we fix py € P and a binary predicate X : P2 — P(II).
We have to find a proof-like term dec such that :

dec |- 3p'{(Clpo] — Clp']), 1’ E po, Y™ (p' |- £&Xn)}.

We apply the above results, taking for F (n,p,p’) the sequence of three formulas :
{(Clp] = Cp]), (W Ep), o' | £Xn}. .

Lemma [I5 below gives a proof-like term dse such that dse |- VnVp3p'{F(n,p,p’)}.

Lemma 45. dse [|-VpIp'{F(n,p,p')}
where dse = Aa(Ah(all)AxAy h)Az(cc)\k((adx z2) 5" ) Az y(k)(y)(a)z
with B = Axdy(x)(B)y, «:: (pag)ar = raq and 5 :: (pag)ar = par.

The formula we consider is written as Vp'[(C[p] — C[p']),p’ T p, ' } £X¥n) —» 1] — L.
Thus, let & V' [(Clp] — C[p]), P CTp, ' | £Xn) — L]. We must show (dse) | L.

e We show that Ah(SIT)AxAyh |- —(p | An) :

Let ¢ |- (p | &Xn) ; therefore, we have AzAy( | (p | £Xn) ; indeed :

pF+£Xn =vq(Clpng),q | Xn —p | Xn).

But, we have ¢ | (C[p] = Clp]),pCp,(p | £&Xn) — L ;

we have I |FClp] = C[p]and I FpC p (since p' C p = Vq(—=Clpaq] — =C[p'Aq])).
Thus (£11)AxAy( [ L, hence the result.

e We now show Az(cc)Mk((EAx zz)5 ) Axdy(k)(y)(a)x | (p | Xn).

Thus, let 7 € Clpag] and 7 € X (g, n). We must show :

((Exz z7) ) Az Ay (k) (y)(a)x xm € L. But, we have Az a7 [ ==C[paq],

B +pnq C p (lemma [i) and £ |+ (=Clpag] — =C[p]), prg E p, (prg f £Xn) — L ; thus :
(ExxzT)B | ((prg | £Xn) — L). Therefore, it is sufficient to show :

Aedy(kx)(y)(@)z = (pag | £&n), e
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Az Ay (k) (y)(@)z [ Vr(Cl(pag)ar], r | Xn — pag | X'n). In fact, we show :

Aoy (ke) (1) (@) | ¥r(Clpna)ar], 7 b Xn = 1),
Thus, let v € C[(pag)ar] and 7 || (r | Xn). We must show :

(kﬂ)(n)(a)v xp€ I forall pell,ie. (n)(a)v*m € L. But, we have (a)v € Cl[rag],
therefore (n)(a)v [ X (g,n), hence the result, since 7 € Xt (g, n).
o It follows that (AR(ELD)AxAy h)Az(cc)\k((EAx z2) B ) Az y(k)(y)(a)z [ L
i.e. (dse)¢ | L, which completes the proof.
Q.E.D.

Lemma 46. Let (3 :: (paq)ar = par. Then AxzAy(x)(B)y |+ VpVa((pag) C p).

This formula is written VpVqVr(—=Clpar], C[(paq)ar] — L).
Therefore, let & |- =Clpar], 7 € C[(prq)ar], thus 1 € Clpar] and (§)(8)7 | L.
Thus, we obtain Az y(z)(8)y*& 7.7 € L for every 7 € 1.

Q.E.D.
We propose now to apply the countable chain condition to the binary predicate ®(z,vy).
Lemmas i and 4 show that the first two hypothesis of the c.c.d. are realized by ccdl
and ccd2. The third one is given by lemma [I7] below.

Lemma 47. There exist two proof-like terms ccd3 and for such that :
i) ccd3 |- Vn"Npig(®(n, p), ®(sn,q) = ¢ C p).
i) for |- Vn"Nq(®(sn,q) — q |- £&n).

By lemma [(iii), we have :

rec |- Vke™ (H (n,p, k), ®(n,p) — ®(sn, f(n,p, k))). Using ccd2 (lemma [E), we get :

| VK (F (n, p, k), &(n, p), B(sm,0) — ¢ = (0, p, k).

Now, H(n,p, k) is a sequence of four formulas, the last two of which are :

f(n,p, k) Cp and f(n,p k) | £Xn.

i) It follows first that |- V& (H (n,p, k), ®(n, p), ®(sn,q) — q C p).

Hence the result, since we have dse0 |- 3k {H(n,p, k)} (lemma [IT).

i) It follows also that |- V&2t (H (n,p, k), ®(n, p), ®(sn,q) — ¢ F+&xn).

Thus, we obtain  ||- VnVq(®(sn, q) — ¢ | £Xn) since we have ccdl [ ¥n®3p &(n, p)
(lemma ) and dse0 |- VnVpIk™ {H (n, p, k)} (lemma [0).

Q.E.D.

We can now apply the c.c.d. to the predicate ®(z,y), which gives a proof-like term ccd0
such that ccd0 |- 3p'{Q(n,p,p))} with

G(n, p,p') = {Yn"p(®(n,p) = p' C p), Yn"Vp(®(n, p), ~Clp] — 1), ~Cl[p] — L}.
Therefore, in order to complete the proof of theorem BY, it is sufficient to find proof-like

terms
dec0,decl,dec?2 such that :

decO |- Vp'(Q2 (n p,7'), ~Clpol, C[p'] — 1) ;
decl |- Vp/'( (npp)%p/gpo);
dec2 |- Vp/(Q(n, p, p') — Vn(p/ |- £Xn)).

Thus, let wp,w; € A be such that :
wo [ YnVp(®(n,p) = p' T p) and wy |-V Vp(@(n, p), ~Clp] — L), ~C[p] — L
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Applying lemma [2(i) with n = 0, p = po, we obtain (wo)A\xAyy |Fp' C po.
Therefore, we can take decl = AaAb(a)A\zAyy.

Lemma 48. ccd4 || (C[po] — Vn™p(®(n, p), ~C[p] — L))
where ccdd = Aa\bAc((bAzgAzi AroAzg Ay (z)(x1)y) A\x za)c.

