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Summary . We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, T ] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution of
this LRT process under the null hypothesis that there is no QTL on [0, T ] and under the alterna-
tive that there exists a QTL at t⋆ on [0, T ]. We show that the LRT is asymptotically the square
of a non linear interpolated process. We propose a simple and original method to calculate the
maximum and the argmax of the LRT process using only statistics on markers and their ratio.
We finally propose a new method to calculate thresholds for QTL detection.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, χ2 process.

1. IntroductionWe study a bakross population: A × (A × B), where A and B are purely homozygouslines and we address the problem of deteting a Quantitative Trait Lous, so-alled QTL (agene in�uening a quantitative trait whih is able to be measured) on a given hromosome.The trait is observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, theobservations, whih we will assume to be independent and identially distributed (iid). Themehanism of genetis, or more preisely of meiosis, implies that among the two hromo-somes of eah individual, one is purely inherited from A while the other (the �reombined"one), onsists of parts originated from A and parts originated from B, due to rossing-overs.Using the Haldane (1919) distane and modelling, eah hromosome will be represented bya segment [0, T ]. The distane on [0, T ] is alled the geneti distane (whih is measured inMorgans). The key point is that, if the true position of the QTL is t = t⋆, the response Yobeys to a mixture model with known weights :
p(t)f(µ+q,σ)(.) + {1 − p(t)} f(µ−q,σ)(.) (1)where f(µ,σ)(.) denotes a Gaussian density with mean µ and variane σ2. (µ, q, σ) arethe unknown parameters. At every loation t ∈ [0, T ], we perform a likelihood ratio test(LRT) of the hypothesis “q = 0” in formula (1) based on n observations Y1, ..., Yn. Weall Λn(t) the obtained quantity. The dependene on t of the weights is preisely desribed



2 Céline Delmasin Setion 3. We denote pj(t) the value of the weight p(t) for the jth observation. Theproess {Λn(t), t ∈ [0, T ]} will be alled �likelihood ratio test proess" and taking as teststatisti the maximum of this proess omes down to perform a LRT in a model when theloalisation of the QTL is an extra parameter.In the speial ase where the weights are 0 or 1 depending on the individual, Lander andBotstein (1989) stated that the asymptoti distribution of the LRT proess along [0, T ] isthe square of an Ornstein-Uhlenbek proess. This result has been proved by Ciero (1998).Bounds for the distribution of the maximum of a regularization of an Ornstein-Uhlenbekproess were proposed by Azaïs and Ciero-Ayrolles (2002), Azaïs and Wshebor (2009).Some results about the asymptoti distribution of the LRT proess under the null hypoth-esis are given in Rebaï et al. (1994) for a speial modelling of the weights. Their resultsare inferred from the bounds given by Davies (1977), Davies (1987) for the maximum ofsu�iently regular Gaussian and hi-square proesses.In this paper we onsider the modelling of the weight used by genetiists to detet QTL, soalled Interval Mapping. We give the asymptoti distribution of the LRT proess along theinterval [0, T ] under the null hypothesis that there is no QTL on [0, T ] (q = 0) and underthe alternative that there is one QTL at t⋆ on [0, T ] whih means that the quantitative traitfor eah individual is distributed as the mixture in formula (1) with t = t⋆.The main result of the paper (theorem 1 and theorem 3) is that the LRT proess is as-ymptotially the square of a �non linear interpolated proess". It desribes the fat that,when we analyze data, the likelihood pro�le (ie. the path observed of the LRT proess)is smooth between markers. Besides, we have a lose formula (lemma 1 and lemma 2) toompute the maximum of the LRT proess. This formula allows us to give advie on how toanalyze data : we should �rst perform tests on markers and then alulate only one otherstatisti in eah marker interval if the ratio between the sore statistis on the �ankingmarkers ful�ll a given ondition. Finally, we propose a new method suitable whatever thegeneti map, using Monte-Carlo Quasi Monte-Carlo (Genz (1992)), to alulate thresholdsfor QTL detetion. This method will be ompared with Rebaï et al. (1994)'s method basedon Davies (1977), and with Feingold and al. (1993)'s method based on Siegmund (1985).Note that in this artile, we also prove that the LRT proess obtained by Rebaï et al. (1994),Rebaï et al. (1995) is asymptotially the square of a �linear interpolated proess" and wegeneralize their results to the alternative hypothesis. Besides, we show that the law of themaximum of the square of the �non linear interpolated proess" is the same as the law ofthe maximum of the square of the �linear interpolated proess". We refer to the book ofVan der Vaart (1998) for element of asymptoti statistis used in proofs.
2. ModelThe hromosome is the segment [0, T ]. K geneti markers are loated on the hromosome,one at eah extremity. t1 = 0 < t2 < ... < tK = T are the loations of the markers. The�genome information" at t will be denoted X(t). The Haldane (1919) model an be writtenmathematially : let N(t) be a standard Poisson proess, the law of X(t) is 1

2 (δ1 + δ−1)and X(t) = (−1)N(t)X(t1). The Haldane (1919)'s funtion r : [0, T ]
2 7−→

[

0, 1
2

] is suh as



Likelihood Ratio Test process for QTL detection 3:
r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t) −N(t′)| odd) =

1

2
(1 − e−2|t−t′|)

r̄(t, t′) will be the funtion equal to 1 − r(t, t′).We are interested in a quantitative trait Y whih depends on the value ofX(t) at t⋆ ∈ [t1, tK ]whih is the loation of the QTL. The quantitative trait veri�es :
Yj = µ + X(t⋆) q + σεwhere ε is a Gaussian white noise and q the e�et of the QTL.Besides, the �genome information" is available only at loations of geneti markers, thatis to say at t1, t2, ..., tK . We denote by Xj(t) the value of the variable X(t) for the jthobservation. So, in fat, our observation on eah individual is (Yj , Xj(t1), ..., Xj(tK)).These observations are supposed to be iid. The goal of this study is to test if q is equal tozero. The hallenge is that t⋆ is unknown.

