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We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval [0, T ] representing a chromosome. The observation is the trait and the composition of the genome at some locations called "markers". We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on [0, T ] and under local alternatives with a QTL at t on [0, T ]. We show that the LRT is asymptotically the square of some Gaussian process. We give a description of this process as an " non-linear interpolated and normalized process ". We propose a simple method to calculate the maximum of the LRT process using only statistics on markers and their ratio. This gives a new method to calculate thresholds for QTL detection.

Introduction

We study a backcross population: A × (A × B), where A and B are purely homozygous lines and we address the problem of detecting a Quantitative Trait Locus, so-called QTL (a gene influencing a quantitative trait which is able to be measured) on a given chromosome. The trait is observed on n individuals (progenies) and we denote by Y j , j = 1, ..., n, the observations, which we will assume to be Gaussian, independent and identically distributed (i.i.d.). The mechanism of genetics, or more precisely of meiosis, implies that among the two chromosomes of each individual, one is purely inherited from A while the other (the "recombined" one), consists of parts originated from A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on [0, T ] is called the genetic distance, it is measured in Morgans. The genome X(t) of one individual takes the value +1 if, for example, the "recombined chromosome" is originated from A at location t and takes the value -1 if it is originated from B . We use the Haldane [START_REF] Haldane | The combination of linkage values and the calculation of distance between the loci of linked factors[END_REF] modeling that can be represented as follows: X(0) is a random sign and X(t) = X(0)(-1) N (t) where N (.) is a standard Poisson process on [0, T ]. We assume an "analysis of variance model" for the quantitative trait :

Y = µ + X(t ) q + σε (1)
where ε is a Gaussian white noise and t * is the true location of the QTL.

In fact the "genome information" will be available only at certain fixed locations t 1 = 0 < t 2 < ... < t K = T and the observation will be (Y, X(t 1 ), ..., X(t K )) .

So, we observe n observations (Y j , X j (t 1 ), ..., X j (t K )) i.i.d. Calculation on the Poisson distribution show that r(t, t ) := P(X(t)X(t ) = -1) = P( N (t) -N (t ) odd) = 1 2

(1 -e -2|t-t | ),

we set in addition r(t, t ) = 1 -r(t, t ).

It can be proved that, conditionally to X(t 1 ), . . . , X(t K ) , Y obeys to a mixture model with known weights :

p(t * )f (µ+q,σ) (.) + {1 -p(t * )} f (µ-q,σ) (.), (2) 
where f (m,σ) is the Gaussian density with parameters (m, σ) and where the function p(t) is the probability of P(X(t) = 1) conditionally to the observations of the markers. It can be expressed from the functions r and r, see Sections 2 and 3 . The challenge is that the true location t * is not known. If t * = t were known, the model would be a regular model. If we define Λ n (t) and S n (t) as the likelihood ratio test (LRT) statistic and the score test statistic (see Section 2 for a precise definition) of the null hypothesis "q = 0". It is well known that Λ n (t) = S 2 n (t) + o P [START_REF] Haldane | The combination of linkage values and the calculation of distance between the loci of linked factors[END_REF] and that S n (t) is asymptotically Gaussian. Note that following Van der Vaart [START_REF] Van Der | Asymptotic statistics[END_REF] we have use a multiplicative coefficient of 2 in the definition of the likelihood ratio test.

When t * is unknown, considering the maximum of Λ n (t) still gives the LRT of "q = 0". This paper gives the exact asymptotic distribution of this LRT statistic under the null hypothesis and under contiguous alternatives. These distributions have been given using some approximations by Cierco [START_REF] Cierco | Asymptotic distribution of the maximum likelihood ratio test for gene detection[END_REF], Azaïs and Cierco-Ayrolles [START_REF] Azaïs | An asymptotic test for quantitative gene detection[END_REF], Azaïs and Wschebor [START_REF] Azaïs | Level sets and extrema of random processes and fields[END_REF]. In Rebaï et al. [START_REF] Rebaï | Comparing power of different methods for QTL detection[END_REF], Rebaï et al. [START_REF]Approximate thresholds of interval mapping tests for QTL detection[END_REF], Chang et al. [START_REF] Chang | Score statistics for mapping quantitative trait loci[END_REF], the authors focus only on the null hypothesis using some approximations.

The main result of the paper (Theorem 2.1 and 3.1) is that the distribution of the LRT statistic is asymptotically that of the maximum of the square of a "non linear normalized interpolated process". It explains the fact that the paths of the LRT process, Λ n (.), are smooth between markers (cf. Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF]). The second important result is that we have a close simple formula for the distribution of the maximum of the square of the "non linear normalized interpolated process" see Lemma 2.2.

Finally, we propose a new method suitable whatever the genetic map is, using Monte-Carlo Quasi Monte-Carlo (Genz [9]), to calculate thresholds for QTL detection. We show that our method gives better performances than Rebaï et al. [START_REF]Approximate thresholds of interval mapping tests for QTL detection[END_REF]'s method based on Davies [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF][START_REF]Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF], and Feingold and al. [START_REF] Feingold | Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent[END_REF]'s method based on Siegmund [START_REF] Siegmund | Sequential analysis : tests and confidence intervals[END_REF]. We will also apply it on real data. Our method is available in a Matlab package with graphical user interface : "imapping.zip". It can be downloaded at www.stat.wisc.edu/∼rabier .