Let 7 € Clpo], € - ®(n, p) and 5 |- ~CJp].
Making X (z,y) = ——Cly| in the definition de ®, we get :

& VR (G, pl K], E o, f(n, 0l R)), —=Clp' ] = ~=Clf (0,9, k),

—=Clpo], ~Clp] = L

We have Az(z)T | ——C[po].
Moreover, since F[n’,p',q] = {(—=Clq] = =C[p']), (¢ C p'), q | £Xn}, we casily get :
Ao AT AT A3 AT AY () (21)y |

VPR (G ol K] Fln ' f(n 9 )], ==Clp'] = —=C[f (0, ', K))).
It follows that ((EAzoAzi AT A T3 NTAY () (21)Y) x(:p) )n I-L1,ie (ccdd)én |- L.

Q.E.D.

From lemma [[§, we immediately deduce Ax(w;)(ccd4)z | Clpo), -Clp'] — L
Therefore, we can put decO0 = AaAbAx(b)(ccd4)z.

Lemma 49.

i) 1ef0 |-VpVa(p | Xn, g Cp — q | Xn) with 1ef0 = Az yAz(cc)M\e((y) A\u(k)(x)u)z.
ii) lefl |-VpVg(p | £Xn, ¢ Cp — q | £Xn) with

lefl = AzAyAzAu((lef0)(cc) A\ ((y) Av(h)(z)vu)z.

i) This is immediate, if we write explicitly the formulas :

p b Xn=vr(Clpar] — Xt (r,n)) ;

q C p = Vr(=Clpar] = =Clgnr]) ;

q | Xn =vr(Clgnr] — X (r,n)).

We declare z:p | Xn, y:qCp, z:Clgar], k: X" n.

ii) We write down the formulas :

pFxXn=vYr(Clpar],r | Xn—p | &Xn) ;

q C p = Vr(=Clpar] = =Clgnr]) ;

qF £Xn =vVr(Clgar],r | Xn — q | Xn).

We declare z:p | +Xn, y:qCp, z:Clgar], u:r | Xn, v:Clpar], h:=(p | Xn).
Q.E.D.

By means of lemmas f7(ii) and g and also wq [ Vn®Vp(®(n, p) — p' T p), we obtain :

Az ((lefl) (for)nz) (wo)na - Vn®™Vq(®(sn,q) — p’ | £Xn).

But, we have ccdl |- Vn®3p (n, p) (lemma E3) ; it follows that :

n(cc) Mk ((ced1)(s)n) Az (k) ((lefl) (for)nz) (wo)na - Vn (pr | £Xn).

Thus, we can put dec2 = AaAbAn(cc)A\k((ccdl)(s)n)Az(k)((lefl)(for)nx)(a)nz.

This completes the proof of theorem Bg.
Q.E.D.

The ultrafilter axiom on N

Let us consider a standard realizability algebra A and a A-model M in which the indi-
vidual set (which is also the set of conditions) is P = P(IT)N.
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The binary relation ¢ is defined by |[nep|| = p(n) if n € N ; otherwise |[nep|| = 0.
1 is defined by 1(n) = 0 for every n € N ;
A is defined by |[ne (paq)|| = ||[nep A neq| for every n € N.

The axiom of representation of predicates on N (RPN)

We define the following recursive function of arity k, denoted by (ng,...,nx) (coding of
k—uples) . (nl, n2) =n;+ (n1 +n2)(n1 + no + 1)/2 ; (nl, . 7nk+1) = ((nl, . ,nk),nkﬂ).

Proposition 50. [-VX32Vy™ Yy (g, ... y)ex < X(yi,. .., ux)) where X is a
predicate variable of arity k.

Let X : P* — P(II) be a predicate of arity k. We define a € P by putting :
a(n) = X(ny,...,ng) forn € N, n = (ny,...,nx). Then, we have immediately :
I =Yyt Yy (g, .. yk) ea — X(yr, ..., uk)) and

I H_ vy?nt H 'vygnt(‘)((yla v >?/k) — (y17 cee 7yk) 8(1,).
It follows that :

Mz ()] |- VX 3avy . VY (g, .. uk) ex — X(y1, ..., ) and
Ae(@) VX FoTye (X (i) = (s ) £ 7).
Then, it suffices to apply theorem [[3.

Q.E.D.

The comprehension scheme for N (CSN)

Let Fly,x1,...,zx] beaformula the free variables of which are taken among y, 1, . . ., xy.
We define a k-ary function gr : P¥ — P, in other words g¢r : P*xN — P(II) by putting
9r(p1, - pi)(n) = | Fn,py, ..., pil|| for every n € N.

Proposition 51. We have |V, .. Vo Vy™ (ye gp(x1,. .., 2x) & Fly,21,...,24)) for
every formula Fly,x1,..., Tk

Indeed, we have trivially :
I Vo Vo vy™ (ye gp(zy, ... 2) = Fly,21,...,2;]) and
I Yoy VoYY (Fly, o1, ... 20 = yegr(a, ..., xp).
Then, it suffices to apply theorem [[3.
Q.E.D.
Remark. The binary function symbol A is obtained by applying CSN to the formula yez; A

YET3.

The generic model

We denote by C[z] the formula Vm™3n!™ (m+n) € z, which says that the set = of integers
is infinite. The predicate C is defined by this formula : for every p € P, |C[p]| is, by
definition, the set {7 € A; 7 |} C[p]}.

It follows that the condition = :: ¢(p1,...,pn) = u(py,...,p,) is written as :

Azyz =Vpr .. pa(Clt(pr, . - -, pn)] = Clu(py, . .., pa)]).-
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Therefore, in order to complete the definition of the algebra B (and of the B-model N),
it remains to find proof-like terms ag, a1, aw, By, B1, B2 such that :

ag |- VpVavr(Cl(pag)ar] — Clpa(gnr)]) 5 aa |+ Vp(Clp] — Clpal]) ;

as |- VpVq(Clpag] — Clg]) ;5 Bo |+ Vp(Clp] = Clpap]) 5 Bi | VpVa(Clpag] — Clgnp]) ;

Ba [t Vp¥qvrs(Cl((pag)ar)as] — Cl(pa(gar))as]).

