
HAL Id: hal-00483215
https://hal.science/hal-00483215v1

Submitted on 12 May 2010 (v1), last revised 16 Sep 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conformance test of logic controllers of critical systems
from industrial specifications

François Chériaux, Laurence Picci, Julien Provost, Jean-Marc Faure

To cite this version:
François Chériaux, Laurence Picci, Julien Provost, Jean-Marc Faure. Conformance test of logic con-
trollers of critical systems from industrial specifications. European Conference on Safety and Relia-
bility - ESREL 2010, Sep 2010, Rhodes, Greece. paper 308. �hal-00483215v1�

https://hal.science/hal-00483215v1
https://hal.archives-ouvertes.fr


Conformance test of logic controllers of critical systems from industrial
specifications

François Chériaux & Laurence Picci
EDF R&D, 6 quai Watier, F-78401 Chatou
Julien Provost & Jean-Marc Faure
LURPA, ENS de Cachan, 61 avenue du Président Wilson, F-94235 Cachan

This paper presents a synthesis of works performed in the frame of an industry/academia cooperative research.
The overall objective of this research is to automate the construction of test sequences for conformance test
of industrial logic controllers when the expected behavior is described in industrial specification languages.
The first contribution is aiming at preventing from combinatorial explosion by preliminary verifications on
the implementation so as to check whether it satisfies some structural properties. The second contribution is
a method to translate an industrial specification into a formal model to take benefit from theoretical results
on conformance test of formal models for discrete event systems description. These two contributions are
exemplified on case studies from the domain of energy production.

1 INTRODUCTION
Conformance test is aimed at checking whether
an implementation, seen as a black-box with in-
puts/outputs, behaves correctly with respect to its
specification. This kind of test is mandatory for the
components of the control system of critical pro-
cesses, like power production and distribution or
transport, and particularly for the software-based
logic controllers that are more and more often used in
these systems, even to implement safety-related func-
tions.

Conformance test of a logic controller is a non-
invasive test that is performed (Figure 1) before op-
eration and consists in sending to the controller an in-
put sequence and comparing the observed output se-
quence, controller’s response to the input sequence, to
the expected output sequence so as to build a test ver-
dict (the implemented controller conforms to its spec-
ification or not). The set of the input sequence and
expected output sequence is termed test sequence.

Numerous theoretical results have been published
in the domain of conformance test of logic systems,
assuming that the specification is formally described,
for instance in the form of a finite state machine (Lee
and Yannakakis 1996), a transition system (Tretmans
2008) or, more recently, a particular class of Petri net
(von Bochmann and Jourdan 2009). Generally speak-
ing, these results provide a way to build automatically

Figure 1: Conformance test of a logic controller

a test sequence from the formal specification model
and to deliver a verdict from the observed output se-
quence.

Unfortunately, these results cannot be used directly
for conformance test of industrial logic controllers,
because, in industrial practice, the specifications of
the behavior of the controllers are not given in for-
mal languages but in tailor-made, often standardized,
industrial specification languages, like Logic Func-
tional Diagrams (LFD), Grafcet or state-charts. Test
sequences are then built manually, what is a very te-
dious, time-consuming and error-prone task. More-
over, applying theoretical methods for conformance
test sequences generation to industrial-sized examples
may easily lead to combinatorial explosion.

1



This synthesis paper presents the results of a work
performed in the frame of an industry/academia coop-
erative research1, to contribute to solve these two is-
sues. Section 2 describes shortly the main features of
the two industrial specification languages that were
selected in this study and underlines their comple-
mentary. Section 3 shows how the size of the test
sequence can be reduced by verifying whether the
implementation satisfies some structural properties,
while section 4 presents a method to translate an in-
dustrial specification into a formal model, without se-
mantics loss. These two contributions are exemplified
on industrial case studies coming from the sector of
energy production. Perspectives for further works are
given in the last section.