We refer to the book of Van der Vaart [START_REF] Van Der | Asymptotic statistics[END_REF] for elements of asymptotic statistics used in proofs.

Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T

: 0 = t 1 < t 2 = T . For t ∈ [t 1 , t 2 ] we define p(t) = P X(t) = 1 X(t 1 ), X(t 2 )
and

x(t) = E X(t) X(t 1 ), X(t 2 ) = 2p(t) -1.
It is clear that p(t * ) is effectively the probability appearing in [START_REF] Cierco | Asymptotic distribution of the maximum likelihood ratio test for gene detection[END_REF]. An application of the rule of total probabilities leads to

p(t) = Q 1,1 t 1 X(t1)=1 1 X(t2)=1 + Q 1,-1 t 1 X(t1)=1 1 X(t2)=-1 + Q -1,1 t 1 X(t1)=-1 1 X(t2)=1 + Q -1,-1 t 1 X(t1)=-1 1 X(t2)=-1 (3) 
where

Q 1,1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) , Q 1,-1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) Q -1,1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) , Q -1,-1 t = r(t 1 , t) r(t, t 2 ) r(t 1 , t 2 ) .
We can remark that we have

Q -1,-1 t = 1 -Q 1,1 t and Q -1,1 t = 1 -Q 1,-1 t .
Let θ = (q, µ, σ) be the parameter of the model at t fixed. The likelihood of the triplet (Y, X(t 1 ), X(t 2 )) with respect to the measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t 1 , t 2 ] :

L t (θ) = p(t)f (µ+q,σ) (y) + {1 -p(t)} f (µ-q,σ) (y) g(t) (4) 
where the function

g(t) = 1 2 r(t 1 , t 2 ) 1 X(t1)=1 1 X(t2)=1 + r(t 1 , t 2 ) 1 X(t1)=1 1 X(t2)=-1 + 1 2 r(t 1 , t 2 ) 1 X(t1)=-1 1 X(t2)=1 + r(t 1 , t 2 ) 1 X(t1)=-1 1 X(t2)=-1
can be removed because it does not depend on the parameters. By a small abuse of notation we still denote L t (θ) for the likelihood without this function. Thus we set

L t (θ) = p(t)f (µ+q,σ) (y) + {1 -p(t)} f (µ-q,σ) (y)
and l t (θ) will be the loglikelihood. We first compute the Fisher information at a point θ 0 that belongs to H 0 .

∂l t ∂q | θ0 = y -µ σ 2 x(t) (5) 
∂l t ∂µ | θ0 = y -µ σ 2 , ∂l t ∂σ | θ0 = - 1 σ + (y -µ) 2 σ 3
After some calculations, we find

I θ0 = Diag E x 2 (t) σ 2 , 1 σ 2 , 2 σ 2 (6) 
Our main result is the following Theorem 2.1 : Suppose that the parameters (q, µ, σ 2 ) vary in a compact and that σ 2 is bounded away from zero. Let H 0 be the null hypothesis q = 0 and define the following local alternative H at : "the QTL is located at the position t with effect q = a/ √ n where a = 0 ".

With the previous defined notations, S n (.) ⇒ Z(.) , Λ n (.)

F.d.
-→ Z 2 (.) , sup Λ n (.)

L -→ sup Z 2 (.)
as n tends to infinity, under H 0 and H at where :

• ⇒ is the weak convergence,

F.d.
→ is the convergence of finite-dimensional distributions and L -→ is the convergence in distribution • Z(.) is the Gaussian process with unit variance and -covariance function

Γ(t, t ) = E {x(t)x(t )} E {x 2 (t)} E {x 2 (t )} = α(t)α(t ) + β(t)β(t ) + {α(t)β(t ) + α(t )β(t)} ρ(t 1 , t 2 ) α 2 (t) + β 2 (t) + 2α(t)β(t)ρ(t 1 , t 2 ) α 2 (t ) + β 2 (t ) + 2α(t )β(t )ρ(t 1 , t 2 )
where

ρ(t 1 , t 2 ) = exp(-2|t 1 -t 2 |) α(t) = Q 1,1 t -Q -1,1 t β(t) = Q 1,1 t -Q 1,-1 t -expectation ∀(t, t ) ∈ [t 1 , t 2 ] 2 :
-under H 0 , m(t) = 0 -under H at ,

m t (t) = a E {X(t )x(t)} σ E {x 2 (t)} = a/σ E {x 2 (t )} Γ(t, t * ).
It is clear that we have

Z(t) = α(t)Z(t 1 ) + β(t)Z(t 2 ) V {α(t)Z(t 1 ) + β(t)Z(t 2 )} . (7) 
In the sense of this equation, Z(.) will be called a "non linear normalized interpolated process". As a consequence, the mean function, m t (t), is also an interpolated function. In particular, we have :

m t (t) = {α(t) m t (t 1 ) + β(t) m t (t 2 )} V {α(t)Z(t 1 ) + β(t)Z(t 2 )} (8) 
where

m t (t 1 ) = a σ {α(t ) + β(t )ρ(t 1 , t 2 )} = a ρ(t 1 , t )/σ m t (t 2 ) = a σ {α(t )ρ(t 1 , t 2 ) + β(t )} = a ρ(t , t 2 )/σ.
The computation of the maximum of the process Z 2 (.) can be performed by using the following lemma. Lemma 2.2: Let γ 1 (t) and γ 2 (t) be two functions such that γi(t) γ1(t)+γ2(t) takes every value in [0, 1], i = 1, 2. Let C 1 and C 2 be two real numbers and 0 < ρ < 1 then