3. Only 2 genetic markersTo begin, we suppose that there are only two markers (K = 2) loated at 0 and T : 0 = t1 <
t2 = T . As explained previously, we are looking for a QTL lying at a position t⋆ ∈ [t1, t2].Let t ∈ [t1, t2]. It is lear that the weight p(t) satis�es p(t) = P

{

X(t) = 1
∣

∣X(t1),X(t2)
}.Consider for example the ase X(t1) = X(t2) = 1, then by the Bayes rule :

P
{

X(t) = 1
∣

∣X(t1) = 1,X(t2) = 1
}

=
(1/2) P {N(t) −N(t1) even}P {N(t2) −N(t) even}

(1/2) P {N(t2) −N(t1) even}So that, in general ∀t ∈]t1, t2[ :
p(t) = Q1,1

t 1X(t1)=11X(t2)=1 + Q1,−1
t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (2)where :
Q1,1

t =
r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)We an remark that we have :
Q−1,−1

t = 1 −Q1,1
t and Q−1,1

t = 1 −Q1,−1
tBesides, p(t1) = 1X(t1)=1 and p(t2) = 1X(t2)=1. So, the weights p(t) are ontinuous at t1and t2.Let θ = (q, µ, σ) be the parameter of the model at t �xed and θ0 = (0, µ, σ) the true valueof the parameter under H0. The likelihood of the triplet (Y, X(t1), X(t2)) with respet tothe measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the ounty measure on N, is

∀t ∈ [t1, t2] :
L(θ, t) =

[

p(t)f(µ+q,σ)(y) + {1 − p(t)} f(µ−q,σ)(y)
]

g(t) (3)



4 Céline Delmaswhere
g(t) =

1

2

{

r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}

+
1

2

{

r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}The likelihood Ln(θ, t) for n observations is obtained by the produt of n terms as above.
θ̂ = (q̂, µ̂, σ̂) will be the maximum likelihood estimator (MLE) of θ.Under H0, there is no QTL lying on the interval [t1, t2]. Besides, under H1, it is supposedthat there is only one loation where the QTL lies. The loation of the QTL, t⋆ (t⋆ ∈ [t1, t2]),will be added in the de�nition of H1. So, the alternative hypothesis an be written :

Hat⋆ : �the QTL is loated at the position t⋆ with e�et q = a/
√
n where a ∈ R

⋆ "The QTL e�et q is suh as q = a/
√
n in order to deal with Le Cam (1986)'s theory.

3.1. A “non linear interpolated process"Theorem 1 With the previous de�ned notations, and de�ning respetively Λn(.) and Sn(.),the LRT proess and the sore proess for n observations,
Sn(.) ⇒ Z(.) , Λn(.)

F.d.→ {Z(.)}2as n tends to in�nity, under H0 and Hat⋆ where :
• ⇒ is the weak onvergene and F.d.→ is the onvergene of �nite-dimensional distribu-tions
• Z(.) is the Gaussian proess with ovariane funtion ∀(t, t′) ∈ [t1, t2]

2 :
Γ(t, t′) =

4E {p(t)p(t′)} − 1
√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]and expetation ∀(t, t⋆) ∈ [t1, t2]

2 :
• under H0, m(t) = 0

• under Hat⋆

mt⋆(t) =
a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]Another way of haraterizing Z(.) is that Z(.) is the non linear interpolated proess suhas ∀t ∈ [t1, t2] :

Z(t) = { α(t) Z(t1) + β(t) Z(t2) } /
√

E

[

{2p(t) − 1}2
]



Likelihood Ratio Test process for QTL detection 5where ∀t ∈]t1, t2[, α(t) = Q1,1
t +Q1,−1

t − 1, β(t) = Q1,1
t −Q1,−1

t and α(t1) = 1, β(t1) = 0,
α(t2) = 0, β(t2) = 1, Cov {Z(t1),Z(t2)} = e−2(t2−t1).In the same way, ∀(t, t⋆) ∈ [t1, t2]

2 :
mt⋆(t) = { α(t) mt⋆(t1) + β(t) mt⋆(t2) } /

√

E

[

{2p(t) − 1}2
]The quantity E

[

{2p(t) − 1}2
] is given in formula (9) of the proof of the theorem in Setion5.1. E {p(t)p(t′)} is given in appendix 7.1. E [X(t⋆) {2p(t) − 1}] is given in formula (14) ofthe proof in Setion 5.1.We limit our attention to �nite dimensional onvergene sine for the appliations, theinterval studied is always disretized, Wu et al. (2007).Figures 1 represent the ovariane funtion Γ(t, t′) and also the mean funtion mt⋆(t). T isequal to 0.2M. We an remark that the ovariane funtion is regular.Contrary to Azaïs et al. (2006) and Azaïs et al. (2009), the shift at position t is not Γ(t, t⋆).The model onsidered here is more ompliated due to the fat that an observation inludesthe quantitative trait Y and the �genome information", X(t1) and X(t2).

Mean funtion Covariane funtion
Fig. 1. Mean function and Covariance function (a = 4, σ = 1, T = 0.2M)

3.2. RemarksAs it is well known, for regular model, LRT is equivalent to sore test in the sense that
∀t ∈ [t1, t2] :

Λn(t) = {Sn(t)}2
+ oPθ0

(1)We remind that, as in the proof of the theorem in Setion 5.1, the notation oPθ0
(1) is shortfor a sequene of random vetors that onverges to zero in probability under H0 (i.e. no



6 Céline DelmasQTL on the whole interval studied).A little algebra shows (see Setion 5.1) :
Sn(t) =

n
∑

j=1

(yj − µ) (2pj(t) − 1)

√
n σ

√

E

[

{2p(t) − 1}2
]

(4)The sore test an be obtained, replaing µ by µ̂ =
∑

yj/n, aording to Prohorov, andreplaing σ by σ̂ =
∑

(yj − µ̂)2/n, aording to Slutsky's lemma. Nevertheless, in thisartile, in order to make the reading easier, the sore test statisti is de�ned as in formula(4). The sore proess onsidered in theorem 1 is based on this formula. Howewer, we havethe same result as in theorem 1 for the other sore proess beause the tightness of thisproess is obvious aording to the proof of theorem 1.After some alulations, we an remark that :
Sn(t) = { α(t) Sn(t1) + β(t) Sn(t2) } /

√

E

[

{2p(t) − 1}2
] (5)with Cov

H0
{Sn(t1),Sn(t2)} = e−2(t2−t1). α(t) and β(t) are given quantities in theorem 1.It omes :

Λn(t) = { α(t) Sn(t1) + β(t) Sn(t2) }2
/ E

[

{2p(t) − 1}2
]

+ oPθ0
(1)Besides, by ontiguity (f. proof of theorem 1 in Setion 5.1), the quantity oPθ0
(1) onvergesalso to zero under Hat⋆ . That is to say, the LRT statisti at a position t between the twogeneti markers is asymptotially equal to the square of a non linear interpolation betweenthe sore test statistis on the markers.