2 INDUSTRIAL SPECIFICATION LANGUAGES
FOR LOGIC CONTROLLERS

Specifications of the logic control of industrial sys-
tems are not expressed in formal languages but in lan-
guages that are tailored-made for automation and of-
ten (officially or de facto) standardized. If it is indeed
possible to describe the behavior of small-sized con-
trol systems with languages issued from the theory of
discrete event systems, like those above-mentioned,
this is no more the case when industrial-sized systems
are considered. Modeling the expected behavior of the
logic control of a real industrial system with these lan-
guages leads easily to a huge, complex and not read-
able and understandable model that cannot be used
as a specification. On the opposite, industrial speci-
fication languages allow to capture the know-how of
engineers and to express clearly what they expect. In
the case of energy production, two graphical specifi-
cation languages: LFD and Grafcet, are widely used
and have been selected for this study. It matters to note
that these languages are also used in other industrial
domains that deal with critical processes, for instance
railway transport, chemistry, environment. Hence, the
results of this study are not limited to a particular in-
dustrial domain.

These two languages are complementary because
they are used to specify different kinds of functions,
as pointed out in sub-section 2.1. Last, it must be
underlined that LFD and Grafcet are functional di-
agrams that do not depend on implementation tech-
nology, i.e. a given diagram may be implemented in
different ways, for instance in different programming
languages or even using hardware solutions.

2.1 Control system architecture
The control system of a power plant is a hierarchi-
cal system that comprises four levels (Figure 2): plan-
ning and maintenance management (L3), monitoring

1This research was funded by the French Research Agency
(TESTEC project).

and operation (L2), automation and control (L1), data
acquisition and actuators (L0).

Figure 2: Architecture of the control system

Within each level, analogical and logic control
functions are implemented. Experience has shown
that the analogical functions are less critical than the
logic ones. Hence, the parts of the control architec-
ture that implement analogical functions are validated
only by simulation, using a plant simulator, while
conformance test of parts which perform logic con-
trol functions is compulsory. This explains why this
work focuses only on logic controllers.

Moreover, only level L1 is considered in this
study. It is closer to the plant, owns shorter response
time; hence it impacts safety and dependability more
strongly than the upper two levels. The expected be-
havior of the logic control functions at this level is
specified either in LFD or in Grafcet, two languages
that are briefly presented below, according to the fol-
lowing rules:

• basic protection functions are described in LFD,

• tasks control functions are described in Grafcet.

2.2 Brief description of the LFD language
LFD is a graphical specification language that is well
suited to specify the behavior of elementary reactive
functions, such as actuators control functions in ac-
cordance with sensors values. This explains why this
language is used to specify basic protection functions.

A LFD (Figure 3) is a network of interconnected
logic functions that may include combinatorial (NOT,
AND, OR), sequential (set- and reset-dominant (SR
and RS) memories) and timed functions (on-delay
(TON) and off-delay (TOFF) timers). A LFD speci-
fies the expected relations between its inputs (sensors

2



values or commands from the upper levels) and out-
puts (commands to actuators).

The example of figure 3 will be used in the remain-
der of this paper to illustrate the contribution on test
sequence size reduction.

Figure 3: Example of LFD specification

2.3 Brief description of the Grafcet language
Grafcet is a standardized graphical specification lan-
guage (IEC 60848 2002) to describe the behavior of
logic sequential systems. Grafcet was developed from
the results of the Petri Nets community, and particu-
larly from those on Interpreted Petri Nets. This lan-
guage was first standardized in France at the begin-
ning of the 80s, and at the international level in 1988.
Since this date, several extensions have been proposed
to enhance the modeling possibilities; they are in-
cluded in the last version of the standard (IEC 60848
2002). A good scientific presentation of the main fea-
tures of the current version of the Grafcet standard can
be found in (Guéguen and Bouteille 2001).

This language is widely used in several industrial
domains because it allows engineers to describe eas-
ily tasks sequences, tasks selection, parallelism and
synchronization. A Grafcet is composed of steps, rep-
resented by squares, and transitions, represented by
horizontal lines; a step can be linked only to transi-
tions and a transition linked only to steps. Actions
may be associated to a step; an action associated to
a step is performed only when this step is active and
then acts upon an output variable. A transition condi-

tion must be associated to each transition; this condi-
tion is a Boolean expression which may include input
variables and steps activity variables.

The example of figure 4 will be used in the re-
mainder of this paper to illustrate the contribution on
translation of an industrial specification into a formal
model.

