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Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, T ] representing a chromosome. The
observation is the trait and the composition of the genome at some locations called
“markers”. We give the asymptotic distribution of this LRT process under the null
hypothesis that there is no QTL on [0, T ] and under local alternatives with a QTL at
t? on [0, T ]. We show that the LRT is asymptotically the square of some Gaussian
process. We give a description of this process as an “ non-linear interpolated and
normalized process ”. We propose a simple method to calculate the maximum of
the LRT process using only statistics on markers and their ratio. This gives a new
method to calculate thresholds for QTL detection.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection, MCQMC.

1. Introduction

We study a backcross population: A × (A × B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative Trait
Locus, so-called QTL (a gene in�uencing a quantitative trait which is able to
be measured) on a given chromosome. The trait is observed on n individuals
(progenies) and we denote by Yj , j = 1, ..., n, the observations, which we will
assume to be Gaussian, independent and identically distributed (i.i.d.). The
mechanism of genetics, or more precisely of meiosis, implies that among the two
chromosomes of each individual, one is purely inherited from A while the other
(the �recombined� one), consists of parts originated from A and parts originated
from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on
[0, T ] is called the genetic distance, it is measured in Morgans. The genome X(t)
of one individual takes the value +1 if, for example, the �recombined chromo-
some� is originated from A at location t and takes the value −1 if it is originated
from B . We use the Haldane modeling that can be represented as follows: X(0)
is a random sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poisson
process on [0, T ]. We assume an �analysis of variance model� for the quantitative
trait :

Y = µ + X(t?) q + σε (1)

where ε is a Gaussian white noise and t∗ is the true location of the QTL.
In fact the �genome information� will be available only at certain �xed loca-

tions t1 = 0 < t2 < ... < tK = T and the observation will be

(Y, X(t1), ..., X(tK)) .

So, we observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d. Calculation on the
Poisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) =
1

2
(1− e−2|t−t

′|),

we set in addition

r̄(t, t′) = 1− r(t, t′).
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It can be proved that, conditionally to X(t1), . . . , X(tK) , Y obeys to a mixture
model with known weights :

p(t∗)f(µ+q,σ)(.) + {1− p(t∗)} f(µ−q,σ)(.), (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the
function p(t) is the probability of P(X(t) = 1) conditionally to the observations
of the markers. It can be expressed from the functions r and r, see Sections 2
and 3 .

The challenge is that the true location t∗ is not known. If t∗ = t were
known, the model would be a regular model. If we de�ne Λn(t) and Sn(t) as the
likelihood ratio test (LRT) statistic and the score test statistic (see Section 2 for
a precise de�nition) of the null hypothesis �q = 0�. It is well known that

Λn(t) = S2
n(t) + oP (1)

and that Sn(t) is asymptotically Gaussian. Note that following Van der Vaart
(1998) we have use a multiplicative coe�cient of 2 in the de�nition of the likeli-
hood ratio test.

When t∗ is unknown, considering the maximum of Λn(t) still gives the LRT of
�q = 0�. This paper gives the exact asymptotic distribution of this LRT statistic
under the null hypothesis and under contiguous alternatives. These distributions
have been given using some approximations by Cierco (1998), Azaïs and Cierco-
Ayrolles (2002), Azaïs and Wschebor (2009). In Rebaï et al. (1995), Rebaï et al.
(1994), Chang et al. (2009), the authors focus only on the null hypothesis using
some approximations.

The main result of the paper (Theorem 1 and 2) is that the distribution
of the LRT statistic is asymptotically that of the maximum of the square of
a �non linear normalized interpolated process�. It explains the fact that the
paths of the LRT process, Λn(.), are smooth between markers (cf. Wu et al.
(2007)). The second important result is that we have a close simple formula
for the distribution of the maximum of the square of the �non linear normalized
interpolated process� see Lemma 1.