Now, we easily have, in natural deduction :

FO:Vn(nex — nea’) — (Clz] — Cl2']) with 0 = AfAudmAh(um)AnAx(hn)(f)z.
Therefore, by theorem f (adequacy lemma), we can put «; = 6af and f; = 05, with
proof-like terms a7, (0 < i < 2) such that :

Faf  VXVYYVZ{(XAY)NZ == XANY ANZ)}; Faof :VX{X - XAT}; Faj:
VXVY{XAY -V} FBVX{X = XAX}; F B VXVY{XAY 5 Y AX};
By  VXVYVZVU{(X AY)NZ)NU = (X AN (Y NZ)) AU}

The countable chain condition
In this section, we show the :

Theorem 52.
The forcing structure {C, A, 1} satisfies the countable chain condition in M.

We have to find a proof-like term ccd such that :
ced [ VX 32 {Vn™3p X (n, p), ¥n"VpVq(X (n,p), X (n,q) — p = q),
Vne"p¥g(X (n, p), X (sn,q) = ¢ C p) —
Ynp(X (1, p) > = C p) A (X (n, p) = Clp]) — Cla])}
where p C ¢ is the formula Vr(C[par] — Clgar]).
By theorem [[3, this amounts to find a proof-like term ccd’ such that :
ced' - VX3 {¥ni™ Ip X (n, p), Vnl"VpVg(X (n, p), X (n,q) = p = q),
Vni"pVq(X (n,p), X (sn,q) — ¢ C p) —
V" (X (n, p) — = C p) A (Yn™Vp(X (n,p) — C[p]) — Clz])}.

By theorem B (adequacy lemma), given a formula F', we can use the following method to

show |- F :
First, show |- Ay,..., [F Ak, then
show Ai,...,Ax F F by means of the rules of classical second order natural deduction

(which contains the comprehension scheme), and of the following axioms which are realized
by proof-like terms in the A-model M :

o ¢ # u for all closed terms ¢, u which take distinct values in M.
o Vil Wait(t(zy, . xp) = u(zy, ..., 1)) for all the equations between terms which
are true in N.
e The foundation scheme (SCF, see theorem [L1}ii) which consists of the formulas :
VX VXV Yy (X, Xy — fyx) # 1), Xz, ., X — L]

— Ve ( Xz, .. X — L)}
where f: P? — P is such that the relation f(y,z) =1 is well founded on N.
e The axiom of choice scheme for individuals (ACI, see theorem [[f]) which consists of the
formulas VZ(Vy"™ F(Z, fr(Z,y)) = Yy F(Z,y)) ;
Z = (x1,..., ) is a finite sequence of variables, VaVy ™ F is an arbitrary closed formula,
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and fr is a function symbol of arity k£ + 1.

e The axiom of representation of predicates on N (RPN, see proposition B() which consists
of the formulas VX 32VG™((yy, ..., ) ez < X7)) ;

¥ = (y1,-..,yx) is a sequence of k variables and X is a predicate variable of arity k.

e The comprehension scheme for integers (CSN, see proposition fI]), which consists of
the formulas Va&Vy™ (ye gp () < Fly, ) ;

Z = (x1,..., ;) is a sequence of k variables, ‘v’:i"v’yintF is an arbitrary closed formula, and
gr is a function symbol of arity k.

Lemma 53. - VpVq(p C ¢ < Im™n™ (n+mep — n+meq)).

We apply the CSN to the formula Fly,z] = y £z ; thus, we obtain :
- Vavy™ (y e -z <> y £ a)

using the notation -z for gp(x).
We have p C g = Vr(Clpar] — C[gar]) and therefore p C g F Clpa—q] — Clgr—g].
But, we have C[ga—g] F Vm™3n™(m + negAm+né¢q) - L, and thus :
pCq F —Clpa—q], thatis FpCq— ImVn™—(m +nep A —(m+neq)).
Conversely, from the hypothesis :
v/ (! 4 ep — m/ 41’ e q), Ym™ I (m + nep Am +ner), we deduce :
V™ 30 ((m! 4 m) + nep A (m' +m) +ner), then :
VY™ 30 (m, 4 (m’ +n)eqAm + (m' +n)er) then :
VYm™3n0 (m + neqg Am +ner). Therefore :
Vo' M (m! +n'ep —m/ +n'eq) F Clpar] = Clgar] and thus :

Im'Nn ™ (m/ ' ep = m/ +n'eq) F Clpar] = Clgar].

Q.E.D.

Applying RPN and the comprehension scheme, we obtain :

-VYX3hD(h,X) with D(h,X) = VE™Wn"((k,n)eh < Vovi™ (i < n, X(i,q) —
keq)).
Remark. The intuitive meaning of D(h,X) is : h is the individual associated with the
decreasing sequence of conditions X', the n-th term of which is the intersection of the n first
terms of the sequence X.

We apply CSN to the formula F(k,n,h) = (k,n)e h. Thus, we obtain :
- VnVAYE™ (ke gp(n, h) < (k,n)eh).
We shall use the notation h,, for gp(n, h). Therefore, we have :
- VnVAVE™ (ke hy, < (k,n) e h).

and it follows that :

D(h, X) F VEYYRIY (ke by, < Vg¥i™ (i < n, X (i,q) = keq))
We put ®(k, h,n) = IV (j +neh, = (j <i)#1), i +nehy, k=1i+n}.
Remark. The intuitive meaning of ®(k, h,n) is : “ k is the first element of h,, which is > n 7.
We apply CSN to the formula F(k,h) = In™ ®(k, h,n). Thus, we obtain :
- VAVE™ (ke gp(h) < In™ &(k, h, n)).
We shall use the notation inf(h) for gg(h). Therefore, we have :

- VAVE (ke inf(h) <> In™ &(k, h,n)).

The hypothesis of the c.c.d. are :
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Ho[X] =VYn™3p X (n,p) ;

Hy[X] = Yn™™Vp¥g(X (n,p), X(n,q) = p=1q) ;
H,[X] = Ynl"pVg(X (n, p), X (sn,q) = ¢ C p) ;
Hy[X] = Vn™"p(X (n, p) — Clp)).