max t∈[t1,t2] {γ 1 (t)C 1 + γ 2 (t)C 2 } 2 γ 2 1 (t) + γ 2 2 (t) + 2ργ 1 (t)γ 2 (t) = max C 2 1 , C 2 2 , C 2 1 + C 2 2 -2ρC 1 C 2 1 -ρ2 1 C 2 C 1 ∈ ] ρ , 1 ρ [ .
In particular, if C 1 and C 2 are two random variables defined on the same probability space with V(C i ) = 1, i = 1, 2, Cov(C 1 , C 2 ) = ρ with 0 < ρ < 1 and if γ 1 (t) and γ 2 (t) are two functions as above, the lemma gives the distribution of the maximum on [t 1 , t 2 ] of the square of the following normalized interpolated process D(.) :

∀t ∈ [t 1 , t 2 ], D(t) = γ 1 (t)C 1 + γ 2 (t)C 2 γ 2 1 (t) + γ 2 2 (t) + 2ργ 1 (t)γ 2 (t)
.

So, the lemma can be applied to the process Z(.) by taking γ

1 (t) = α(t), γ 2 (t) = β(t), ρ = ρ(t 1 , t 2 ), C 1 = Z(t 1 ), C 2 = Z(t 2 )
, as soon as we prove that γ 3 (t) =

β(t) α(t)+β(t) takes every value in [0, 1]. Let's now prove this. Since α(t 1 ) = 1 and β(t 1 ) = 0, γ 3 (t 1 ) = 0. Since α(t 2 ) = 0 and β(t 2 ) = 1, γ 3 (t 2 ) = 1.
So, the bounds 0 and 1 are reached. Besides,

β(t) = r(t 1 , t)r(t, t 2 )r(t 1 , t 2 ) -r(t 1 , t)r(t, t 2 )r(t 1 , t 2 ) r(t 1 , t 2 )r(t 1 , t 2 )
has the same sign as

r(t, t 2 )r(t 1 , t 2 ) -r(t, t 2 )r(t 1 , t 2 ) = r(t 1 , t 2 ) -r(t, t 2 ) 0. Furthermore, α(t) + β(t) = 2Q 1,1 t -1 > 0 since t is bounded. So, γ 3 (t)
which is the ratio of two positive and continuous functions, takes every value in [0, 1].

Proof : Theorem 2.1

Preliminaries

We define some additional notation. For every t, the statistical model is regular with an invertible Fisher information matrix given by ( 5) under H 0 . Its likelihood L t (θ) is given by ( 4) with θ = (q, µ, σ 2 ). The log likelihood, associated to n observations will be denoted by l n t (θ). Let l n t ( θ) be the maximized log likelihood and let l n t ( θ |H0 ) be the maximized log likelihood under H 0 , with

θ |H0 = 0, Y = Y j /n, 1/n (Y j -Y ) 2 .
The likelihood ratio statistics will be defined as

Λ n (t) = 2 l n t ( θ) -l n t ( θ |H0 ,
on n independent observations. Since the Fisher Information matrix is diagonal, the score statistics of the hypothesis "q = 0" will be defined as

S n (t) = ∂l n t ∂q | θ0 V ∂l n t ∂q | θ0
.

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λ n (t) = S 2 n (t) + o P (1)
under the null hypothesis. Note that no coefficient 1/2 is present since we have introduced a coefficient 2 in the definition of the likelihood ratio. Our goal is now to prove that the rest above is uniform in t.

Study of the supremum of the LRT process

Let us consider now t as an extra parameter. Let t * , θ * be the true parameter that will be assumed to belong to H 0 . Note that t * makes no sense for θ belonging to H 0 . It is easy to check that at H 0 the Fisher information relative to t is zero so that the model is not regular. Conditionally to X(t 1 ) and X(t 2 ), the model is a mixture of Gaussian distributions with different means, common unknown variance and a probability that varies between two bounds as a consequence of Equation ( 2). This is a sub-model of the general mixture of Gaussian distributions (with a probability that varies freely between 0 and 1) as studied, for example in Section 4.3 of Azaïs et al. [START_REF] Azaïs | The likelihood ratio test for general mixture models with possibly structural parameter[END_REF]. In particular it proves that Theorem 1 of Azaïs et al. [START_REF] Azaïs | The likelihood ratio test for general mixture models with possibly structural parameter[END_REF] applies in the sense that sup t,θ)

l t (θ) -l t * (θ * ) = sup d∈D      1 √ n n j=1 d(X j )    2 1 d(Xj) 0   + o P (1) (9) 
where the observation X j stands for Y j , X j (t 1 ), X j (t 2 ) and where D is the set of scores defined in Azaïs et al. [START_REF] Azaïs | The likelihood ratio test for general mixture models with possibly structural parameter[END_REF], see also Gassiat [START_REF] Gassiat | Likelihood ratio inequalities with applications to various mixtures[END_REF]. A similar result is true under H 0 with a set D 0 . Let us precise the sets of scores D and D 0 . This sets are defined at the sets of scores of one parameter families that converge to the true model p t * ,θ * and that are differentiable in quadratic mean. These sets are subset of the subsets obtained in the general model ( p ∈ [0, 1]) so it is easy to see that when we sum the four cases for X(t 1 ) and X(t 2 )

D = V, l t (θ * ) V( V, l t (θ * ) ) , V ∈ R 3 , t ∈ [t 1 , t 2 ]
where l is the gradient with respect to θ. In the same manner

D 0 = V, l t (θ * ) V( V, l t (θ * ) ) , V ∈ R 2 ,
where now the gradient is taken with respect to µ and σ only. Of course this gradient does not depend on t.