Finally, we propose a new method suitable whatever the genetic map is ,
using Monte-Carlo Quasi Monte-Carlo (Genz (1992)), to calculate thresholds for
QTL detection. This method will be compared with Rebaï et al. (1994)'s method
based on Davies (1977), and with Feingold and al. (1993)'s method based on Sieg-
mund (1985). Our method is available in a Matlab package with graphical user
interface : �imapping.zip�. It can be downloaded at www.stat.wisc.edu/∼rabier
.

We refer to the book of Van der Vaart (1998) for elements of asymptotic
statistics used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and
T : 0 = t1 < t2 = T . For t ∈ [t1, t2] we de�ne

p(t) = P
{
X(t) = 1

∣∣X(t1), X(t2)
}
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and
x(t) = E

{
X(t)

∣∣X(t1), X(t2)
}

= 2p(t)− 1.

It is clear that p(t∗) is e�ectively the probability appearing in (2). An application
of Bayes rule leads to

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1t 1X(t1)=−11X(t2)=1 + Q−1,−1t 1X(t1)=−11X(t2)=−1 (3)

where

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1t =
r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1t =

r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can remark that we have

Q−1,−1t = 1−Q1,1
t and Q−1,1t = 1−Q1,−1

t .

Let θ = (q, µ, σ) be the parameter of the model at t �xed. The likelihood
of the triplet (Y, X(t1), X(t2)) with respect to the measure λ⊗N ⊗N , λ being
the Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2] :

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
g(t) (4)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote Lt(θ) for the likelihood without this function. Thus
we set

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
and lt(θ) will be the loglikelihood. We �rst compute the Fisher information at
a point θ0 that belongs to H0.

∂lt
∂q
|θ0 =

y − µ
σ2

x(t) (5)

∂lt
∂µ
|θ0 =

y − µ
σ2

,
∂lt
∂σ
|θ0= − 1

σ
+

(y − µ)2

σ3

After some calculations, we �nd

Iθ0 = Diag

[
E
{
x2(t)

}
σ2

,
1

σ2
,

2

σ2

]
(6)

Our main result is the following
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Theorem 1. Suppose that the parameters (q, µ, σ2) vary in a compact and

that σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and

de�ne the following local alternative

Hat? : �the QTL is located at the position t? with e�ect q = a/
√
n where a 6= 0 �.

With the previous de�ned notations,

Sn(.)⇒ Z(.) , Λn(.)
F.d.−→ Z2(.) , sup Λn(.)

L−→ supZ2(.)

as n tends to in�nity, under H0 and Hat? where :

• ⇒ is the weak convergence,
F.d.→ is the convergence of �nite-dimensional

distributions and
L−→ is the convergence in distribution

• Z(.) is the Gaussian process with unit variance and

-covariance function

Γ(t, t′) =
E {x(t)x(t′)}√

E {x2(t)}
√
E {x2(t′)}

=
α(t)α(t′) + β(t)β(t′) + {α(t)β(t′) + α(t′)β(t)} ρ(t1, t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
√
α2(t′) + β2(t′) + 2α(t′)β(t′)ρ(t1, t2)

where

ρ(t1, t2) = exp(−2|t1 − t2|)
α(t) = Q1,1

t −Q
−1,1
t

β(t) = Q1,1
t −Q

1,−1
t

-expectation ∀(t, t?) ∈ [t1, t2]2 :

• under H0, m(t) = 0,

• under Hat?

mt?(t) =
a E {X(t?)x(t)}
σ
√
E {x2(t)}

= a/σ
√

E {x2(t?)} Γ(t, t∗).