3.3. A “linear interpolated process"To onstrut an approximation of Sn(.) (and Λn(.)), we introdue a new proess Vn(.) whihis obtained from Sn(.) by :
• linear (or polygonal) interpolation
• renormalizationMore preisely :

Vn(t) =

{

t2 − t

t2 − t1
Sn(t1) +

t− t1
t2 − t1

Sn(t2)

}

/
√

τ(t) (6)where
τ(t) = V

H0

{

t2 − t

t2 − t1
Sn(t1) +

t− t1
t2 − t1

Sn(t2)

}

=

(

t2 − t

t2 − t1

)2

+ 2
(t− t1)(t2 − t)

(t2 − t1)2
e−2(t2−t1) +

(

t− t1
t2 − t1

)2It an be seen easily that τ(t) 6= 0, ∀t ∈ [t1, t2]. Vn(.) remains asymptotially a Gaussianproess, entered under H0, with unit variane and Cov
H0

{Sn(t1),Sn(t2)} = e−2(t2−t1).Some omments about the proess Vn(.) :



Likelihood Ratio Test process for QTL detection 7(a) Aording to formula (10) in Setion 5.1 and after some alulations, we an estab-lish that asymptotially, the proess V 2
n (.) orresponds to likelihood ratio tests for amixture model whose weights verify :

p(t) = 1X(t1)=11X(t2)=1 +
t2 − t

t2 − t1
1X(t1)=11X(t2)=−1 +

t− t1
t2 − t1

1X(t1)=−11X(t2)=1(7)We an remark that these weights are an approximation at the �rst order of theweights onsidered previously in formula (2). So, Vn(.) will be a good approximationif and only if the geneti markers are lose to eah other.(b) V 2
n (.) is a generalization of the proess studied, under H0, by Rebaï et al. (1995) :the number of individuals in eah lass is not equal to the expetations (respetively
nr̄(t1, t2)/2, nr(t1, t2)/2, nr(t1, t2)/2, nr̄(t1, t2)/2) but is still random (respetively
∑n

j=1 1Xj(t1)=11Xj(t2)=1, ∑n
j=1 1Xj(t1)=11Xj(t2)=−1, ∑n

j=1 1Xj(t1)=−11Xj(t2)=1 and
∑n

j=1 1Xj(t1)=−11Xj(t2)=−1).() By ontiguity (f. proof of theorem 1 in Setion 5.1), under Hat⋆ , Vn(.) is asymp-totially the same proess as under H0 on whih the mean funtion m̃t⋆(t) has beenadded. m̃t⋆(t) is suh as :
m̃t⋆(t) =

{

t2 − t

t2 − t1
mt⋆(t1) +

t− t1
t2 − t1

mt⋆(t2)

}

/
√

τ(t)(d) Vn(.) is de�ned here with Cov
H0

{Sn(t1),Sn(t2)} = e−2(t2−t1). In order to onsiderother ovarianes between Sn(t1) and Sn(t2), τ(.) has to be adapted. It an easilybe seen that the new proess V 2
n (.) is still a generalization of the proess studied byRebaï et al. (1995) provided that E

[

{2p(t) − 1}2
]

6= 0 (p(t) veri�es formula (7)).We will name W (.) the limiting proess of Vn(.) : W (.) is the linear interpolated proess.Figure 2 represents two paths of the proesses W (.) and Z(.) under the null hypothesis.We remind that Z(.) is the non linear interpolated proess. We an observe that the pathsof the two proesses overlap when the distane between the two geneti markers is 20M,that is to say 0.2M. As mentioned before, W (.) is a good approximation of Z(.) when thegeneti markers are lose to eah other. As expeted, we an remark that when the distanebetween the markers is 3M, the paths of the two proesses don't overlap anymore. Notethat same onlusions hold under ontiguous alternatives (f. Rabier (2010)).
3.4. Impact of the interpolations on data analysisIn this Setion, we state why the results about the non linear interpolation and about thelinear interpolation are important for data analysis. To begin, we present a theorem and alemma.Theorem 2 Let C1 and C2 be two ontinuous random variables, and let ρ̃ suh as 0 <
ρ̃ < 1. Let onsider γ1(t) and γ2(t), two ontinuous funtions on [t1, t2], and let de�ne theproess D(.) on [t1, t2] suh as :

D(t) =
γ1(t) C1 + γ2(t) C2

√

{γ1(t)}2
+ {γ2(t)}2

+ 2 ρ̃ γ1(t) γ2(t)
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Fig. 2. Comparison between the paths, under H0, of the linear interpolated process W(.) and those
of the non linear interpolated process Z(.)then if the funtion γ2(t)

γ1(t)+γ2(t)
is bounded by 0 and 1 on [t1, t2], and if these bounds arereahed, then

sup
t∈[t1,t2]

{D(t)}2
= max

[

{C1}2
,
{C1}2

+ {C2}2 − 2 ρ̃ C1 C2

(1 + ρ̃)(1 − ρ̃)
1C2

C1
∈ ] ρ̃ , 1

ρ̃
[
, {C2}2

]

Lemma 1 With the previous de�ned notationsand reminding that W (t1) = Z(t1) and W (t2) = Z(t2),let ξ =
(t2 − t1)

{

e−2(t2−t1) W (t1) −W (t2)
}

{

e−2(t2−t1) − 1
}

{W (t1) +W (t2)}
+ t1 , then under H0 and Hat⋆

{W (ξ)}2
=

{W (t1)}2
+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)

{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
} and

sup
t∈[t1,t2]

{Z(t)}2
= sup

t∈[t1,t2]

{W (t)}2

= max

[

{W (t1)}2
, {W (ξ)}2

1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, {W (t2)}2

]

The proof of theorem 2 and lemma 1 are respetively given in Setions 5.2 and 5.3. A-ording to lemma 1, even when the geneti markers are not lose to eah other, the law ofthe supremum of the square of the two interpolated proesses is the same (see Figure 2).Howewer, when the supremum is obtained between markers, it is not obtained at the same



Likelihood Ratio Test process for QTL detection 9positions. These loations are ξ for {W (.)}2 and ξ′ for {Z(.)}2, where ξ′ is suh as :
(t2 − t1) β(ξ′)

α(ξ′) + β(ξ′)
+ t1 = ξOn the other hand, lemma 1 an easily be adapted to the non asymptoti proesses. Indeed,we an replae Z(.) by Sn(.), and W (.) by Vn(.) everywhere in this lemma, sine the fousis on the same interpolations. As previously, when the supremum is obtained betweenmarkers, it is obtained at ξ for Vn(.) and ξ′ for Sn(.). Furthermore, we an advise not toperform a large number of tests between the geneti markers anymore. First, we shouldperform sore tests on markers. Then, only if the ratio observed between the sore statistison markers (ie. the ratio Sn(t2)/Sn(t1)) belongs to the interval ] e−2(t2−t1) , e2(t2−t1) [, wehave to alulate another quantity :

ζ =
{Sn(t1)}2

+ {Sn(t2)}2 − 2 e−2(t2−t1) Sn(t1) Sn(t2)
{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
}To onlude, we should use as a test statisti :

max

[

{Sn(t1)}2
, ζ 1Sn(t2)

Sn(t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, {Sn(t2)}2

]

4. Several markers : the “Interval Mapping‘’ of Lander and Bo tstein (1989)In that ase suppose that there are K markers 0 = t1 < t2 < ... < tK = T . We onsidervalues t, t′ or t⋆ of the parameters that are distint of the markers positions, and theresult will be prolonged by ontinuity at the markers positions. For t ∈ [t1, tK ]\Tk where
Tk = {t1, ..., tK}, we de�ne tℓ and tr as :

tℓ = sup {tk ∈ Tk : tk < t} , tr = inf {tk ∈ Tk : t < tk}In other words, t belongs to the �Marker interval" (tℓ, tr).Theorem 3 We have the same result as in theorem 1 exept that the following expressionsare more ompliated :
E

[

{2p(t) − 1}2
]

, E {p(t)p(t′)} , E [X(t⋆) {2p(t) − 1}] , α(t) , β(t)Besides, Z(.) is now the non linear interpolated proess suh as :
Z(t) =

{

α(t) Z(tℓ) + β(t) Z(tr)
}

/

√

E

[

{2p(t) − 1}2
]with ∀k ∀k′, Cov {Z(tk),Z(tk′)} = e−2|tk−tk′ |.In the same way, the mean funtion mt⋆(t) is now suh as :

mt⋆(t) =
{

α(t) mt⋆(tℓ) + β(t) mt⋆(tr)
}

/

√

E

[

{2p(t) − 1}2
]All these expressions inluding a proof are given in appendix 7.2.