Using the transform V → -V in the expressions of the sets of score, we see that the indicator function can be removed in [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF]. Then, since the Fisher information matrix is diagonal (see formula ( 6)) , it is easy to see that

sup d∈D      1 √ n n j=1 d(X j )    2   -sup d∈D0      1 √ n n j=1 d(X j )    2   = sup t∈[t1,t2]         1 √ n n j=1 ∂lt ∂q (X j ) | θ0 V ∂lt ∂q (X j ) | θ0     2     .
This is exactly the desired result.

Study of the score process under the null hypothesis

The study is based on the following key lemma :

Lemma 2.3: The conditional expectation x(t) of X(t) is linear in X(t 1 ), X(t 2 ) : x(t) = α(t)X(t 1 ) + β(t)X(t 2 ) with α(t) = Q 1,1 t -Q -1,1 t and β(t) = Q 1,1 t -Q 1,-1 t .
To prove this lemma use formula [START_REF] Azaïs | An asymptotic test for quantitative gene detection[END_REF] and check that both sides coincide whatever the value of X(t 1 ), X(t 2 ) is. Now using ( 5) it is clear that

∂l n t ∂q | θ0 = n j=1 Y j -µ σ 2 x j (t) = 1/σ n j=1 ε j x j (t) = α(t) σ n j=1 ε j X j (t 1 ) + β(t) σ n j=1 ε j X j (t 2 ) (10) 
this proves [START_REF] Chang | Score statistics for mapping quantitative trait loci[END_REF].

On the other hand

S n (t k ) = n j=1 ε j X j (t k ) √ n k = 1, 2
and a direct application of central limit theorem implies that these two variables have a limit distribution which is Gaussian centered distribution with variance

1 exp(-2|t 2 -t 1 |) exp(-2|t 2 -t 1 |) 1 .
This proves the expression of the covariance. The weak convergence of the score process, S n (.), is then a direct consequence of ( 10), the convergence of (S n (t 1 ), S n (t 2 )) and the Continuous Mapping Theorem.

Study under the local alternative

Let us consider a local alternative defined by t * and q = a/ √ n. The model with t * fixed is differentiable in quadratic mean, this implies that the alternative defines a contiguous sequence of alternatives. By Le Cam's first Lemma, relation ( 9) remains true under the alternative. It remains to compute the asymptotic distribution of S n (t) under this alternative. Indeed, under the alternative

S n (t) = a nσ n j=1 X j (t * )x j (t) V {x(t)} + 1 √ n n j=1 ε j x j (t) V {x(t)}
The second term has the same distribution as under the null hypothesis and the first one gives the expectation. We have

E {S n (t)} = a E {X(t * )x(t)} σ V {x(t)} .
By the properties of conditional expectation

E {X(t * )x(t)} = E {x(t * )x(t)} .
This gives the result.

Proof : Lemma 2.2 Without loss of generality, we can consider t ∈ [0, 1], γ 1 (t) = 1 -t and γ 2 (t) = t. So, the focus is on the function on [0, 1]

ψ(t) = (1 -t) C 1 + t C 2 (1 -t) 2 + t 2 + 2 ρ t (1 -t) where 0 < ρ < 1.
We find that

∂ψ 2 (t) ∂t = 0 ⇔ {(1 -t)C 1 + tC 2 } × [{C 2 -C 1 } {1 -2(1 -ρ)t(1 -t)} + (1 -ρ)(1 -2t) {(1 -t)C 1 + tC 2 }] = 0.
Since {(1 -t)C 1 + tC 2 } corresponds to a minimum, the focus is on the second term. After some calculations, we find that this second term is equal to zero for

ξ = ρ C 1 -C 2 (ρ -1)(C 2 + C 1 )
.

So, we just have to consider the cases ξ ∈ [0, 1] and ξ / ∈ [0, 1]. Note that

ψ 2 (ξ) = C 2 1 + C 2 2 -2ρC 1 C 2 1 -ρ2 .
This gives the result.

3. Several markers : the "Interval Mapping'' of Lander and Botstein [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] In that case suppose that there are K markers 0 = t 1 < t 2 < ... < t K = T . We consider values t, t or t of the parameters that are distinct of the markers positions, and the result will be prolonged by continuity at the markers positions. For t ∈ [t 1 , t K ]\T K where T K = {t 1 , ..., t K }, we define t and t r as :

t = sup {t k ∈ T K : t k < t} , t r = inf {t k ∈ T K : t < t k } .
In other words, t belongs to the "Marker interval" (t , t r ).

Theorem 3.1 : We have the same result as in Theorem 2.1, provided that we make some adjustments and that we redefine Z(.) in the following way :

• in the definition of α(t) and β(t), t 1 becomes t and t 2 becomes t r • under the null hypothesis, the process Z(.) considered at marker positions is the "squeleton" of an Ornstein-Uhlenbeck process: the stationary Gaussian process with covariance ρ(t k , t k ) = exp(-2|t k -t k |) • at the other positions, Z(.) is obtained from Z(t ) and Z(t r ) by interpolation and normalization using the functions α(t) and β(t) • at the marker positions, the expectation is such as m t (t k ) = aρ(t k , t )/σ • at other positions, the expection is obtained from m t (t ) and m t (t r ) by interpolation and normalization using the functions α(t) and β(t).