3 BUILDING TEST SEQUENCES FROM LFD
The overall objective of the work described in this
section is to avoid (or limit) combinatorial explosion
during test sequence construction and to develop a
simple, while efficient, method that allows confor-
mance test of a logic controller with a size-reduced
test sequence, while providing trustworthy test re-
sults. The principle of this method is to verify struc-
tural properties of the implementation before the test.
This work focuses on conformance test of an im-
plementation that performs highly critical, but sim-
ple, logic control functions, e.g. actuators start and
stop, protection of actuators, alarms generation, and
is specified in LFD.

3.1 Method overview
According to the standard on safety-related instru-
mentation and control systems for nuclear power
plants (IEC 60880 2006), system validation is the
confirmation by examination and provision of rele-
vant evidences that the system fulfills its specification.
Conformance test is clearly a validation technique for
control systems and it could be thought that an ex-
haustive test sequence is to be constructed to provide
relevant evidences, when critical systems are consid-
ered. Nevertheless, attempting to build an exhaustive
test sequence may easily lead to combinatorial explo-
sion; for a LFD with ni logic inputs and nm inter-
nal memories, this sequence can include up to 2n test
steps, with n = ni + nm, for instance. This explains
why reduction of the test sequence size must be in-
vestigated.

The method that was developed to construct auto-
matically a size-reduced conformance test sequence
from a LFD comprises two main phases:

1. Verification of the following six structural prop-
erties:

a) The specification and implementation own
the same memories and timers.

b) Each output of a memory is also an output of
the system2.

c) There is no ‘backwards loop’, i.e. an output
of a function must not be connected to an in-

2This restriction is not too strong because this configuration
is very common for real LFDs; however, if this is not the case, an
additional output must be added in a ‘design to test’ approach.

3



Brk1

Brk2

Down

Prio1

Req

Start

Stop

Up

Act1

Close

IL-EndA

IL-EndP

IL-G

IL-O

IL-R

Open

Prod1

Prod2

A1

F1

A3

IL-R

IL-G

IL-O

Start · Stop

Start

X0

t1

t2

t3

0

1

2

3

4

5 6

7

8

XF1 ·Req ·Brk1 ·Brk2

Down

Req

Brk1 · (Prio1 + Brk2)

Brk1 + Req

Brk2 · (Prio1 + Brk1)

Brk2 + Req

1

Up

t4

t5

t6

t7

t8

t9

t10

t11

t12

Close

Act1

I-EndA

Prod1 Prod2

I-EndP

Open

Figure 4: Example of Grafcet specification

put of an upstream function or be input of this
same function. For instance, the output of the
SR function in figure 3 cannot be connected
to an input of the combinatorial functions that
are located upstream of this sequential func-
tion.

d) The dependency relations that link the out-
puts of the system to its inputs and the stored
variables (outputs of memories) in the imple-
mentation are identical to those of the speci-
fication.

e) The dependency relations that link the inputs
of the timers and memories to the inputs of
the system in the implementation are identi-
cal to those of the specification.

f) The dependency relations that link the out-
puts of the system to its inputs and the timers
outputs in the implementation are identical to
those of the specification.

2. Construction of the test sequence by using the
results of the first phase. The core idea of this
phase is to take benefit from the knowledge on
the structure of the implementation to generate
the only test steps that are necessary to test its be-
havior. The dependency relations that have been
stated point out indeed how to control and ob-
serve the memories and timers states; among the
whole set of test steps that can be obtained by
simulation of the specification, the relevant test
steps are those which satisfy these two condi-
tions.

It must be noted that the first phase permits to avoid

a conformance test be performed on an implemen-
tation whose structure does not satisfy some struc-
tural properties, what reduces implementation valida-
tion duration.

This method has been implemented in a prototype
tool (Salaün, Chériaux, and Trognon 2007; Chériaux,
Salaün, and Daumas 2009). The results obtained with
this tool will be illustrated in the next sub-section on
the basis of the example of figure 3. Although limited
to logic systems, this approach corresponds to an in-
novative prospect for model-based conformance test,
taking benefit from structural properties verification
to reduce test complexity.