10 Céline DelmasNote that ∀k ∀k′, Γ(tk, tk′) = e−2|tk−tk′ |. It is relative to an Ornstein-Uhlenbek proess,as studied in Lander and Botstein (1989), and Ciero (1998).The paths of three proesses are presented in Figure 3 (T = 1M):
• the Ornstein-Uhlenbek proess.
• the proess Z(.) with only 2 markers, loated at t1 = 0 and t2 = 1M.
• the proess Z(.) with markers loated every 10M.The paths of the last two proesses are smooth (due to the interpolation) whereas the pathsof the Ornstein-Uhlenbek proess are very jerky. It's not suprising beause the Ornstein-Uhlenbek proess an be viewed as a stationnary version of the Brownian motion.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t(cM)

Ornstein−Uhlenbeck
Z(.) (only 2 markers)
Z(.) (markers every 10 cM)

Fig. 3. Paths of three different Gaussian processesReently, the law of the LRT proess under the null hypothesis has also been obtainedby Chang et al. (2009). Tehnial di�erenes are presented in appendix 7.4. The originalityof our work is �rst, that we fous not only on the null hypothesis. Seondly, we show thatthe LRT proess is asymptotially the square of a �non linear interpolated proess". Itdesribes the fat that, when we analyze data, the likelihood pro�le (ie. the path observedof the LRT proess) is smooth between markers.
4.1. RemarksThe linear interpolated proess W (.) presented in Setion 3.3 an easily be generalized tothe ase of several markers. This is a generalization of the proess studied, under H0, byRebaï et al. (1994). The details are given in appendix 7.3.In the same way, lemma 1 an be generalized :Lemma 2 With the previous de�ned notations



Likelihood Ratio Test process for QTL detection 11and reminding that ∀k W (tk) = Z(tk),let ξ(tℓ, tr) =
(tr − tℓ)

{

e−2(tr−tℓ) W (tℓ) −W (tr)
}

{

e−2(tr−tℓ) − 1
}

{W (tℓ) +W (tr)} + tℓ, then under H0 and Hat⋆

[

W
{

ξ(tℓ, tr)
}]2

=

{

W (tℓ)
}2

+ {W (tr)}2 − 2 e−2(tr−tℓ) W (tℓ) W (tr)
{

1 + e−2(tr−tℓ)
}{

1 − e−2(tr−tℓ)
}and

sup
t∈[0,T ]

{Z(t)}2
= sup

t∈[0,T ]

{W (t)}2

sup
t∈[0,T ]

{W (t)}2
= max

[

{W (t1)}2
, ..., {W (tK)}2

, [W {ξ(t1, t2)}]2 1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, ..., [W {ξ(tK−1, tK)}]2 1 W (tK )

W (tK−1)
∈ ] e−2(tK−tK−1) , e2(tK−tK−1) [

]

The proof of this lemma is largely inspired from the proof of lemma 1. Using lemma 2and using the same arguments as in Setion 3.4, we an advise to perform tests on markersand to alulate one other statisti in eah marker interval when it is required.
4.2. Application to the calculation of thresholdsThe theoretial results presented in this artile allow us to propose a new method to obtainthe α% quantile of the supremum of the proess {Z(.)}2 under H0. This method is a diretappliation of lemma 2. Besides, Monte-Carlo Quasi Monte-Carlo (MCQMC) methods ofGenz (1992) whih are very fast have been onsidered. As the numerial omputation of amultivariate normal distribution is often a di�ult problem, Genz desribed in his paper,a transformation that simpli�es the problem and plaes into a form that allows e�ientalulations using standard numerial multiple integration algorithms. He suggests to usein partiular MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC) using Npoints have errors that are typially O(1/

√
N) whereas Quasi Monte-Carlo methods (QMC)have errors O(1/N). In order to be sure that the funtions studied have nie properties forQMC, another Monte-Carlo step is required, this is MCQMC. We refer to Genz (1992) formore details. We use here funtion QSIMVNEF of Genz, whih is a Matlab funtion withsupporting funtions, for the numerial omputation of multivariate normal distributionexpeted values. This funtion has been adapted and a Newton method has been used inorder to obtain the thresholds.Our method is available in a Matlab pakage with graphial user interfae : �imapping.zip".It an be downloaded at www.math.univ-toulouse.fr/∼rabier .In this Setion, we propose to ompare the performanes of our method with other methodsusually used in QTL detetion.In Rebaï et al. (1994), we an �nd an upper bound for the threshold. This bound is the



12 Céline Delmasquantity c2 suh as :
1 − α = 2 Φ(−c) +

2 e−c2/2

π

K−1
∑

k=1

arctan





√

1 − e−2(tk+1−tk)

1 + e−2(tk+1−tk)



where Φ is the umulative distribution of the standardized normal distribution.This method is based on Davies (1977). However, it is sensitive to the number of genetimarkers. Indeed, the derivative of the proess W (.) has a jump at eah markers loation,and Davies (1977) upper bound is suitable when the derivative of the proess has a �nitenumber of jumps.In Feingold and al. (1993), the authors propose a threshold based on the disrete proessresulting from tests only on markers. Besides, they suppose onstant the distane betweengeneti markers. The threshold c2 is suh as :
1 − α = 1 − Φ(c) + 2 T c ϕ(c) ν(2c

√
∆)where ϕ is the density of a normal standardized, ∆ is distane between two onseutivemarkers.This method is inspired from Siegmund (1985) where the funtion ν is fully desribed.In Figures 4 and 5, thresholds orresponding to di�erent methods are omputed. As ex-peted, Rebaï's method is very sensitive to the number of geneti markers. We an observethat Feingold's method and our method give almost same results.Howewer, our method give di�erent results than Feingold when the number of geneti mark-ers is very small (f. Figure 6). Indeed, Feingold's method requires the number of genetimakers to be not too small (f. Feingold and al. (1993)). The advantage of our method isthat this method is appropriate whatever the map.Method this paper Rebaï FeingoldThreshold 6.76 6.92 6.78

Fig. 4. Thresholds as a function of the method considered. The map consists of 6 genetic markers
equally spaced every 20cM (T = 1M, α = 95%).Method this paper Rebaï FeingoldThreshold 8.23 9.09 8.26

Fig. 5. Thresholds as a function of the method considered. The map consists of 51 genetic markers
equally spaced every 2cM (T = 1M, α = 95%).