The proof of the theorem is the same as the proof of Theorem 2.1 as soon as we can limit our attention to the interval (t , t r ) when considering a unique instant t and to the intervals (t , t r )(t , t r ) when considering two instants t and t . For that we need to prove that

x(t) = E {X(t)|X(t 1 ), . . . , X(t K )} = E X(t)|X(t ), X(t r )
which is a direct consequence of the independance of the increments of Poisson process.

Applications

Application to the calculation of thresholds

The theoretical results presented in this article allow us to propose a new method to obtain the α% quantile of the maximum of the process Z 2 (.) under H 0 . This method is a direct application of Lemma 2.2. If we call

h(t k , t k+1 ) = Z 2 (t k ) + Z 2 (t k+1 ) -2ρ(t k , t k+1 )Z(t k )Z(t k+1 ) 1 -ρ 2 (t k , t k+1 ) 1 Z(t k+1 ) Z(t k ) ∈]ρ(tk,tk+1), 1 ρ(t k ,t k+1 ) [
we have to compute the distribution of

M = max Z 2 (t 1 ), Z 2 (t 2 ), h(t 1 , t 2 ), ..., Z 2 (t K-1 ), Z 2 (t K ), h(t K-1 , t K ) .
According to chain rule, we have ∀c ∈ R

P(0 M c 2 ) = P {-c Z(t 1 ) c, ..., -c Z(t K ) c} × P 0 h(t 1 , t 2 ) c 2 , ..., 0 h(t K-1 , t K ) c 2 | -c Z(t 1 ) c, ..., -c Z(t K ) c .
The first term is an integral over the density of a dimension K Gaussian vector.

It can be performed for large K using the function QSIMVNEF of Genz which is a MCQMC program. QSIMVNEF also allows to calculate the second term. Monte-Carlo Quasi Monte-Carlo (MCQMC) methods of Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF] are very fast.

As the numerical computation of a multivariate normal distribution is often a difficult problem, Genz described in his paper, a transformation that simplifies the problem and places it on [0, 1] K . A form that allows efficient calculations using standard numerical multiple integration algorithms. He suggests to use in particular MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC) using N points has errors that are typically O(1/ √ N ) whereas Quasi Monte-Carlo methods (QMC) have errors which can be aproximatively O(1/N ). In order to have a confidence interval an extra Monte-Carlo step is added, this is MCQMC. We refer to Genz [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF] for more details. Note that here the function QSIMVNEF has been adapted and a Newton method has been used in order to find the threshold c 2 α such as P(0 M c 2 α ) = α. Our method is available in a Matlab package with graphical user interface : "imapping.zip". It can be downloaded at www.stat.wisc.edu/∼rabier .

Comparison between different methods

In this section, we propose to compare the performances of our method with those of other methods usually used in QTL detection. Note that all the methods are asymptotic in terms of the number of individuals n.

In Rebaï et al. [START_REF]Approximate thresholds of interval mapping tests for QTL detection[END_REF], the authors focus on another recombination model. They propose an upper bound for the threshold corresponding to their model. This bound is the quantity c2 α such as :

1 -α = 2 Φ(-c α ) + 2 e -c 2 α /2 π K-1 k=1 arctan 1 -ρ(t k , t k+1 ) 1 + ρ(t k , t k+1 )
where Φ is the cumulative distribution of the standardized normal distribution. This method is based on Davies [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF]. However, it is sensitive to the number of genetic markers. Indeed, the derivative of the process has a jump at each markers location, and Davies [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF] upper bound is suitable when the derivative of the process has a finite number of jumps. In Feingold and al. [START_REF] Feingold | Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent[END_REF], the authors propose a threshold based on the discrete process resulting from tests only on markers. Besides, they suppose constant the distance between genetic markers. The threshold c 2 α is such as :

1 -α = 1 -Φ(c α ) + 2 T c α ϕ(c α ) ν(2c α √ ∆)
where ϕ is the density of a normal standardized, ∆ is distance between two consecutive markers. This method is inspired from Siegmund [START_REF] Siegmund | Sequential analysis : tests and confidence intervals[END_REF] where the function ν is fully described. The method is also largely described in Siegmund and Yakir [START_REF] Siegmund | The statistics of gene mapping[END_REF].

In Tables 1,2, 3 and 4, we propose to compare the different methods. The different computed thresholds correspond to α = 95%, and since the three methods are based on asymptotic results, we propose to check the percentage of false positives on simulated data, in order to obtain the true level corresponding to each method. We simulated under the null hypothesis, 10000 samples of n = 200, n = 100 and n = 50 individuals. In order to perform the simulations, we considered exactly Haldane modeling. The genetic markers (microsatellite markers or SNPs) have two alleles : +1 and -1. In order to model the correlation and the recombination between markers, we used a standard Poisson process (cf. Section 1 for more details). We analyzed data using our Lemma 1, that is to say performing LRT on markers and performing only one test in each marker interval if the ratio of the score statistics on markers fulfills the given condition.