We put H[X] = {Ho[X], H,[X], H,[X], H3[X]} and HJ[X] = {Ho[X], H,[X], H,[X]}.
Thus, it is sufficient to show :

D(h, X), H|X] F Vn™Vp(X (n,p) — inf(h) C p) and

D(h,X),H[X] + C[inf(h)].

Notation. The formula ¥n™(nep — neq) is denoted by p C q.

Lemma 54. D(h, X) = Vm™n"(h, ., C h,).

This formula is written Vm™Vn™VE" (ke by, — ke h,). Now, we have :

D(h, X) F ¥Ym™ynPty it (ke by — VoVi™ (i < n+m, X (i,q) = keq)) ;
F Ym0y It it (5 < o X (6, q) — kegq) — Vqumt(z <n,X(i,q) = keq)] :
D(h, X) b Ym™nPty it (Vevint (i < X (i, q) = keq) — ke hy).

Q.E.D.

Lemma 55. D(h, X), Ho[X], H\[X] F V"™ E"p(X (sn,p), kep, ke hy — ke hgy,).

We have D(h, X), int(k), int(n) F VpV¥i™ (i < sn, X(i,p) = kep) — ke hgy.
But, we have int(n), int(i), ¢ < sn F i <nVi= sn, and therefore :
int(n), Vp¥i™ (i < n, X (i,p) = kep), Vp(X(sn,p) = kep) F
VpVit (i < sn, X (i, p) — kep).
It follows that :
D(h, X), int(k), int(n) F Vp¥i™ (i < n, X(i,p) = kep),Vp(X(sn,p) = kep) — ke hap,
Le. :
D(h, X), int(k), int(n) - ke hy,, Vp(X (sn,p) = kep) — ke hg,. Therefore :
D(h, X), int(k), int(n), Ho[X], H[X] F Vp(k e h,, X (sn,p),kep — ke hg,).
Q.E.D.

Lemma 56. D(h, X), H[X] F VYn"™¥p(X (n,p) = p C hy,).

Proof by recurrence on n. We must show :
D(h, X), HJX], int(n) F VpIm™VI (X (n,p),l + mep — | +me hy).
For n = 0, we have D(h, X) F Vk™ (Yq(X(0,q) = keq) — ke hg). Thus, it suffices to
show :
D(h, X), H[X] F ¥YpIm™VIg(X (0, p), 1 + mep, X(0,q) = | + meq),
which follows, in fact, from H;[X], that is X(0,p), X(0,q) = p = q.
The recurrence hypothesis is Vp(X (n,p) — p C h,) ;
H[X] is Vp¥q(X (n,p), X (sn,q) = ¢ E p) ; Ho[X] is Ip X(n,p).
Moreover, we have easily ¢ C p,p C r F ¢ C r. Thus, it follows that :
Vp(X (sn,p) — p T hy), ie. VpIm™WIm (X (sn,p),l+mep — | +mehy,).
Now, we have, by lemma pJ :
D(h, X), Ho[X], Hi[X] F X(sn,p), [+ mep, L+ meh, = |+ mehg,.
Therefore, we have VpIm™WIm (X (sn,p),l +mep — |+ mehy,) that is :
Vp(X (sn,p) = p C hgy,), which is the desired result.

Q.E.D.
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Lemma 57. D(h, X), H(X) b VnC[h,,).

We have Yn™™Wp(X (n,p) — C[p]) from Hs. Moreover, we have easily :

= Vpve(Clpl.p Eq — C[ ]). Thus, applying lemma Bd, we obtain :

D(h, X), H(X) F VYn™Vp(X (n, p) — C[h,]). Hence the result, from Hy[X].
Q.E.D.

Lemma 58. D(h, X), H[X] F Yn™3k™® (k, h,n).

By the foundation scheme (SCF), we have :
= Vi (G b e hy = (Gid) # 1), i+ nehy = L} = Vi (i 4 ne by, = L),
But, we have D(h, X), H[X] + Vn™C[h,] (lemma [7), therefore :
D(h, X), H[X] - Vn™ 3™ 4 ne h,. It follows that :
D(h, X), H[X] F Vo™ 30t {0t (5 4 pe by, — (Gii) # 1),i+nehy}.
Q.E.D.

Lemma 59. D(h, X), H[X] + Clinf(h)].
We have C[inf(h)] = Vm™ 3™ (i + me inf(h)).

Now, by definition of the function symbol inf, we have :

- VAVE™ (ke inf(h) < In™d(k, h, n)).

Therefore F Clinf(h)] <> Ym™ 3 3p 0D (5 4+ m, b, n).

By definition de ®, we have trivially F Va™"VAM(®(k, h,n) — Fi™(k =i+ n)).

Moreover, we have D(h, X), H[X] F Vn™ 3% ®(k, h,n) (lemma [Y).

Therefore D(h, X), H[X] F Va3 &(i 4+ n, h,n), thus D(h, X), H[X] + Clinf(h)].
Q.E.D.

Lemma 60. ‘ . ‘ '
D(h, X), H[X] b VRVE™IE "y pintyn ™ (@ (K, b, n), (K h,n'), k' >k — n/ > n).

We have ®(k, h,n) = 3™ 0 (k, h,n,i), with :
Uk, h,n,i) = {Vi" (G +neh, — (ii) £ 1), i +nehy, k=1i+n}.
Thus, we have to show :
D(h, X) HJ]X], int(k), int(K'), int(n), int(n)), int(s), int(') = Z(h, k,n,i, & n',i) — L
with E(h, k n,z, Koo', i) = {U(k, h,n,i), Ok h,n',i'), K >k, n' <n} thatis :
S(h,kon,i K n,i) =
{‘v’jint(jJrneh — (ji1) # 1), i+n5hn,k::z'+n,
Vi G e by — (750 # 1), i 0 e by, K =1 4,
K>k n <n}.
From n’ <n and k =i+ n, we deduce n’ <k, thus k= j"+n'.
From £ > k, we deduce ¢ +n’ > k, and thus 7’ <’
Therefore, we have j' + n'¢h,, i.e. k¢h,. But, from n' < n, we deduce h, C h,
(lemma B4), thus k¢ h,,, which contradicts i+ neh,, k =i+ n.
Q.E.D.
By definition of ®, we have trivially + Vn"™"WE (®(k, h,n) — ke h,).
By lemmas b4 and B0, we get : '
D(h, X), H[X] b VRVEY Y E Oy n 0y (D (k. h,n), (K, h,n'), K > k — K £ hy,).
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Lemma (8 gives Vn™ 3k ®(k, b, n). It follows that :
D(h, X), H[X] F Ynl" 3ty by 08 (S (k! hon/) k' > k — K e hy,),
and therefore D(h, X), H[X] F V™ (inf(h) C hy,).
But, we have trivially D(h, X) F Va™WEMYp(ke h,, X (n,p) — kep). Therefore, fi-
nally :
D(h, X), H]X] F ¥n™Vp(X (n, p) — inf(h) C p).
We have eventually obtained the desired proof-like term ccd’, which completes the proof
of theorem b3
Q.E.D.