Likelihood Ratio Test process for QTL detection 13Method this paper FeingoldThreshold 5.40 5.78

Fig. 6. Thresholds as a function of the method considered. The map consists of 2 genetic markers
(T = 1M, α = 95%).

5. ProofsNotations : Iθ will be the Fisher information matrix taken at the point θ . Iij(θ) refers tothe element ij of Iθ. I−1
ij (θ) refers to the element ij of I−1

θ , the inverse of Iθ.
5.1. Proof of theorem 1We �rst ompute the sore funtions and the Fisher information matrix. Let t ∈ [t1, t2].

∂logL

∂q
|θ0

=
y − µ

σ2
{2p(t) − 1}

∂logL

∂µ
|θ0

=
y − µ

σ2
,

∂logL

∂σ
|θ0

= − 1

σ
+

(y − µ)2

σ3

I11(θ0) =
E

[

{2p(t) − 1}2
]

σ2
, I22(θ0) =

1

σ2As the fourth-order moment of a standard normal distribution is equal to three,
I33(θ0) =

2

σ2After some alulations, we �nd : I12(θ0) = I13(θ0) = I23(θ0) = 0. So,
Iθ0

= Diag





E

[

{2p(t) − 1}2
]

σ2
,

1

σ2
,

2

σ2



 (8)where E

[

{2p(t1) − 1}2
]

= E

[

{2p(t2) − 1}2
]

= 1 and ∀t ∈]t1, t2[ :
E

[

{2p(t) − 1}2
]

= r̄(t1, t2)
(

2Q1,1
t − 1

)2

+ r(t1, t2)
(

2Q1,−1
t − 1

)2 (9)Indeed, ∀t ∈]t1, t2[ :
E

[

{2p(t) − 1}2
]

= 2

{

(

Q1,1
t

)2

r̄(t1, t2) +
(

Q1,−1
t

)2

r(t1, t2)

}

+ 2

{

(

Q−1,1
t

)2

r(t1, t2) +
(

Q−1,−1
t

)2

r̄(t1, t2)

}

− 1



14 Céline DelmasAs Q−1,1
t = 1 − Q1,−1

t , Q−1,−1
t = 1 − Q1,1

t and r̄(t1, t2) + r(t1, t2) = 1, we obtain formula(9).
E

[

{2p(t) − 1}2
] is always di�erent from zero sine the parameter t is bounded. It omes

∀t ∈ [t1, t2] :
Λn(t) =









n
∑

j=1

(yj − µ) {2pj(t) − 1}

σ
√
n

√

E

[

{2p(t) − 1}2
]









2

+ oPθ0
(1) (10)By onvention, the notation oPθ0

(1) is short for a sequene of random vetors that onvergesto zero in probability under H0 (i.e. no QTL on the whole interval studied).Study under H0 :Without loss of generality, we assume that n = 1 for the moment and we onsider the sorefuntion :
S(t) =

(y − µ) {2p(t) − 1}

σ

√

E

[

{2p(t) − 1}2
]

=
y − µ

σ
h(t)where the fat h(.) is a random proess independent of y.It is easy to see that :

E {S(t)} = 0 , V {S(t)} = E

[

{h(t)}2
]

= 1

∀(t, t′) ∈ [t1, t2]
2 :

Γ(t, t′) := Cov {S(t), S(t′)} = E {h(t)h(t′)} =
E [{2p(t) − 1} {2p(t′) − 1}]

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

=
4E {p(t)p(t′)} − 1

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

(11)The formula for E {p(t)p(t′)} is given in appendix 7.1. As |p(t)p(t′)| 6 1, by dominatedonvergene theorem, E {p(t)p(t′)} is ontinuous at (t1, t
′), (t2, t

′) and (t1, t2). Then theovariane funtion is ontinuous at this points (beause the denominator is also ontinuous).So, the ovariane funtion is a ontinuous funtion on [t1, t2]
2.Let Sn(.) be the sore proess for n observations :

Sn(t) =
n

∑

j=1

(yj − µ) (2pj(t) − 1)

σ
√
n

√

E

[

{2p(t) − 1}2
]

(12)When n tends to in�nity, an appliation of the Multivariate Central Limit Theorem showsthat for 0 6 s1 < s2 < ... < sd 6 T :
(Sn(s1), ..., Sn(sd))

′ L→ N(0e,Σ)



Likelihood Ratio Test process for QTL detection 15were Σ is the variane ovariane matrix, with unit variane and ovariane given by formula(11). 0e is a olumn vetor of zeros. As Λn(t) = S2
n(t) + oPθ0

(1):
(Λn(s1), ...,Λn(sd))

′ L→
{

N(0e,Σ)

}2Study under Hat⋆ :In this part, we set
Yj = µ +

a√
n
Xj(t

⋆) + σ εj (13)where εj is a Gaussian white noise. Aording to formula (10), ∀t ∈ [t1, t2] :
Λn(t) = {Sn(t)}2

+ oPθ0
(1)We remind that oPθ0

(1) is short for a sequene of random vetors that onverges to zeroin probability under H0 (i.e. no QTL on the whole interval studied). Let oPθ0,t⋆
(1) be asequene of random vetors that onverges to zeros if there is no QTL at position t⋆. Then,it is lear that :

Λn(t) = {Sn(t)}2
+ oPθ0,t⋆

(1)Let θa,t⋆ be the parameter refering that we are under Hat⋆ . Under Hat⋆ , as the QTL isloated at position t⋆, the density of Y ∣

∣X(t0),X(t1) veri�es :
p(t⋆)f(µ+q,σ)(y) + {1 − p(t⋆)} f(µ−q,σ)(y)Let Qn and Pn two sequenes of probability measures de�ned on the same spae (Ωn, An).

Qn (respetively Pn) is the law orresponding to the density Ln(θa,t⋆ , t⋆) (resp Ln(θ0, t
⋆)).We will all the log likelihood ratio log dQn

dPn
. It veri�es : log dQn

dPn
= log

{

Ln(θa,t⋆ , t⋆)

Ln(θ0, t⋆)

}.Notations : Qn⊳Pn will mean the sequeneQn is ontiguous with the respet to the sequene
Pn.Let b = (a, 0, 0)

′. As the model is di�erentiable in quadrati mean at θa,t⋆ :
log

(

dQn

dPn

)

=
b′√
n
∇ logLn(θ0, t

⋆) − 1

2
b′Iθ0

b + oPθ0
(1)Then, by the entral limit theorem :

log

(

dQn

dPn

)

L−→
H0

N(−1

2
ν2, ν2) with ν2 =

a2

σ2
E

[

{2p(t⋆) − 1}2
]So, by the iii) of Le Cam's �rst lemma, we have Qn ⊳ Pn.Up to now ∀t ∈ [t1, t2] :