To begin with, in Table 1, we consider a chromosome of length T = 1 Morgan. We consider the markers equally spaced and different densities of markers. We can see that Feingold's method and our method, give reasonable results for n = 100 and n = 200 : the percentage of false positives is close to 5%. Note that for n = 50, the percentage of false positives is not so far from 5%. On the other hand, as expected, Rebaï's method is very sensitive to the number of genetic markers. We can remark that the more markers there are, the more conservative Rebaï's method is.

In Tables 2 and3, we propose to check the robustness of the different methods (same framework as previously). In Table 2, the trait conditioned on the QTL follows a centered exponential distribution with rate 1. We can remark that, as expected, Rebaï's method is too conservative. We can also see that Feingold's method and our method are robust for n = 200. When n = 100, the results are still interesting. However, when n = 50, the two methods seem to be too conservative. In Table 3, the trait conditioned on the QTL follows now a Student distribution with 2 degrees of freedom. The three methods are not robust anymore. However, the less markers there are, the better the methods are.

Let's focus now more in details on the differences between our method and Feingold's method. As said before, in Feingold and al. [START_REF] Feingold | Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent[END_REF], the authors focus only on the discrete process which results from tests only at marker locations. Besides, in order to obtain a theoretical result, they consider that the markers are equally spaced. In our study, we consider the true "Interval Mapping" of Lander and Botstein [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] : we consider the stochastic process which results from tests on the whole chromosome (i.e. on markers and between markers). Furthermore, we allow the markers not to be equally spaced, which is generally the case in a biological experiment.

In Table 4, we compare the performances of the two methods. We consider differ-ent genetic maps for which markers are not equally spaced : the maps are described in Table 5. Note that in order to compute Feingold's method, since the markers are not equally spaced anymore, we use for ∆ (i.e. the distance between markers), the mean distance between markers. We can see on the different examples, that our method generally respects the 5% level for n = 200, which is not the case of Feingold's method. See in particular map 6 which consists of 329 markers, and for which the percentage of false positives corresponding to our method is 4.64% and 2.85% for Feingold's method. The results of our method are still acceptable for n = 100. For n = 50, our method is too conservative, specially when the number of markers increases (see map 5 and map 6). On the other hand, the performances of Feingold's method could have maybe been improved, by testing different values of ∆. However, there is not any rule in order to choose an appropriate ∆. This way, our method which is suitable for any genetic map, must be the most interesting for geneticists.

To conclude, in Tables 6 and7, we focus on the alternative hypothesis. First, in Table 6, we consider the same map as in Table 1 (i.e. T = 1M). In particular, we consider 6 genetic markers equally spaced on the chromosome. Using our threshold, we compare the Theoretical Power (cf. our Theorem 2) and the Empirical Power for different values of n and different locations t of the QTL. We can see that for n = 1000, the asymptotic is reached whatever the location of the QTL is. Finally, in Table 7, we propose to compare the power of our method and Feingold's method on more dense genetic maps. We focus in particular on map 5 (241 markers) and map 6 (329 markers), already studied under H 0 (see Table 5 for the full description of the maps). We compute the power obtained with Feingold's threshold (12.12 for map 5 and 12.55 for map 6) and the one obtained with our threshold (11.56 for map 5 and 11.70 for map 6). However, we have to keep in mind that the power corresponding to the Interval Mapping of Lander and Botstein [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] is the one obtained with our threshold. We present the Theoretical Power and the Empirical Power for different values of n. According to Table 7, it is always more powerful to detect QTL with our method than with Feingold's method, whatever the map is, and whatever the value of n is. This was expected since we have already shown in Table 4 that Feingold's method was very conservative for maps 5 and 6. Note that the asymptotic is reached for n = 1000 for map 6 whereas it seems that more individuals are needed to reach the asymptotic for map 5. This concludes our simulation study.

Application to a real QTL study

We propose here to illustrate our theoretical results by applying them for the analysis of real data. The data issued from the study of Huang et al. [START_REF] Huang | RFLP mapping of isozimes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[END_REF] will be used in which the authors focus on 12 rice chromosomes and generate a population equivalent to a backcross population. We refer to Huang et al. [START_REF] Huang | RFLP mapping of isozimes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[END_REF] for the details of the experiment. Note that this experiment is also largely described in examples 3.1 and 11.3 of Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF]. As in Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF], we will consider only chromosome 1 to scan the existence of a QTL. The trait of interest, here, is the plant height measured at age 10 weeks. 18 markers are located on chromosome 1 (T = 2.243 Morgan). The location of the markers and their names are given in Table 8. Note that the data we used are available on "http://www.acsu.buffalo.edu/∼ cxma/book/". In order to be able to use our method, we removed all the missing data of the data set : we kept only the 55 observations for which the 18 genotypes at the different markers were available. First, we computed the threshold corresponding to our method : 8.36 if we consider a test at the 5% level. Then, we performed the "Interval Mapping". The solid line in Figure 1 represents the observed path of the LRT process on [0, 2.243]. The dashed line refers to the threshold. Note that in this paper, we have proved that, in order to compute the supremum of the LRT process, we have to perform one test on each marker and only one test at the maximum between markers. However, since it is common for geneticists to perform tests everywhere on the chromosome, we represent in Figure 1 the whole path of the LRT process on [0, 2.243]. Note that in order to obtain this whole path, we used the interpolation of Theorem 2.1. The value of the LRT on the whole chromosome is 25.47 which is largely greater than our threshold 8.36. Besides, the peak is obtained at 197.4 cM. As a consequence, it seems that a QTL affecting the rice length is located at 197.4 cM, that is to say between markers RZ730 and RZ801. This location agrees with the one found by Huang et al. [START_REF] Huang | RFLP mapping of isozimes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[END_REF] (cf. their Table 3), who used the software MAPMAKER for performing their QTL analysis. However, in Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF], the authors found the QTL at 217cM, i.e. between markers RG810 and RG331. This different result can be explained by the fact that Wu et al. [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF] used a different recombination model (i.e. double recombinations between the QTL and its flanking markers is not allowed in their model) and also by the fact that they kept in their analysis the observations with missing genotypes at the markers.