The ultrafilter

In the model N, we have defined the generic ideal J, which is a unary predicate, by
putting : J(p) = lIx{p} for every p € P.

By theorem B3, we have :

D) -=J(1)

i) [ Va(=Clz] = J ()

iii) [[-VaVy (T (zny) = T (x) Vv T (y))

iv) [i=Vz(Vy(=Clzry] = T (y)) = T (z))

v) I vavy(T(x),y Ex — T (y))

By theorem BI], we have |- F < | F for every closed first order formula F'.

Remark. A “first order” formula contains quantifiers on the individuals which, by means of
the symbol e, represent the subsets of N. Therefore, it is a second order formula from the point
of vue of Arithmetic. But it contains no quantifier on sets of individuals.

By theorems [[J and P§, we can use, in F', the quantifier V2t since the quantifier Va2t
is first order.

Therefore, we have :

vi) [ Clz] & Ym™3In" (m + ne x)

vil) [IFy C 2 < Im™n™(m 4 ney — m +nex)

vii)) [[FVn™nel ; |- VaVyVn™ (nezny < nex Aney)

since all these formulas are first order. Properties (i) to (viii) show that, in the B-model
N, the following formula is realized :

J is a maximal non trivial ideal on the Boolean algebra of the subsets of N which are
represented by individuals.

Now, by theorems B§ and pJ, the following formula is realized in N :
Every subset of N represented by an individual.

Thus the following formula is realized in N :
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N.

Programs obtained from proofs

Let F' be a formula of second order arithmetic, that is to say a second order formula every
individual quantifier of which is restricted to N and every second order quantifier of which
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is restricted to P(N).

We associate with F, a first order formula FT, defined by recurrence on F :

o If Fist=wu, FI=F.

o If Fis Xt, FTiste X—, where X~ is an individual variable associated with the unary
predicate variable X.

o If Fis A— B, Flis AT — BT,

o If FisVz A, FTis Valt AT,

o If Fis VX A, Flis VX~ Al

We note that, if F' is a formula of first order arithmetic, then F i is simply the restriction
FMU of F to the predicate int(z).

Let F' be a closed formula of second order arithmetic and let us consider a proof of F,
which uses the axiom of dependent choice DC and the axiom UA of ultrafilter on N, writ-
ten in the following form, with a constant J of predicate : “J is a maximal non trivial
ideal on P(N) 7.

We can transform it immediately into a proof of F'f if we add the axiom RPN of repre-
sentation of predicates on N : VX3zVy(yex > Xy). Thus, we obtain :

x:UA, y: RPN, z: DC' F t[z,y, 2] : F.

Therefore, we have +u:UA, RPN — G with u = AzA\yAzt[z,y, 2] and G = DCT — F'1.
Thus, G is a first order formula.

In the previous section, we obtained proof-like terms 6,6’ such that (6,1) [|FUA and
(0',1) | RPN (theorems B§ and p2).

Therefore, theorem Rf (adequacy lemma) gives (u*,1,)(0,1)(6',1) |- G, that is to say :
(v, (L,A1)AL) | G with v = ((@p)(@o)u*6)e'.

By theorem BI], we thus have ogv [ C[(1,A1)A1] — G, that is :

orv [ C[(1,n1)A1], DCT — F.

The axiom DCT is consequence of ACI (axiom of choice for individuals). Therefore, by
theorem [[d, we have a proof-like term 1, |- DCT.

Moreover, we have obviously a proof-like term &, |- C[(1,41)A1].

Thus, finally, we have o v&ono |- F.

Then, we can apply to the program ¢ = ,v€yny all the results obtained in the framework
of usual classical realizability. The case when F' is an arithmetical (resp. I1}) formula is
considered in [IZ] (resp. [LJ)).

Let us take two very simple examples :

If F=VX(X1,X0— X1),we have (xK k' «m > kxm for all terms x, k" € A and every
stack 7 € II.

If F = Ym™3n(¢(m,n) = 0), where ¢ is a function symbol, then for every m € N,
there exists n € N such that ¢(m,n) =0 and (*m.Tk.7m > K*n.7n.

T is the proof-like term for integer storage, given in theorem [[J(i).

7,k are arbitrary ; therefore, by taking a constant for x, we obtain a program which
computes n from m.
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Well ordering on R

The A-model M is the same as in the previous section : the set of individuals is P =
P(IN. Recall that an element of P est called sometimes an individual, sometimes a
condition, following the context.

We put (m,n) = m + (m +n)(m +n+ 1)/2 (bijection of N* on N). We define a binary

function ¢ : P2 — P by putting :

¢(n,p)(i) = p(i,n) if n € N ; ¢(n,p) is arbitrary (for instance 0) if n ¢ N.

Notation. In the sequel, we shall write p,, instead of ¢(n,p). Thus, it is the same to

give an individual p or a sequence of individuals p,(n € N). If i,;n € N, we have
1(2,m) e pll = [[i € pnl]-

We fix a strict (i.e. not reflexive) well ordering < on P = P(II)N, which is isomorphic

to the cardinal 2% : every proper initial segment of < is therefore of power < 2% . We

define a binary function, denoted by (p<g¢q) by putting (p<q)=1ifp<qg; (p<q) =0

otherwise.

Since the relation (p<q) = 1 well founded on P, we have (theorem [L1)) :

Y FVX[Ve(Vy((y<x) =1— Xy) > Xx) — Vo Xz

in the A-model M, but also in every B-model V.