3.2 Verification of the structural properties of the
implementation

The LFD specification of figure 3 includes one SR
memory, 2 TON (set to 5 and 10 seconds) and one
3 seconds TOFF timers; the output of the memory is
connected to output AAD and there is no backwards
loop. The following relations between the three out-
puts and the nine inputs can be easily obtained by de-
pendency analysis of the diagram:

• AAD = SR(AND(OR(TON 5S(VIBR),TEMP),
NOT(VER)),AND(ROP,VAL))

• HOR = TOFF 3S(SR(AND(OR(
TON 5S(VIBR),TEMP),NOT(VER)),
AND(ROP,VAL)))

• S0 = TON 10S(AND(OR(A1,B1,C1),NOT(D1)))

From these global relations, class d, e and f proper-
ties can easily be obtained. For instance, the following
properties can be stated from the first relation:

4



• AAD depends on SR Q,

• TON 5S I depends only on VIBR,

• AAD depends on TON 5S O, TEMP, VER, ROP
and VAL,

where SR Q, TON 5S I and TON 5S O represent re-
spectively the output of the memory and the input
and output of the 5 s TON timer. Once the struc-
tural properties stated, they are checked on the im-
plementation. Then, the prototype tool developed dur-
ing this work includes a configurable parser to check
structural properties for logic controllers developed in
the following languages: two languages of the IEC
61131-3 standard for programming of programmable
logic controllers (Ladder Diagram (LD) and Function
Block Diagram (FBD)), C and VHDL). If verification
shows that the implementation satisfies the structural
properties that have been stated from the specifica-
tion, conformance test can be performed with the test
sequence whose construction is explained in the fol-
lowing sub-section.

This approach has been assessed successfully with
several examples that describe real industrial LFD
specifications. The main limitation is that the LFD
must not include ‘backwards loop’. However, this
limitation is not really significant because industrial
experience has shown that basic protection systems
behavior can always be specified with LFD without
backwards loop.

3.3 Test sequences construction
This construction takes benefit from the results of I/O
dependency analysis and the properties that have been
stated in the first phase. For room reasons, it is not
possible to present all the details of the construction;
only the two main principles will be given.

Dependency relations between outputs and inputs
permit to pinpoint the inputs that are used to compute
a given output; then, it is possible to construct a test
sequence that contains only values of these inputs and
expected values of the considered output. For the ex-
ample, dependency relations show that the first two
outputs only depend on the same five inputs and the
third output on the remaining four inputs. Hence, the
test sequence will comprise two parts; the first one
will be composed of values of the only first five in-
puts (VIBR to VAL) and the corresponding expected
values of the first two outputs, while the second part
will contain values of the only last four inputs (A1 to
D1) and the corresponding expected values of the last
output. This splitting principle may shorten strongly
test sequences.

Moreover timers behavior can be tested more eas-
ily when the relations between their inputs-outputs
and the inputs-outputs of the system are known; this

Test of TON 5S by observing the output AAD
TEMP ROP VAL VER VIBR AAD Remarks

0 1 1 0 0 0 SR, then
AAD reset

0 0 0 0 0 0 TON 5S out-
put remains
at 0

0 0 0 0 1 0 during Timer
5,000 ms, behavior
then 1 observation

Test of TOF 3S by observing the output HOR
TEMP ROP VAL VER VIBR HOR Remarks

1 0 0 0 0 1 SR set
0 1 1 0 1 1 during Timer

3,000 ms, behavior
then 0 during observation
2,000 ms,
then 1

0 0 0 0 1 1 SR remains
set

0 1 1 0 0 1 during Timer
3,000 ms, behavior
then 0 observation

Table 1: Testing timers

behavior is then controllable and observable and test
patterns can be defined, as exemplified in table 1. The
second test sequence must be performed after the first
one because it assumes that the timer TON 5S, ob-
served from the output AAD, behaves correctly.

For this specification (nine inputs, one memory and
three timers), a test sequence constructed without tak-
ing benefit from the structural properties analysis in-
cludes more than thousand test steps and is executed
in about 5 hours. When the results of this analysis are
introduced, less than hundred test steps are necessary
and the test is performed in about 1 minute; thus, in
this case, the test sequence length is reduced by one
order of magnitude and the test duration by more than
two orders.

3.4 Discussion
It has been shown in this section that a size-reduced
test sequence can be used for conformance test from
a LFD specification that does not contain any back-
wards loop, provided that some structural properties
of the implementation have been checked previously;
these properties are obtained by analysis of the speci-
fication model.