In this paper we have presented some theoretical results which allow proposing a simple method to calculate the maximum of the LRT process using only statistics on markers and their ratio. This gives a new methodology to calculate thresholds for QTL detection. It has been shown using simulated data that this method is more efficient than Rebaï et al. [START_REF]Approximate thresholds of interval mapping tests for QTL detection[END_REF]'s method based on Davies [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF][START_REF]Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF], and Feingold and al. [START_REF] Feingold | Gaussian models for genetic linkage analysis using complete high-resolution maps of idendity by descent[END_REF]'s method based on Siegmund [START_REF] Siegmund | Sequential analysis : tests and confidence intervals[END_REF]. Furthermore, it can be easily used for analyzing real data as it is demonstrated in the course of this paper. This demonstrates the potentialities of the proposed method which is thought to be of interest for geneticists. The different maps are described in Table 5. The different maps are described in Table 5. 8) and the trait is the plant height measured at age 10 weeks.

Figure 1 .

 1 Figure 1. Path of the LRT process (solid line) and threshold (dashed line) in the case of a real QTL study. Data comes from the study of Huang et al. [19] : the focus is on chromosome 1 of rice (map described in Table8) and the trait is the plant height measured at age 10 weeks.

Table 1 .

 1 Threshold and Percentage of False Positives (10000 samples of size n) as a function of the number of markers and the method considered. The chromosome is of length T = 1 Morgan and the markers are equally spaced.

		number of markers	101	51	41	26	21	11	6	3	2
		threshold	9.74	9.09	8.88	8.43	8.20	7.58	6.92	6.07	5.22
	Rebaï	n = 200 n = 100	2.55% 3.23% 3.25% 3.82% 4.05% 4.48% 4.53% 4.55% 5.13% 2.52% 2.90% 3.17% 3.59% 3.91% 4.32% 4.52% 4.80% 5.49%
		n = 50	2.01% 2.51% 2.82% 3.53% 3.39% 3.84% 4.51% 4.58% 5.50%
		threshold	8.45	8.17	8.06	7.81	7.67	7.18	6.59	5.71	5.08
	Feingold	n = 200 n = 100	4.67% 4.91% 4.74% 5.37% 5.19% 5.57% 5.25% 5.46% 5.55% 4.72% 4.67% 4.92% 5.07% 5.04% 5.23% 5.38% 5.83% 5.82%
		n = 50	3.92% 4.35% 4.25% 5.00% 4.58% 4.89% 5.43% 5.70% 5.96%
		threshold	8.41	8.27	8.16	7.91	7.75	7.29	6.76	6.04	5.41
	this paper	n = 200 n = 100	4.76% 4.71% 4.63% 5.17% 4.99% 5.24% 4.76% 4.64% 4.61% 4.80% 4.40% 4.69% 4.78% 4.84% 4.97% 4.95% 4.89% 4.87%
		n = 50	3.97% 4.15% 4.06% 4.75% 4.37% 4.63% 4.88% 4.70% 5.01%

Table 2 .

 2 Percentage of False Positives (10000 samples of size n) when the trait conditioned on the QTL, follows a centered exponential distribution with rate 1. The chromosome is of length T = 1 Morgan and the markers are equally spaced (same thresholds as in Table1).

		number of markers	101	51	41	26	21	11	6	3	2
		n = 200	2.18% 3.03% 3.07% 3.19% 3.97% 4.24% 4.23% 4.83% 5.41%
	Rebaï	n = 100	1.84% 2.30% 2.68% 2.94% 3.23% 3.98% 4.03% 4.45% 5.50%
		n = 50	1.21% 1.86% 2.06% 2.40% 2.42% 3.03% 3.88% 3.90% 5.38%
		n = 200	4.03% 4.84% 4.59% 4.60% 5.00% 5.34% 5.07% 5.87% 5.86%
	Feingold	n = 100	3.61% 3.58% 4.44% 4.19% 4.35% 4.93% 4.84% 5.68% 6.03%
		n = 50	2.78% 3.39% 3.46% 3.43% 3.34% 3.81% 4.90% 4.90% 5.83%
		n = 200	4.11% 4.63% 4.27% 4.33% 4.84% 5.03% 4.61% 4.94% 4.86%
	this paper	n = 100	3.65% 3.43% 4.25% 3.90% 4.13% 4.69% 4.39% 4.53% 4.86%
		n = 50	2.84% 3.23% 3.27% 3.24% 3.18% 3.55% 4.38% 3.94% 4.69%

Table 3 .