Λn(t) = {Sn(t)}2
+ oPθ0,t⋆

(1)



16 Céline DelmasAs Qn ⊳ Pn, aording to iv) of Le Cam's �rst lemma :
Λn(t) = {Sn(t)}2

+ oPθa,t⋆
(1)So, alulations an be done with the sore proess. Aording to formula (12) and (13),we have :

Sn(t) =
1√
n

n
∑

j=1

εjhj(t) +
n

∑

j=1

a

σn
Xj(t

⋆)hj(t) = S0
n(t) +

n
∑

j=1

a

σn
Xj(t

⋆)hj(t)where hj(.) is the equivalent of the proess h(.) de�ned above but for the individual j. S0
n(.)is the proess obtained under H0.By the law of large number :

1

n

n
∑

j=1

Xj(t
⋆)hj(t) → E {X(t⋆)h(t)}Let suppose K = 2 for the moment and, for example (t, t⋆) ∈]t1, t2[

2. Let us ompute
E [X(t⋆) {2p(t) − 1}]. We ondition on X(t1) and X(t2). Consider, for example, the ase
X(t1) = X(t2) = 1. In this ase, p(t) = Q1,1

t and we have :
E

[

X(t⋆) {2p(t) − 1}
∣

∣ X(t1) = X(t2) = 1
]

= E

[

X(t⋆)
{

2Q1,1
t − 1

}

∣

∣ X(t1) = X(t2) = 1
]

=
{

2Q1,1
t − 1

}

E
[

X(t⋆)
∣

∣ X(t1) = X(t2) = 1
]

=
{

2Q1,1
t − 1

}

{

r̄(t1, t
⋆) r̄(t⋆, t2)

r̄(t1, t2)
− r(t1, t

⋆)r(t⋆, t2)

r̄(t1, t2)

}

=
{

2Q1,1
t − 1

} {

Q1,1
t⋆ −Q−1,−1

t⋆

}

=
{

2Q1,1
t − 1

} {

2Q1,1
t⋆ − 1

}Considering the four ases :
E [ X(t⋆) {2p(t) − 1}]

=
{

2Q1,1
t − 1

} {

2Q1,1
t⋆ − 1

} 1

2
r̄(t1, t2) +

{

2Q1,−1
t − 1

} {

2Q1,−1
t⋆ − 1

} 1

2
r(t1, t2)

+
{

2Q−1,1
t − 1

} {

2Q−1,1
t⋆ − 1

} 1

2
r(t1, t2) +

{

2Q−1,−1
t − 1

} {

2Q−1,−1
t⋆ − 1

} 1

2
r̄(t1, t2)

= r̄(t1, t2)
{

2Q1,1
t⋆ − 1

} {

2Q1,1
t − 1

}

+ r(t1, t2)
{

2Q1,−1
t⋆ − 1

} {

2Q1,−1
t − 1

} (14)Aording to dominated onvergene theorem, E [ X(t⋆) {2p(t) − 1}] is ontinuous on [t1, t2]
2.As a onlusion, ∀(t, t⋆) ∈ [t1, t2]

2 :
mt⋆(t) =

a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]



Likelihood Ratio Test process for QTL detection 17A non linear interpolationAfter some alulations, we an remark that :
Sn(t) = { α(t) Sn(t1) + β(t) Sn(t2) } /

√

E

[

{2p(t) − 1}2
]where Cov

H0
{Sn(t1),Sn(t2)} = e−2t2 , α(t1) = 1, β(t1) = 0, α(t2) = 0, β(t2) = 1 and

∀t ∈]t1, t2[ :
α(t) = Q1,1

t +Q1,−1
t − 1 and β(t) = Q1,1

t −Q1,−1
tAnd it omes :

mt⋆(t) = { α(t) mt⋆(t1) + β(t) mt⋆(t2) } /
√

E

[

{2p(t) − 1}2
]Weak onvergene of the sore proessTo begin, we remind that t1 = 0 and t2 = T . As p(t) and E

[

{2p(t) − 1}2
] are ontinuousfuntions, eah trajetory of the proess Sn(.) is a ontinuous funtion on [0, T ]. Let de�nethe modulus of ontinuity of a ontinous funtion x on [0, T ] :

wx(δ) = sup|t′−t|<δ |x(t′) − x(t)| where 0 < δ 6 TAording to theorem 8.2 of Billingsley (1999), the sore proess is tight if and only if thetwo following onditions hold :(a) the sequene Sn(0) is tight.(b) For eah positive ǫ and η, there exist a δ, with 0 < δ < T , and an integer n0 suh that
P {wSn

(δ) > η} 6 ǫ ∀n > n0.Aording to Prohorov, the sequene Sn(0) is tight. So, a) is veri�ed.Let de�ne the funtions α̃(t) and β̃(t) suh as :
α̃(t) = α(t)/

√

E

[

{2p(t) − 1}2
]

, β̃(t) = β(t)/

√

E

[

{2p(t) − 1}2
]First, we an remark that ∀δ suh as 0 < δ 6 T :

wSn
(δ) = sup|t′−t|<δ |Sn(t′) − Sn(t)|

= sup|t′−t|<δ

∣

∣

∣
{α̃(t′) − α̃(t)}Sn(t1) +

{

β̃(t′) − β̃(t)
}

Sn(t2)
∣

∣

∣

6 max {|Sn(t1)| , |Sn(t2)|}
{

wα̃(δ) + wβ̃(δ)
}Let ǫ > 0 and η > 0, as the sequene max {|Sn(t1)| , |Sn(t2)|} is uniformly tight, ∃M suhas ∀n > 1 P [ max {|Sn(t1)| , |Sn(t2)|} > M ] 6 ǫ.It omes, P

[

max {|Sn(t1)| , |Sn(t2)|}
{

wα̃(δ) + wβ̃(δ)
}

> M
{

wα̃(δ) + wβ̃(δ)
} ]

6 ǫAs α̃(t) and β̃(t) are ontinuous on the ompat [0, T ], aording to Heine's theorem,



18 Céline Delmasthese funtions are uniformly ontinuous. So, let υ > 0, ∃δ1 with 0 < δ1 < T , suh as
wα̃(δ1) < υ/2 and ∃δ2 with 0 < δ2 < T suh as wβ̃(δ2) < υ/2. Let δ = min(δ1, δ2) then
wα̃(δ) + wβ̃(δ) < υ. If we impose υ = η/M , then ∀n > 1, P {wSn

(δ) > η} 6 ǫ whih meansb) of theorem 8.2 of Billingsley (1999) is ful�lled. So, the tightness of the sore proess isproved.To onlude, the tightness and the onvergene of �nite-dimensional imply the weak on-vergene of the sore proess.
5.2. Proof of theorem 2Introduing the proess W̃ (.) :We onsider the proess W̃ (.) on [0, 1] suh as :

W̃ (t) =
(1 − t) C1 + t C2

√

(1 − t)2 + t2 + 2 ρ̃ t (1 − t)We an remark that W̃ (0) = C1 and W̃ (1) = C2.The interest is on the supremum of the proess {