This approach combines verification techniques
and conformance test. Moreover, when the verifica-
tion results are negative, non-conformance of the im-
plementation with regard to the specification can be
stated without test, what is time-saving. These re-
sults have been implemented in a prototype software
tool; experiments with several diagrams have shown
that the overall time to build and verify the structural
properties complies with the requirements of indus-
trial processes of design and implementation of con-
trol systems.

It has been shown in this section that a size-reduced
test sequence can be used for conformance test from
a LFD specification that does not contain any back-

5



wards loop, provided that it has been checked pre-
viously that the I/O dependency relations of the im-
plementation are identical to those of the specifica-
tion. This approach combines verification of I/O de-
pendency relations and conformance test. Moreover,
when the result of this verification is negative, non-
conformance of the implementation can be stated
without test, what is time-saving.

4 BUILDING TEST SEQUENCES FROM
GRAFCET SPECIFICATIONS

The aim of this section is to show how a test se-
quence can be automatically built from a Grafcet
specification by translating this specification into a
formal model, without semantics loss. This work con-
siders only non timed models because the first con-
cern of engineers during conformance test is func-
tional correctness; conformance test for time correct-
ness is a second concern, once functional correctness
is ensured, and motivates further research. Mealy ma-
chines have been chosen as the target formalism be-
cause it is suited to non timed logic systems with in-
puts/outputs and that numerous results have been pre-
viously obtained in the field of conformance test of
this kind of finite state machine. Hence, it will be
possible to take benefit from these results, once the
Mealy machine that is equivalent to the initial Grafcet
obtained,

4.1 Translation of a Grafcet model into an equiva-
lent Mealy machine

4.1.1 Method overview

The translation method of a Grafcet into an equiv-
alent Mealy machine, without semantics loss, com-
prises two phases (Figure 5) that are detailed in the
next two sub-sections:

1. Construction of the automaton, termed Stable
Location Automaton (SLA), that represents for-
mally all stable states of the logic system de-
scribed by the Grafcet as well as all evolutions
between these states;

2. Translation of this automaton into an equivalent
Mealy machine.

4.1.2 Construction of the SLA

The reader is reminded that several steps may be si-
multaneously active in a Grafcet, for instance because
they are located in two parallel sequences, like steps
1 and 4, or 2 and 7 in figure 4. Moreover, accord-
ing to the evolution rule #4 of the Grafcet standard,

Figure 5: From Grafcet to Mealy machine

several transitions can be simultaneously fired if they
are simultaneously fireable. Then, two new concepts,
called location and evolution, have been to be intro-
duced during this work, to define formally the state
space of the logic system that underlies a Grafcet
model.

A location is characterized by a set of simultane-
ously active steps, termed situation, and the set of out-
puts that are emitted when this situation is active. For
the example of figure 4, location ({A3,2,5},{IL−
0,Act1, P rod1}) means that steps A3, 2 and 5, and
only these steps, are active and outputs IL− 0, Act1
and Prod1, and only these outputs, emitted. It might
be argued that it is not necessary, for this example, to
give the list of emitted outputs, once the list of active
steps given. However, different sets of outputs may be
emitted for the same situation, when the Grafcet con-
tains stored actions or continuous actions that depend
on inputs values (conditional actions). Moreover, only
the outputs of the logic controller whose behaviour is
specified by the Grafcet are observable during con-
formance test. These two reasons justify the location
definition.

Regarding the evolutions in response to inputs
events, the Grafcet standard introduces the concepts
of transient and non-transient evolutions. A transient
evolution is characterized by the firing of several suc-
cessive sets of transitions on the occurrence of a sin-
gle input event; on the opposite, a non-transient evo-
lution is one and only one firing of a set of simulta-
neous transitions when an input event occurs. For the
example of figure 4, the evolution from (A3,2,5) to
(A3,2,7) is non-transient (only the transitions t8 is

6



fired) while the evolution from (A3,2,5) to (A1,0)
is transient (the two transitions t6 and t8 are si-
multaneously fired, then transition t11 is fired, then
transition t12 is fired, and finally transition t3 is
fired. During a transient evolution, several situations
are crossed from the source to the target situation,
((A3,3,7), (A3,8), (A3,0)) in the above example).
The standard pinpoints that the continuous actions
associated to these ‘transient’ situations are not ex-
ecuted and consequently the associated outputs are
not emitted. As only the outputs of the implementa-
tion are observable during conformance test, the ‘tran-
sient’ situations are useless in this work and only the
source and target situation of any evolution, named
stable situations, must be kept.