We shall write, in abridged form, y <z for (y<z) = 1.

Thus, in M and N, the relation < is well founded but, in general, not total.

It is a strict order relation, in both models, for we have immediately, in the model M :

I'EVe((z<x)#1); I FVaVyVz((z<y) =1 ((y<z) =1+ (z<2) =1)).

Since all these formulas are first order, by theorem BI], we have also, in the model N :
va((waz) £1) 5 IFVavgva((zay) =1 (yaz) = 1> (za2) = 1)).

A condition p € P is also a sequence of individuals py. Intuitively, we shall consider it,

as “ the set of individuals p,,1 for kepg ” ; we define accordingly the condition 1, the

formula C[p] which says that p is a non trivial condition, and the binary operation .

1 the empty set, in other words ie 1y (i.e. (4,0)e 1) must be false. Therefore, we put :
1(n) =1II for every n € N.

A condition is non trivial if the set of individuals, which is associated with it, is totally
ordered by <. Therefore, we put :

Clp] = Vi®™ V™ (i e py, j e po — E[pir1,pjr1]) Wwith :

Elz,y = (r=yVax<ayVy<z) thatis Elz,y|= (x £y, (x<y) #1,(y<x) #1— 1).

The set associated with pag is the union of the sets associated with p and with ¢ ; therefore,
we put :

prq =1 where 1¢ is defined by : ||2ier|| = |liepol ; ||2i + Lero|| = |li€ qol| ;

rj+1 is defined by : roi01 = piy1 5 T2ie2 = Gigr-

The notation p C ¢ means that the set associated with ¢ contains the one associated
with p.

Therefore, we put :

p Cq=Yi""(iepo = I {je g0, i1 = j11}).

Lemma 61.
i) 0 -VpVgVr(p C q,q Cr —p Cr) with 6 = AfAghixzAh(fiz)\j\y(g)jyh.

43



i1) 0" [ VpVeVr(p C q — par C qar) with :

0 = APidycu((ed)(w)iy) () (ds)ig) Aj () (do)

where dy, dy, ds, e are proof-like terms representing respectively the recursive functions :
n2n, n—2n+ 1, n— [n/2], n— parity of n (e takes boolean values).

i) We suppose :

f | Vi(ent(i), i€ po, Vi(ent(4), j € go = pit1 # ¢j+1) = L) ;

g -Yi(ent(j), je qo, Vk(ent(k), kerg — qj41 # ri1) — L) ;

x fiepo; h [-Vk(ent(k),kerg — piy1 # me+1) ; and we have i € |ent(i)].
It follows that fix |- Vj(ent(j),jeqo — piv1 # ¢j+1) — L.

Suppose that y [Fjeqo and let j € |ent(7)].

If piy1 = qj1, then gjyh |- L ; therefore gjyh |- piy1 # qj41. We have shown :
AjAy(g)yh [t Vi(ent (), j € qo — piv1 # ¢j+1)- Therefore (fiz)Ajry(g)jyh |t L.
ii) We suppose :
f = Vi(ent(i), i€ po,Vj(ent(j), j € go = pit1 # qj+1) = L) ;
y e onrdo s u [ (ent(77),7'¢ (gl — (prr)ieas # (an)jeen).
If we replace j' with 2j”, and then with 2j5” + 1, we obtain, by definition of A :
(1) (u)(do)j” I3"€qo = (pAr)ir1 # Gy ;
(2)  (u)(d1)j" 3" ero = (pAr)is1 # Tjria.
Then, there is two cases :
o Ifi' = 2i", we have y|i"epy and, by (1), (u)(do)j” I-7"€q0 — pPirg1 # qjrsa-
Therefore :
Aj(u)(do)g |FVi(ent(f),jeqo — pirs1 # qj+1) and it follows that :

(((F)(d2)i)y)Aj (u)(do)j [+ L.
o If i =2/"+1, we have y [Fi"cry and, by (2), (u)(di)j" |Fj"ero— rig1 # 15041
By making j” =", we obtain (u)(d;)i” |Fi"ero — L and therefore :

(u)i'y [t L.
Thus, in both cases, we get = ((e2')(w)i'y) (((f)(d2)i)y)Aj(u)(do)j L.
Q.E.D.

Lemma 62.

i) 0 |-Vp¥a(p C ¢,Clq] — Clp]) with

0 = AfAGNIN Az Az’ Audvdw (fi'2 ) A7’ Ny (fix)ANjAy(g)j 7 yy uvw.

it) [ VpYaVr(p C q,Clgar] — Clpar]) in other words | Yp¥q(p C ¢ — q C p).

i) Let f|FpCq,glfClgl, thatis:

I ient(i), i e po, Vi(ent(7), 7 € 4o — piss £ i) — 1)

9 H_ VjVj’(ent(j), ent(f)ngq(]vjlgqo - E[qurlv q]”rl]) with

Elz,yl = (v #y, (xay) #1,(y<ax) #1 — 1).

Let z [-iepo, 2’ [i"epo, u [ piv1 # piry1, v I (Piv1 Apisa) # Lw |- (pira <pivr) # 1.
Let y [-7eq0, ¥ [-75"€ qo-

We have gj 'y’ |+ Elgj+1, gjr+1] 5 if piys = ¢j41 and piy1 = gjrya, then

93 3'vY" I Elpi+1, pita], and therefore gj j'yy'uvw |- L.

Thus, we have A\jAy(g)jj'yy'uvw [f-ent(j),jeq0 — L if piy1 = gj1 and pyria = gjria.
Therefore, AjAy(g)jj'yy'uvw |- Vj(ent(j),jeqo — piv1 # qj+1) if piy1r = gy, thus :

44



(Fim)\iMy(9)id'yy'uvw |- L 3 pirys = g, thus :

N'NY (i) A jAy(9)ii'yy vow |-V’ (ent(5'), j"€ o — pir+1 # gjr+1). Therefore :

(f2 )" Ny (fiz) A jAy(9) i yy wow [ L.

ii) Follows immediately from (i) and [ VpVgVr(p C ¢ — par C gar) (lemma ().
Q.E.D.