W̃ (.)
}2 :

{

W̃ (t)
}2

=
(1 − t)2 {C1}2

+ 2t(1 − t)C1C2 + t2 {C2}2

(1 − t)2 + t2 + 2 ρ̃ t (1 − t)We will all respetively N(t) and D(t) the numerator and the denominator of the frationabove.
∂N(t)

∂t
= 2 {(1 − t) C1 + t C2} {C2 − C1}We an remark that :

(1 − t)2 + t2 + 2 t ρ̃ (1 − t) = 1 − 2( 1 − ρ̃) t (1 − t) (15)It omes : ∂D(t)
∂t = −2 (1 − ρ̃) (1 − 2t). So,
∂

{

W̃ (t)
}2

∂t
= [ 2 {(1 − t)C1 + tC2} {C2 − C1} {1 − 2(1 − ρ̃)t(1 − t)}

+ 2(1 − ρ̃)(1 − 2t) {(1 − t)C1 + tC2}2
]

/ {D(t)}2We have :
∂

{

W̃ (t)
}2

∂t
= 0

⇔ {(1 − t)C1 + tC2}
× [{C2 − C1} {1 − 2(1 − ρ̃)t(1 − t)} + (1 − ρ̃)(1 − 2t) {(1 − t)C1 + tC2}] = 0As {(1 − t)C1 + tC2} orresponds to a minimum, the fous is on the seond term. Thisseond term is equal to zero if :

C2

C1
=

1 + ρ̃

1 + (ρ̃− 1)t
− 1



Likelihood Ratio Test process for QTL detection 19Let de�ne the funtion ψρ̃(t) suh as :
ψρ̃(t) =

1 + ρ̃

1 + (ρ̃− 1)t
− 1As (ρ̃ − 1)t is a dereasing funtion on [0, 1], then ψρ̃(t) is an inreasing funtion on [0, 1]with ψρ̃(0) = ρ̃ and ψρ̃(1) = 1

ρ̃ .Let de�ne ψ−1
ρ̃ the inverse funtion of ψρ̃. After straightforward alulations, we �nd :

ψ−1
ρ̃ (u) =

ρ̃− u

(ρ̃− 1)(u+ 1)So, the extremum between 0 and 1 is obtained for :
ξ̃ =

ρ̃ C1 − C2

(ρ̃− 1) {C2 + C1}After some alulations, using formula (15), we �nd that :
(1 − ξ̃)2 + ξ̃2 + 2 ξ̃ ρ̃ (1 − ξ̃) =

1 + ρ̃

1 − ρ̃

{C1}2
+ {C2}2 − 2 ρ̃ C1 C2

{C1 + C2}2It omes :
{

W̃ (ξ̃)
}2

=
{C1}2

+ {C2}2 − 2 ρ̃ C1 C2

(1 + ρ̃)(1 − ρ̃)So :
sup

t∈[0,1]

{

W̃ (t)
}2

=
{

W̃ (ξ̃)
}2

1C2
C1

∈ ] ρ̃ , 1
ρ̃

[
+ {C2}2

1C2
C1

∈ [ 1
ρ̃

, +∞ [

+ {C1}2
1C2

C1
∈ [ 0 , ρ̃ ]

+ {C1}2
1C2

C1
∈ ] −∞ , 0[

T
|C1|>|C2|

+ {C2}2
1C2

C1
∈ ] −∞ , 0[

T
|C2|>|C1|

(16)A onise version of this formula is that the supremum of {

W̃ (.)
}2 is the maximum of threerandom variables :

sup
t∈[0,1]

{

W̃ (t)
}2

= max

[

{C1}2
,

{

W̃ (ξ̃)
}2

1C2
C1

∈ ] ρ̃ , 1
ρ̃

[
, {C2}2

]Let γ1(t) and γ2(t) be two ontinuous funtions on [t1, t2]. Besides, as in theorem 2, letsuppose that γ2(t)
γ1(t)+γ2(t)

is bounded by 0 and 1, and that these bounds are reahed. Wehave ∀t ∈ [t1, t2] :
W̃

(

γ2(t)

γ1(t) + γ2(t)

)

= D(t)And,
sup

t∈[t1,t2]

{D(t)}2
= sup

t∈[0,1]

{

W̃ (t)
}2It onludes the proof.
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5.3. Proof of lemma 1Study of the supremum of the linear interpolated proess W (.) :Let onsider the proess W (.) on [t1, t2]. It veri�es ∀t ∈ [t1, t2]:
W (t) =

{

t2 − t

t2 − t1
W (t1) +

t− t1
t2 − t1

W (t2)

}

/
√

τ(t)where
τ(t) =

(

t2 − t

t2 − t1

)2

+ 2
(t− t1)(t2 − t)

(t2 − t1)2
e−2(t2−t1) +

(

t− t1
t2 − t1

)2Using same notations as in theorem 2, let onsider :
γ1(t) =

t2 − t

t2 − t1
, γ2(t) =

t− t1
t2 − t1

, C1 = W (t1) , C2 = W (t2) , ρ̃ = e−2(t2−t1)We will all γ3(t) the ratio γ2(t)
γ1(t)+γ2(t)

. We have γ3(t) = t−t1
t2−t1

. So, γ3(t2) = 1, γ3(t1) = 0,and 0 6 γ3(t) 6 1. As a onsequene, aording to theorem 2 :
sup

t∈[t1,t2]

{W (t)}2
= max

[

{W (t1)}2
, {W (t2)}2

,

{W (t1)}2
+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)

{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
} 1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

]In the same way as in the proof of theorem 2 (f. Setion 5.2), we have :
{W (ξ)}2

=
{W (t1)}2

+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)
{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
}with :

ξ =
(t2 − t1)

{

e−2(t2−t1) W (t1) −W (t2)
}

{

e−2(t2−t1) − 1
}

{W (t1) +W (t2)}
+ t1Study of the supremum of the non linear interpolated proess Z(.) :Let onsider the proess Z(.) on [t1, t2]. It veri�es ∀t ∈ [t1, t2] :

Z(t) = {α(t)Z(t1) + β(t)Z(t2)} /
√

{α(t)}2
+ {β(t)}2

+ 2 α(t) β(t) e−2(t2−t1)Indeed, aording to the proof of theorem 1 (f. Setion 5.1), Z(.) has unit variane.Using same notations as in theorem 2, let onsider :
γ1(t) = α(t) , γ2(t) = β(t) , C1 = Z(t1) , C2 = Z(t2) , ρ̃ = e−2(t2−t1)As previously, we will all γ3(t) the ratio γ2(t)

γ1(t)+γ2(t)
. We have γ3(t) = β(t)

α(t)+β(t) . To begin,we will admit that ∀t ∈ [t1, t2], 0 6 γ3(t) 6 1. Besides, γ3(t2) = 1 and γ3(t1) = 0.
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sup

t∈[t1,t2]