 3 Percentage of False Positives (10000 samples of size n) when the trait conditioned on the QTL, follows a Student distribution with 2 degrees of freedom. The chromosome is of length T = 1 Morgan and the markers are equally spaced (same thresholds as in Table1).

		number of markers	101	51	41	26	21	11	6	3	2
		n = 200	1.26% 1.67% 1.83% 1.95% 2.14% 2.59% 2.93% 3.47% 4.64%
	Rebaï	n = 100	0.80% 1.41% 1.88% 1.60% 1.93% 2.14% 3.12% 3.57% 4.68%
		n = 50	0.70% 1.16% 1.10% 1.49% 1.45% 2.28% 2.88% 3.07% 4.33%
		n = 200	2.69% 2.83% 2.95% 2.74% 3.24% 3.34% 3.62% 4.20% 5.01%
	Feingold	n = 100	2.15% 2.57% 2.89% 2.44% 2.64% 2.74% 3.87% 4.37% 5.04%
		n = 50	1.61% 2.06% 1.98% 2.23% 2.13% 3.00% 3.58% 3.92% 4.74%
		n = 200	2.71% 2.69% 2.85% 2.56% 3.01% 3.10% 3.23% 3.49% 4.13%
	this paper	n = 100	2.25% 2.42% 2.68% 2.18% 2.56% 2.53% 3.49% 3.62% 4.11%
		n = 50	1.68% 1.94% 1.79% 2.06% 2.02% 2.82% 3.18% 3.12% 3.73%

Table 4 .

 4 Threshold and Percentage of False Positives (10000 samples of size n) as a function of the genetic map and the method considered.

		genetic map map 1	map 2	map 3	map 4	map 5	map 6
		threshold	5.79	6.59	7.38	7.76	12.12	12.55
	Feingold	n = 200 n = 100	6.25% 5.97%	4.03% 4.24%	3.74% 3.21%	3.63% 3.57%	3.32% 2.96%	2.85% 2.72%
		n = 50	6.29%	4.12%	3.02%	2.93%	2.25%	2.02%
		threshold	6.14	6.25	6.85	7.07	11.56	11.70
	this paper	n = 200 n = 100	5.31% 5.00%	4.87% 5.26%	4.92% 4.52%	4.90% 5.02%	4.62% 4.01%	4.64% 4.20%
		n = 50	5.12%	5.02%	4.13%	4.23%	3.33%	3.39%

Table 5 .

 5 The different genetic maps considered (K is the number of markers, T is the length of the chromosome in Morgan, t k is the location of marker k in Morgan). = 0, t 2 = 0.80, t 3 = 0.85, t 4 = 0.90, t 5 = 0.95,t6 = 1 map 3 1 14 ∀k = 1, ..., 11 t k = 0.01(k -1), t 12 = 0.40, t 13 = 0.70, t 14 = 1 map 4 1 23 ∀k = 1, ..., 11 t k = 0.01(k -1), t 12 = 0.40, t k = 0.90 + 0.01(k -13) ∀k = 13, ..., 23 map 5 8.50 241 ∀k = 1, ..., 101 t k = 0.01(k -1) , ∀k = 102, ..., 181 t k = 1.05 + 0.05(k -102) , ∀k = 182, ..., 191 t k = 5.30 + 0.30(k -182) , ∀k = 192, ..., 241 t k = 8.01 + 0.01(k -192) map 6 10 329 ∀k = 1, ..., 301 t k = 0.01(k -1) and ∀k = 302, ..., 329 t k = 3.25 + 0.25(k -302)

		T	K	marker locations
	map 1 1.50	3	t 1 = 0, t 2 = 0.50, t 3 = 1.50
	map 2	1	6	t 1

Table 6 .

 6 Theoretical Power and Empirical Power (EP) as a function of the location of the QTL t in Morgan (a = 4, 100000 paths for the Theoretical Power, 10000 samples of size n for EP). The chromosome is of length T = 1 Morgan, 6 markers are equally spaced every 0.2 Morgan.

	t	0.10	0.43	0.75	0.88
	EP for n = 50	82.32% 87.76% 84.68% 82.10%
	EP for n = 100	85.62% 90.12% 88.56% 85.84%
	EP for n = 200	87.14% 91.17% 89.73% 87.73%
	EP for n = 1000	88.51% 92.20% 90.33% 89.20%
	Theoretical Power 88.61% 92.01% 90.56% 88.94%

Table 7 .

 7 Theoretical Power and Empirical Power (EP) as a function of the genetic map and the method considered (a = 4, 10000 paths for the Theoretical Power, 10000 samples of size n for EP). The location of the QTL t (in Morgan) is 3.10 for map 5 and 0.70 for map 6.

		genetic map	map 5	map 6
		Theoretical Power	77.87%	78.76%
	Feingold	EP for n = 1000 EP for n = 200	76.43% 74.25%	78.12% 75.96%
		EP for n = 100	70.82%	71.35%
		EP for n = 50	63.21%	61.87%
		Theoretical Power	80.67%	82.86%
	this paper	EP for n = 1000 EP for n = 200	79.23% 77.22%	82.60% 80.39%
		EP for n = 100	74.55%	76.69%
		EP for n = 50	67.82%	69.10%

Table 8 .

 8 Names and locations (in Morgan) of markers on rice chromosome 1 (T = 2.243 Morgan).

	name	location
	RG472	0.000
	RG246	0.192
	K5	0.353
	U10	0.401
	RG532	0.448
	W1	0.601
	RG173	0.756
	RZ276	0.906
	Amy1B	0.944
	RG146	0.977
	RG345	1.320
	RG381	1.345
	RZ19	1.580
	RG690	1.662
	RZ730	1.794
	RZ801	2.125
	RG810	2.151
	RG331	2.243
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