The following lemma shows that we can build the algebra B and the B-model N.

Lemma 63. There exist six proof-like terms oy, a1, s, Bo, B1, B2 such that :

ap [ VpVavr(Cl(pag)ar] — Clpa(gar)]) i an |=Yp(Clp] — Clpal]) ;

as |=Vp¥q(Clpag]l — Clg]) ;- Bo |+ Vp(Clp] = Clpapl) ; Bi [ VpVa(Clpag) — Clgnp)) ;
Ba |- Vp¥qvrvs(Cl((pag)ar)as] — Cl(pa(gar))as]).

We only show the first case. By lemma [2(i), it suffices to find a proof-like term :
0 | VpVgVr(pa(gar) C (pag)ar). Thus, we suppose :
y l-ie(palgnr))o 5 u - Vi(ent(4), j € ((prg)ar)o — (pA(gnr))ivt # ((PAg)AT) j41)-
There are three cases :
e | =27 ; then, we have y |- i’ € pg. We make j = 2i = 44/, therefore u |- ent(2:),7 € py —
Dir+1 7 Pir+1. Thus, we have 1 (u)(dp)iy - L.
o i =47 +1;then, we have y ||-i'eqo. We make j =i+ 2 = 4i' 4 3, thus :
u [ ent(i 4+ 2),i' € qo — g1 # qrr1. Thus, we have 1 ((u)(0)%)y | L.
e i =47 + 3 ; then, we have y || erg. We make j =i — 3 =47, thus :
u [ ent(i — 3),7 erg — ryy1 # roy1. Therefore, we have :  ((u)(p)®1)y [ L
(p is the program for the predecessor).
Thus, we put 6 = NidyAu(((eq?)(u)(do)iy)((u)(0)?)y)((u)(p)3)y, where ey is defined
by its execution rule : e4*xie€eneCem = Eom (vesp. nem, (o) if i = 47" (resp.
47+ 1,44 + 3).
Q.E.D.

We now show the :

Theorem 64.
The forcing structure {C, A, 1} satisfies the countable chain condition in M.

The hypothesis of the c.c.d. are :

Ho=VnipX(n,p) ;

Hy = Yn""pYg{X (n,p), X (n,q) = p = q} ;

Hy = Vn™™p¥q(X (n,p), X(sn,q) = ¢ C p) ;

Hy = Yn™"p(X (n,p) — C[p]).

Moreover, by theorem [[d, we have a binary function f : P? — P such that :
S |-Vt (Ep X (n, p) = KX (n, f(n, k).

Therefore, by Hy, we can also use the hypothesis :

H) = VYn®™M3Eet X (n, f(n, k)).

Let us put H = {Hy, H), Hy, Hy, Hs} and H, = {H,, H), Hy, H,}.

Lemma 65. H - VpVgvm®n (X (m, p), X (n,q) — Clpaq]).
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We show Vm™Wni (X (m,p), X(m +n,q) = ¢ C p) by recurrence on n.

For n = 0, this follows from H;, H3. For the recurrence step, we use Ho.

Thus, we have VpVgVm™VWn™ (X (m,p), X(n,q) = pC qV q C p).

From p C ¢, we deduce C[pap] — Clgap], and the result follows, by Hs and Clp] — C[pap].
Q.E.D.

We define the wanted limit h by defining hg and h,,,, for each m € N.
For m = (i,n, k) (that is (7, (n,k))), we put ||meho| = ||X(n, f(n, k) Nie(f(n,k))ol ;
then hm+1 = (f(n, k))l'Jrl.
Intuitively, X defines a sequence of countable sets, and h is the union of these sets.
e Proof of H, X(n,p) = hCp.
By lemma [6(ii), it suffices to show X (n,p) — p C h, that is :
X(n,p),iepy, Vm™ (me hg, — hmi1 # pis1) — L, for n,i € N.
We fix k € N and we put m = (i,n, k). By definition of h, it suffices to show :
X(?’L,p), [ € Po, \v/k;ent(‘)((nv f(na k))? 23 (f(n7 k))Oa — (f(nv k))i-l-l 7& pi+1) — L.
Now, from Hi, X (n,p), X (n, f(n,k)), we deduce f(n,k)=p and therefore :
(f(n,k))o =po and (f(n,k));y1 = pir1. Thus, it remains to show :
X(nvp)u { € Do, Vkent<X<n7 f(n7 k>>7 { €Po — Di+1 ;é piJrl) — L.
But this formula follows immediately from Hj.
e Proof of HF C[h].
We must show C[h], that is me hg,m' e hg = Elhpi1, hvs1]. Now, we have :
m = (i,n, k) ; |lmehol = |X(n, f(n, k) Nie (f(n, K)ol 5 hmer = (f(n,k))iv1 ;
m' = (", ', k) 5 |lm' e hol| = [[X(n, f(n, k) Ni"e (F (0, K)ol 5 hamrsa = (f (0, ) Jirga
From X(n, f(n,k)), X (n/, f(n', k")), it follows that :
Clu] with uw = f(n,k)af(n', k') (lemma pJ). Therefore, we have :
lie (f(n, k)oll = N2eeull s [li'e (f(n',K))oll = [[2¢" + Leull ;
P = Ugig1 5 I = Ugirgo.
From Clu|, we deduce Elug;i1,ugir12], that is Elhyi1, 1]
This completes the proof of theorem 4.

Q.E.D.

The well ordering on P(N)
In the model NV, we define the unary predicate G(z) = IpFi™{=T (p), i€ po, T = pis1}-
Lemma 66. |[f-G(z),G(y) — Elz,y].

We must show | =T (p), 7T (q), i€ po, T = pi+1,J € o,y = ¢j+1 — E[z,y], that is :
l-=T(p), ~T(q);icpo,j€qo — Elpiyi, @]

By theorem B3(ii) and (iii), we have |7 (p), T (¢) = Clpaq].

Therefore, it is sufficient to show that |- Clpagl,iepo,jeqo — Epit1, g+

We show below that we have I |- Clpagl,iepo,jeqo — E[pit1,¢j+1]. Since this is a first

order formula, this gives the desired result, by theorem B1].