It is clear that we have

Z(t) =
α(t)Z(t1) + β(t)Z(t2)√
V {α(t)Z(t1) + β(t)Z(t2)}

. (7)

In the sense of this equation, Z(.) will be called a "non linear normalized
interpolated process". As a consequence, the mean function, mt?(t), is also an
interpolated function. In particular, we have :

mt?(t) =
{α(t) mt?(t1) + β(t) mt?(t2)}√

V {α(t)Z(t1) + β(t)Z(t2)}
(8)

where

mt?(t1) =
a

σ
{α(t?) + β(t?)ρ(t1, t2)} = a ρ(t1, t

?)/σ

mt?(t2) =
a

σ
{α(t?)ρ(t1, t2) + β(t?)} = a ρ(t?, t2)/σ.

The computation of the maximum of the process Z2(.) can be performed by
using the following lemma.
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Lemma 1. Let γ1(t) and γ2(t) be two functions such that
γi(t)

γ1(t)+γ2(t)
takes

every value in [0, 1], i = 1, 2. Let C1 and C2 be two real numbers and 0 < ρ̃ < 1
then

max
t∈[t1,t2]

{γ1(t)C1 + γ2(t)C2}2

γ21(t) + γ22(t) + 2ρ̃γ1(t)γ2(t)
= max

(
C2

1 , C
2
2 ,

C2
1 + C2

2 − 2ρ̃C1C2

1− ρ̃2
1C2
C1
∈ ] ρ̃ , 1

ρ̃ [

)
.

In particular, if C1 and C2 are two random variables de�ned on the same prob-
ability space with V(Ci) = 1, i = 1, 2, Cov(C1,C2) = ρ̃ with 0 < ρ̃ < 1 and if
γ1(t) and γ2(t) are two functions as above, the lemma gives the distribution of
the maximum on [t1, t2] of the square of the following normalized interpolated
process D(.) :

∀t ∈ [t1, t2], D(t) =
γ1(t)C1 + γ2(t)C2√

γ21(t) + γ22(t) + 2ρ̃γ1(t)γ2(t)
.

So, the lemma can be applied to the process Z(.) by taking γ1(t) = α(t), γ2(t) =
β(t), ρ̃ = ρ(t1, t2), C1 = Z(t1), C2 = Z(t2), as soon as we prove that γ3(t) =

β(t)
α(t)+β(t) takes every value in [0, 1]. Let's now prove this.

Since α(t1) = 1 and β(t1) = 0, γ3(t1) = 0. Since α(t2) = 0 and β(t2) = 1,
γ3(t2) = 1. So, the bounds 0 and 1 are reached. Besides,

β(t) =
r(t1, t)r(t, t2)r(t1, t2)− r(t1, t)r(t, t2)r(t1, t2)

r(t1, t2)r(t1, t2)

has the same sign as

r(t, t2)r(t1, t2)− r(t, t2)r(t1, t2) = r(t1, t2)− r(t, t2) > 0.

Furthermore, α(t) + β(t) = 2Q1,1
t − 1 > 0 since t is bounded. So, γ3(t) which is

the ratio of two positive and continuous functions, takes every value in [0, 1].

Proof of Theorem 1 :

Preliminaries
We de�ne some additional notation. For every t, the statistical model is regular
with an invertible Fisher information matrix given by (5) underH0. Its likelihood
Lt(θ) is given by (4) with θ = (q, µ, σ2). The log likelihood, associated to n
observations will be denoted by lnt (θ).

Let lnt (θ̂) be the maximized log likelihood and let lnt (θ̂|H0
) be the maximized log

likelihood under H0, with θ̂|H0
=
(
0, Y =

∑
Yj/n, 1/n

∑
(Yj − Y )2

)
.

The likelihood ratio statistics will be de�ned as

Λn(t) = 2
[
lnt (θ̂)− lnt (θ̂|H0

]
,

on n independent observations. Since the Fisher Information matrix is diagonal,
the score statistics of the hypothesis �q = 0� will be de�ned as

Sn(t) =

∂lnt
∂q |θ0√

V
(
∂lnt
∂q |θ0

) .
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Since the model with t �xed is regular, it is easy to prove that for �xed t

Λn(t) = S2
n(t) + oP (1)

under the null hypothesis. Note that no coe�cient 1/2 is present since we have
introduced a coe�cient 2 in the de�nition of the likelihood ratio. Our goal is
now to prove that the rest above is uniform in t.