Hence, the SLA obtained from a Grafcet is a finite
state machine that contains:

• All stable locations, i.e. the locations defined
from the stable situations;

• All evolutions from stable location to stable lo-
cation. Each evolution is caused by a change of
the inputs values and is labeled with an evolu-
tion condition, Boolean expression on the inputs
values.

A software tool was developed during this work to
construct automatically a test sequence from a Grafcet
model; the first treatment performed by this tool is the
automatic construction of the SLA. For the example
of figure 4, this automaton comprises 16 stable loca-
tions and 102 evolutions.

4.1.3 Construction of the equivalent Mealy ma-
chine

A Mealy machine is a finite state machine that is
defined on input and output events alphabets. Every
transition of this machine is labeled with a couple of
input and output event. Then, the issue to solve, to
translate a SLA into a Mealy machine, is to trans-
late a state machine whose evolution conditions are
defined by Boolean expressions into an event-based
state machine, without any semantics loss. This can
be achieved by first defining the elements of the input
and output alphabets as the different combinations of
the logic inputs and outputs of the Grafcet3. For the
example of figure 4, the input alphabet of the equiva-
lent Mealy machine contains 28 = 256 elements, be-
cause there are 8 logic inputs, and the output alphabet
210 = 1024 elements, because the Grafcet model owns
10 outputs.

As a SLA is already a state machine, each loca-
tion of the SLA gives rise to a state of the Mealy ma-
chine. Transition and output functions, which define

3The inputs and outputs of the Grafcet and the corresponding
SLA are identical.

respectively the transitions between the states and the
elements of the output alphabet associated to the tran-
sitions, can then be computed from the SLA evolu-
tion conditions. For room reasons, it is not possible to
give a detailed definition of these two functions; the
interested reader is referred to (Provost, Roussel, and
Faure 2009). The size of the equivalent Mealy ma-
chine is easily computable; if nstates and ntransitions

represent respectively the number of states and transi-
tions of this machine, and nlocations and ninput−var the
number of locations and input variables of the SLA, it
comes: {

nstates = nlocations

ntransitions = nlocations · 2ninput−var
(1)

It must be noted that the number of evolutions of
the SLA has no influence on the size of the Mealy
machine.

The Grafcet model of figure 4 can then be trans-
lated into an equivalent Mealy machine that com-
prises 16 states and 4,096 = 16 · 28 transitions.

4.2 Test sequence construction
Once the equivalent Mealy machine built, a test se-
quence for conformance test of a logic controller that
is supposed to implement the initial Grafcet can then
be obtained by using one of the methods surveyed in
(Lee and Yannakakis 1996). This method will have
to provide an exhaustive and minimum-length test
sequence. When control of critical systems is con-
sidered, as this is the case in this work, the test se-
quence must be indeed exhaustive, i.e. all evolutions,
for all combinations of the logic inputs, of the speci-
fication must be tested to avoid some expected behav-
iors be missing in the implementation. If the specifi-
cation is formally represented with a Mealy machine,
an exhaustive test sequence crosses every transition at
least once. Last, a minimum-length test sequence is
searched to lessen conformance test duration.

The method to obtain the minimum-length, while
exhaustive, test sequence of a Mealy machine is called
transition tour method (Naito and Tsunoyama 1981)
and is a particular solution, for a graph that repre-
sents the structure of a Mealy machine (states and
transitions between states), of a well-known problem
in graph theory: the Chinese Postman Problem (Mei-
Ko 1962). The general formulation of this problem is
the following: “Find a minimum-length closed path
that visits each edge in the graph at least once”. As
the graph which describes the structure of a Mealy
machine is directed, but not weighted, the problem is
simplified.