Indeed, we have : pip1 = (pAq)ait1 5 ¢ir1 = (PAQ)2542 ;

liepoll = 112i€ (prg)oll 5 lli€qll = [127 + L& (prg)oll-

Therefore, it remains to show :
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I' = Clpagl, 2i e (prg)o, 27 + L& (prg)o = El(prq)aitas (Prq)aj+a]
which is obvious, by definition of Clpaq].
Q.E.D.

Lemma shows that < is a total relation on G. But, moreover, < is a well founded
relation in N. Therefore, we have :

- G is well ordered by <.
We define now two functions on P :
e a unary function 0: P — P by putting [[ied(p)ol| =i + 1epoll ; 0(p)it1 = pira-
e a binary function ¢ : P? — P by putting [|0cé(p,q)oll = 0 ; ||i + 1ed(p,q)ol|l =
e poll ;

o(p, @)1 = q; ¢(p,q)i+2 = pita for every i € N.
Therefore, we have §(¢(p,q)) =p and ¢(p,q)1 = q for all p,g € P and thus :

I |=Vp¥q(s(é(p,q)) = p) 5 1 II-YpVa(6(é(p,q)) =p) ;

I |=Vp¥a(é(p, o = q) 5 T I-VpVa(e(p,q)1 = q).

Intuitively, d(p) defines the set we obtain by removing p; from the set associated with p ;
&(p, q) defines the set we obtain by adding ¢ to the set associated with p.

Lemma 67. Ifp,q € P, there exists ¢ € P such that 6(q¢') = q and p;<q for every
i€ N.

For each a € P, we have §(¢(q,a)) = ¢q. But the application a — ¢(q,a) is obviously
injective, since ¢(q,a); = a. Thus, the set {¢(q,a); a € P} is of cardinal 2%. Now, by
hypothesis on <, every proper initial segment of P, for the well ordering <, is of cardinal
< 2% Thus, there exists some ay € P such that p; < ¢(q, ag) for every i € N. Then, it
suffices to put ¢’ = ¢(q, ap).

Q.E.D.
Therefore, we can define a binary function 1 : P? — P such that we have :
d((p,q)) =q and (p;<¢(p,q)) =1 forall p,q € P and i € N. Thus, we have :

I |=-VpVq(0(¥(p,q)) = q) ;5 T[FVpVe(o(¥(p,q)) = q).
K1 |-Vpvavi®™ (p; av(p,q)) ; KI |- Vpvavi®™ (p; <9 (p, q)).

Lemma 68. We have ||-VYq3xz{G(z),d(z) = q}.

This is written as || Vg[VaVpVi®™ (6(z) = q, iepo, © = piy1 — J(p)) — L] or else :

I Valvpvi™ (i e po, 6(pi1) = g = T (p)) — L].
By making ¢ = 0, it is sufficient to show :

(1) = Va[vp(0 po, 0(p1) = ¢ = T (p)) — L.
By replacing p with ¢(p,¥(p,q)) in (1), we see that it remains to show :
- Ya=Vp T (¢(p, ¥ (p, 0)))-

Lemma 69. |- Vpvq(Clp] — Clo(p, ¥ (p, q))])-

We have C[r] = ViV (jery, jerg — E[riy1,741]). Therefore, in order to show that
I+ C[p] — CJ[r], it suffices to show :

(1) H‘ C[p] — Wemvjem(i +1lerg,j+1lerg— E[Tz‘+277’j+2]) and

(2) [ Clpl = Vi(0erg, j+ lerg — Elr,r52)).
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We apply this remark by putting r = ¢(p, ¥ (p, q)). Then (1) is written as [} C[p] — C|p]

since ||i + lerg| = ||iepol and r;12 = p;r1 and the same for j.
Thus, it suffices to show (2), that is :
I Clp] —

Vi (0e d(p, ¥(p, 4))o, J + Led(p, ¥(p,q))o = Eld(p, ¥(p, a))1, o(p, ¥(p, q))s+2]).

But, we have I [-VpVq(0cd(p,q)o) i I I-VpVa(jepo — j+1ed(p,¥(p,q))o) ;
I =YpYa(o(p, ¥(p, @) = ¥(p, @) 5 I |-VpVa(d(p, (p, q))j4+2 = Pj+1)-
Therefore, it remains to show :
I Clp] = V5™ (jepo = Elb(p, ), pja])
which is trivial, since we have KI |- ‘v’p‘v’q‘v’jent(ij AY(p, q)).
Q.E.D.

Lemma 70. XiAzAy((y)(0)i)z |- VpVa(p C ¢(p,q))-

This is written as :
Az Ay ((y)(0)i)z |- Vi(ent(2), i€ po, Vj(ent(s), j € ¢(p, ¢)o = ¢(p, @)j+1 # pir1) = L)
which is immediate, by making j =17+ 1.
Q.E.D.
We have [}-p C é(p,¥(p,q)) (lemma (), and it follows that :
= ¢(p, ¥ (p,q)) C p (lemma F2ii), and thus |- Clo(p, ¥ (p, ¢))] = Clpad(p, ¢ (p; 9))]-

Therefore, by lemma [, we have :

- Vp¥q(Clp] — Clpad(p, ¥ (p,q))]). Since this is a first order formula, we have, by theo-
rem B : [} VpVq(Clp] — Clpnd(p, ¥(p, q))])
and therefore, by theorem B3(ii) : | VpVq(=Clpro(p, ¥(p, q))] = T (p)).
Then, we apply theorem B4, which gives : [ Vg—=Vp T (¢(p, ¥(p,q)))
which is the desired result.
Q.E.D.

Theorem 71. The following formulas are realized in N :
i) There ezists a well ordering on the set of individuals.
it) There exists a well ordering on the power set of N.

i) Lemma [§ shows that, in N, the function ¢ is a surjection from G onto the set P of
individuals. But, we have seen that the formula : “ G is well ordered by <7 is realized
in V.

ii) By theorems B and [4, the following formula is realized in N : “ Every subset of N
is represented by an individual ”. Hence the result, by (i).

Q.E.D.

Theorem [[1|(ii) enables us to transform into a program any proof of a formula of second
order arithmetic, which uses the existence of a well ordering on R. The method is the
same as the one explained above for the ultrafilter axiom.
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