Study of the supremum of the LRT process

Let us consider now t as an extra parameter. Let t∗, θ∗ be the true parameter
that will be assumed to belong to H0. Note that t

∗ makes no sense. It is easy to
check that at H0 the Fisher information relative to t is zero so that the model
is not regular.

Conditionally to X(t1) and X(t2), the model is a mixture of Gaussian dis-
tributions with di�erent means, common unknown variance and a probability
that varies between two bounds as a consequence of Equation (2). This is a sub-
model of the general mixture of Gaussian distributions (with a probability that
varies freely between 0 and 1) as studied, for example in Section 4.3 of Azaïs et
al. (2009). In particular it proves that Theorem 1 of Azaïs et al. (2009) applies
in the sense that

sup
t,θ)

lt(θ)− lt∗(θ∗) = sup
d∈D


 1√

n

n∑
j=1

d(Xj)


2

1d(Xj)>0

+ oP (1) (9)

where the observation Xj stands for Yj , Xj(t1), Xj(t2) and where D is the set of
scores de�ned in Azaïs et al. (2009), see also Gassiat (2002). A similar result is
true under H0 with a set D0. Let us precise the sets of scores D and D0. This
sets are de�ned at the sets of scores of one parameter families that converge to
the true model pt∗,θ∗ and that are di�erentiable in quadratic mean.

These sets are subset of the subsets obtained in the general model ( p ∈ [0, 1])
so it is easy to see that when we sum the four cases for X(t1) and X(t2)

D =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R3, t ∈ [t1, t2]

}
where l′ is the gradient with respect to θ. In the same manner

D0 =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R2

}
,

where now the gradient is taken with respect to µ and σ only. Of course this
gradient does not depend on t.

Using the transform V → −V in the expressions of the sets of score, we
see that the indicator function can be removed in (9). Then, since the Fisher
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information matrix is diagonal (see formula (6)) , it is easy to see that

sup
d∈D


 1√

n

n∑
j=1

d(Xj)


2
− sup

d∈D0


 1√

n

n∑
j=1

d(Xj)


2


= sup
t∈[t1,t2]


 1√

n

n∑
j=1

∂lt
∂q (Xj) |θ0√

V
{
∂lt
∂q (Xj) |θ0

}

2 .

This is exactly the desired result.

Study of the score process under the null hypothesis
The study is based on the following key lemma :

Lemma 2. The conditional expectation x(t) of X(t) is linear in X(t1), X(t2)
:

x(t) = α(t)X(t1) + β(t)X(t2)

with α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

To prove lemma use formula (3) and check that both sides coincide whatever the
value of X(t1), X(t2) is.
Now using ( 5) it is clear that

∂lnt
∂q
|θ0=

n∑
j=1

Yj − µ
σ2

xj(t) = 1/σ

n∑
j=1

εjxj(t) =
α(t)

σ

n∑
j=1

εjXj(t1)+
β(t)

σ

n∑
j=1

εjXj(t2)

(10)
this proves ( 7).
On the other hand

Sn(tk) =

n∑
j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of central limit theorem implies that these two variables
have a limit distribution which is Gaussian centered distribution with variance(

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance. The weak convergence of the
score process, Sn(.), is then a direct consequence of (10), the convergence of
(Sn(t1), Sn(t2)) and the Continuous Mapping Theorem.