Using the software tool developed during this work
and that integrates the transition-tour method, a 6,436
steps test sequence was generated from the example
of figure 4. If a step of this sequence is done every

7



20 ms during conformance test, the whole test execu-
tion will last approximately 2 minutes and 10 seconds,
what is quite reasonable.

4.3 Discussion
This section has shown that an exhaustive confor-
mance test sequence can be automatically generated
from a non-timed Grafcet specification. The main
contribution of this work is a method to translate au-
tomatically the industrial specification model into a
formal model, without semantics loss. The principle
of this method is to generate the whole state space of
the specification and can be applied to other industrial
languages for behavior specification.

All results were implemented in a prototype soft-
ware tool. Experiments with several Grafcet models
shown that the overall time to construct the test se-
quence from the initial Grafcet, including the trans-
lation from Grafcet to the equivalent Mealy machine
is very short (some seconds at most), what guarantees
control engineers acceptance.

5 CONCLUSION AND PERSPECTIVES
Safety and dependability of critical systems depend
more and more on the correct behavior of logic con-
trollers. This explains the strong demand from indus-
try for conformance test techniques that can be used
during the development of industrial control systems;
to meet this objective, the test sequences must be built
automatically from specifications in industrial specifi-
cation languages. The two contributions that are pre-
sented in this paper are aiming to provide solutions
to this issue. The first contribution focuses on specifi-
cations in LFD, a language for basic protection func-
tions specification, and on reduction of the size of the
test sequence by preliminary verifications of struc-
tural properties of the implementation. The second
one considers specifications in Grafcet, a standard-
ized language for more complex control functions for
which the previous contribution cannot be applied,
and on translation of the specification into a formal
model so as to build an exhaustive and minimum-
length test sequence. The test sequences that were ob-
tained in both cases have been used successfully with
real test-benches that integrated commercially avail-
able PLCs (Programmable Logic Controllers).

The perspectives of this research are both technical
and scientific. First, integration of these results within
an existing environment for controllers’ specification,
design and implementation is planned in a near fu-
ture. In a longer term, the current limitations (no
backwards loop in the LFD, only non-timed Grafcet)
should be removed to increase the scope of the results
and their interest for safety improvement.

REFERENCES
Chériaux, F., P. Salaün, and F. Daumas (2009).

Functional test of control systems ensuring
a high coverage rate. In 6th American Nu-
clear Society International Topical Meeting on
NPIC&HMIT (NPIC&HMIT 2009).

Guéguen, H. and N. Bouteille (2001). Extensions
of grafcet to structure behavioural specifica-
tions. Control Engineering Practice 9(7), 743
– 756.

IEC 60848 (2002). GRAFCET specification lan-
guage for sequential function charts. Num-
ber 2. International Electrotechnical Commis-
sion.

IEC 60880 (2006). Nuclear power plants - In-
strumentation and control systems important
to safety - Software aspects for computer-
based systems performing category A func-
tions. Number 2. International Electrotechnical
Commission.

Lee, D. and M. Yannakakis (1996). Principles and
methods of testing finite state machines - a sur-
vey. In Proceedings of the IEEE, Volume 84,
pp. 1090–1123.

Mei-Ko, K. (1962). Graphic programming using
odd or even points. Chinese Mathematics 1,
273–277.

Naito, S. and M. Tsunoyama (1981). Fault de-
tection for sequential machines by transitions
tours. In Proceedings of the 11th IEEE Fault
Tolerant Computer Symposium, pp. 238–243.

Provost, J., J.-M. Roussel, and J.-M. Faure (2009).
Test sequence construction from SFC specifi-
cation. In 2nd IFAC Workshop on Dependable
Control of Discrete Systems (DCDS’09).

Salaün, P., F. Chériaux, and D. Trognon (2007).
Prospects for model-based testing of dis-
crete safety systems. In 1st IFAC Workshop
on Dependable Control of Discrete Systems
(DCDS’07).

Tretmans, J. (2008). Model based testing with
labelled transition systems. Lecture Notes in
Computer Science 4949, 1–38.

von Bochmann, G. and G.-V. Jourdan (2009). Test-
ing k-safe petri nets. In TestCom/FATES - Test-
ing of Software and Communication Systems,
Volume 5826 of Lecture Notes in Computer
Science, pp. 33–48.

8