Study under the local alternative
Let us consider a local alternative de�ned by t∗ and q = a/

√
n. The model

with t∗ �xed is di�erentiable in quadratic mean, this implies that the alternative
de�nes a contiguous sequence of alternatives. By Le Cam's �rst Lemma, relation
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(9) remains true under the alternative. It remains to compute the asymptotic
distribution of Sn(t) under this alternative. Indeed, under the alternative

Sn(t) =
a

nσ

n∑
j=1

Xj(t
∗)xj(t)√

V {x(t)}
+

1√
n

n∑
j=1

εj
xj(t)√
V {x(t)}

The second term has the same distribution as under the null hypothesis and the
�rst one gives the expectation. We have

E {Sn(t)} =
a E {X(t∗)x(t)}
σ
√
V {x(t)}

.

By the properties of conditional expectation

E {X(t∗)x(t)} = E {x(t∗)x(t)} .

This gives the result.

Proof of Lemma 1 :
Without loss of generality, we can consider t ∈ [0, 1], γ1(t) = 1 − t and

γ2(t) = t. So, the focus is on the function on [0, 1]

ψ(t) =
(1− t) C1 + t C2√

(1− t)2 + t2 + 2 ρ̃ t (1− t)
where 0 < ρ̃ < 1.

We �nd that

∂ψ2(t)

∂t
= 0

⇔ {(1− t)C1 + tC2}
× [{C2 − C1} {1− 2(1− ρ̃)t(1− t)}+ (1− ρ̃)(1− 2t) {(1− t)C1 + tC2}] = 0.

Since {(1− t)C1 + tC2} corresponds to a minimum, the focus is on the second
term. After some calculations, we �nd that this second term is equal to zero for

ξ =
ρ̃ C1 − C2

(ρ̃− 1)(C2 + C1)
.

So, we just have to consider the cases ξ ∈ [0, 1] and ξ /∈ [0, 1]. Note that

ψ2(ξ) =
C2

1 + C2
2 − 2ρ̃C1C2

1− ρ̃2
.

This gives the result.

3. Several markers : the “Interval Mapping‘’ of Lander and Botstein (1989)

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T .
We consider values t, t′ or t? of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.
For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we de�ne t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the �Marker interval" (t`, tr).



10 C.E.Rabier et al.

Theorem 2. We have the same result as in Theorem 1, provided that we

make some adjustments and that we rede�ne Z(.) in the following way :

• in the de�nition of α(t) and β(t), t1 becomes t` and t2 becomes tr

• under the null hypothesis, the process Z(.) considered at marker positions is

the "squeleton" of an Ornstein-Uhlenbeck process: the stationary Gaussian

process with covariance ρ(tk, tk′) = exp(−2|tk − tk′ |)

• at the other positions, Z(.) is obtained from Z(t`) and Z(tr) by interpola-

tion and normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such as mt?(tk) = aρ(tk, t
?)/σ

• at other positions, the expection is obtained from mt?(t`) and mt?(tr) by

interpolation and normalization using the functions α(t) and β(t).

The proof of the theorem is the same the proof of Theorem 1 as soon as we
can limit our attention to the interval (t`, tr) when considering a unique instant
t and to the intervals (t`, tr)(t′`, t′r) when considering two instants t and t′. For
that we need to prove that

x(t) = E {X(t)|X(t1), . . . , X(tK)} = E
{
X(t)|X(t`), X(tr)

}
which is a direct consequence of the independance of the increments of Poisson
process.

3.1. Application to the calculation of thresholds
The theoretical results presented in this article allow us to propose a new method
to obtain the α% quantile of the maximum of the process Z2(.) under H0. This
method is a direct application of Lemma 1. If we call

h(tk, tk+1) =
Z2(tk) + Z2(tk+1)− 2ρ(tk, tk+1)Z(tk)Z(tk+1)

1− ρ2(tk, tk+1)
1Z(tk+1)

Z(tk)
∈]ρ(tk,tk+1),

1
ρ(tk,tk+1)

[

we have to compute the distribution of

M = max
{
Z2(t1), Z2(t2), h(t1, t2), ..., Z2(tK−1), Z2(tK), h(tK−1, tK)

}
.

According to Bayes rules, we have ∀c ∈ R

P(0 6M 6 c2) = P {−c 6 Z(t1) 6 c, ...,−c 6 Z(tK) 6 c} ×
P
{

0 6 h(t1, t2) 6 c2, ..., 0 6 h(tK−1, tK) 6 c2 | −c 6 Z(t1) 6 c, ...,−c 6 Z(tK) 6 c
}
.

The �rst term is an integral over the density of a dimension K Gaussian vector.
It can be performed for large K using the function QSIMVNEF of Genz which
is a MCQMC program. QSIMVNEF also allows to calculate the second term.
Monte-Carlo Quasi Monte-Carlo (MCQMC) methods of Genz (1992) are very
fast. As the numerical computation of a multivariate normal distribution is often
a di�cult problem, Genz described in his paper, a transformation that simpli�es
the problem and places it on [0, 1]K . A form that allows e�cient calculations
using standard numerical multiple integration algorithms. He suggests to use
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in particular MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC)
using N points has errors that are typically O(1/

√
N) whereas Quasi Monte-

Carlo methods (QMC) have errors which can be aproximatively O(1/N). In
order to have a con�dence interval an extra Monte-Carlo step is added, this is
MCQMC. We refer to Genz (1992) for more details.
Note that here the function QSIMVNEF has been adapted and a Newton method
has been used in order to �nd the threshold c2α such as P(0 6M 6 c2α) = α.

Our method is available in a Matlab package with graphical user interface :
�imapping.zip". It can be downloaded at www.stat.wisc.edu/∼rabier .
In this section, we propose to compare the performances of our method with
other methods usually used in QTL detection. Note that all the methods are
asymptotic in terms of the number of individuals n.

In Rebaï et al. (1994), the authors focus on another recombination model. They
propose an upper bound for the threshold corresponding to their model. This
bound is the quantity c̃2α such as :

1− α = 2 Φ(−c̃α) +
2 e−c̃

2
α/2

π

K−1∑
k=1

arctan

( √
1− ρ(tk, tk+1)

1 + ρ(tk, tk+1)

)

where Φ is the cumulative distribution of the standardized normal distribution.
This method is based on Davies (1977). However, it is sensitive to the number of
genetic markers. Indeed, the derivative of the process has a jump at each markers
location, and Davies (1977) upper bound is suitable when the derivative of the
process has a �nite number of jumps.

In Feingold and al. (1993), the authors propose a threshold based on the discrete
process resulting from tests only on markers. Besides, they suppose constant the
distance between genetic markers. The threshold c2α is such as :

1− α = 1 − Φ(cα) + 2 T cα ϕ(cα) ν(2cα
√

∆)

where ϕ is the density of a normal standardized, ∆ is distance between two
consecutive markers. This method is inspired from Siegmund (1985) where the
function ν is fully described.

In Figures 1 and 2, thresholds corresponding to the di�erent methods are com-
puted. As expected, Rebaï's method is very sensitive to the number of genetic
markers. We can observe that Feingold's method and our method give almost
same results.

Howewer, our method gives di�erent results than Feingold when the number of
genetic markers is very small (cf. Figure 3). Feingold's method requires the num-
ber of genetic markers to be not too small (cf. Feingold and al. (1993)) whereas
our method is appropriate whatever the map is. That's why, our method must
be interesting for QTL detection.
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Method this paper Rebaï Feingold

Threshold 6.76 6.92 6.78

Fig. 1. Thresholds as a function of the method considered. The map consists of 6
genetic markers equally spaced every 20cM (T = 1M, α = 95%).

Method this paper Rebaï Feingold

Threshold 8.23 9.09 8.26

Fig. 2. Thresholds as a function of the method considered. The map consists of 51
genetic markers equally spaced every 2cM (T = 1M, α = 95%).

Method this paper Feingold

Threshold 5.40 5.78

Fig. 3. Thresholds as a function of the method considered. The map consists of 2
genetic markers (T = 1M, α = 95%).
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