{Z(t)}2
= max

[

{Z(t1)}2
, {Z(t2)}2

,

{Z(t1)}2
+ {Z(t2)}2 − 2 e−2(t2−t1) Z(t1) Z(t2)

{

1 + e−2(t2−t1)
} {

1 − e−2(t2−t1)
} 1Z(t2)

Z(t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

]To onlude, as Z(t1) = W (t1) and Z(t2) = W (t2) :
sup

t∈[t1,t2]

{Z(t)}2
= sup

t∈[t1,t2]

{W (t)}2The interest is now on the funtion γ3(t). ∀t ∈ [t1, t2], we have :
γ3(t) = 1 − Q1,1

t +Q1,−1
t − 1

2Q1,1
t − 1In order to proove that ∀t ∈]t1, t2[ 0 < γ3(t) < 1, we will proove that 0 < γ̄3(t) < 1 with

γ̄3(t) = (Q1,1
t +Q1,−1

t − 1)/(2Q1,1
t − 1).The alulation of the derivative of Q1,1

t shows that Q1,1
t is a dereasing funtion on

]t1, (t1 + t2)/2] and an inreasing funtion on [(t1 + t2)/2, t2[. The minimum is Q1,1
(t1+t2)/2.Sine Q1,1

(t1+t2)/2 =
{

1 + e−2(t1+t2) + 2e−t1−t2
}

/
{

2 + 2e−2(t2−t1)
}, we have Q1,1

(t1+t2)/2 >

1/2. By ontinuity, 0 < 2Q1,1
t − 1. The fous is now on the numerator of γ̄3(t). Afteralulations, we obtain :

∂(Q1,1
t +Q1,−1

t )

∂t
=

−e−2(t−t1) − e−4t2+2t+2t1

2 r(t1, t2) r̄(t1, t2)As a onsequene, Q1,1
t + Q1,−1

t − 1 is a dereasing funtion on ]t1, t2[. By ontinuity,
0 < Q1,1

t +Q1,−1
t − 1. So, γ̄3(t) > 0.On the other hand, the study of the derivative of Q1,1

t −Q1,−1
t shows that Q1,1

t > Q1,−1
t . Itomes ∀t ∈]t1, t2[, 0 < γ̄3(t) < 1 and 0 < γ3(t) < 1.
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7. Appendix

7.1. Formula for E {p(t)p(t′)}
∀(t, t′) ∈]t1, t2[

2 :
E {p(t)p(t′} =

1

2

{

Q1,1
t Q1,1

t′ r̄(t1, t2) +Q1,−1
t Q1,−1

t′ r(t1, t2)
}

+
1

2

{

Q−1,1
t Q−1,1

t′ r(t1, t2) +Q−1,−1
t Q−1,−1

t′ r̄(t1, t2)
}This quantity is ontinuous at t1 and t2 (f. proof of theorem 1 in Setion 5.1)
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7.2. Sketch of the proof of theorem 3Let t ∈ [t1, tK ]\Tk. As t belongs to the �Marker interval" (tℓ, tr), some adjustments with Se-tion 3 have to be done : t1 beomes tℓ and t2 beomes tr. So, p(t) is now the quantity equal to
P

{

X(t) = 1
∣

∣X(tℓ),X(tr)
}. In the same way, p(t), Q1,1

t , Q1,−1
t , Q−1,1

t and Q−1,−1
t desribedin formula (2) have to be adapted to the �Marker interval". The likelihood presented informula (3), is unhanged exept that the fous is on the triplet (

Y, X(tℓ), X(tr)
) and thefuntion g(t) has to be adapted to the �Marker interval". Formula (10) of Setion 5.1 is alsosuitable t ∈ [t1, tK ]\Tk beause t is bounded. It omes, ∀(t, t′) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :

Γ(t, t′) =
4E {p(t)p(t′)} − 1

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

E

[

{2p(t) − 1}2
] desribed in formula (9) of Setion 5.1 has to be adapted to the �Markerinterval".

∀(t, t′) ∈ ]tℓ, tr[2, the expression of E {p(t)p(t′)} an be dedued from appendix 7.1 byadapting to the �Marker interval".Besides, if (t, t′) ∈ ]tℓ, tr[ × [tr, tK ]\Tk :
E {p(t)p(t′)}

=
1

2
r̄(tℓ, tr)

[

Q1,1
t′ r̄

{

(t′)ℓ, (t′)r
}

+Q1,−1
t′ r

{

(t′)ℓ, (t′)r
}

] [

Q1,1
t r̄

{

tr, (t′)ℓ
}

+Q−1,−1
t r

{

tr, (t′)ℓ
}

]

+
1

2
r̄(tℓ, tr)

[

Q−1,1
t′ r

{

(t′)ℓ, (t′)r
}

+Q−1,−1
t′ r̄

{

(t′)ℓ, (t′)r
}

] [

Q1,1
t r

{

tr, (t′)ℓ
}

+Q−1,−1
t r̄

{

tr, (t′)ℓ
}

]

+
1

2
r(tℓ, tr)

[

Q1,1
t′ r̄

{

(t′)ℓ, (t′)r
}

+Q1,−1
t′ r

{

(t′)ℓ, (t′)r
}

] [

Q1,−1
t r

{

tr, (t′)ℓ
}

+Q−1,1
t r̄

{

tr, (t′)ℓ
}

]

+
1

2
r(tℓ, tr)

[

Q−1,1
t′ r

{

(t′)ℓ, (t′)r
}

+Q−1,−1
t′ r̄

{

(t′)ℓ, (t′)r
}

] [

Q1,−1
t r̄

{

tr, (t′)ℓ
}

+Q−1,1
t r

{

tr, (t′)ℓ
}

]In the same way as what has been done in the proof of theorem 1 (f. Setion 5.1),
∀(t, t⋆) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :

mt⋆(t) =
a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]If (t, t⋆) ∈]tℓ, tr[2, then E [X(t⋆) {2p(t) − 1}] has the same expression as in formula (14) ofSetion 5.1 provided that we adapt to the �Marker interval".Besides, if (t, t⋆) ∈ ]tℓ, tr[ × [tr, tK ]\Tk :

E [X(t⋆) {2p(t) − 1}]
= 2 Q1,1

t E
{

X(t⋆)1X(tℓ)=11X(tr)=1

}

+ 2 Q1,−1
t E

{

X(t⋆)1X(tℓ)=11X(tr)=−1

}

+ 2 Q−1,1
t E

{

X(t⋆)1X(tℓ)=−11X(tr)=1

}

+ 2 Q−1,−1
t E

{

X(t⋆)1X(tℓ)=−11X(tr)=−1

}

= r̄(tℓ, t) r̄(t, tr) {1 − 2r(tr, t⋆)} + r̄(tℓ, t) r(t, tr) {2r(tr, t⋆) − 1}
+ r(tℓ, t) r̄(t, tr) {1 − 2r(tr, t⋆)} + r(tℓ, t) r(t, tr) {2r(tr, t⋆) − 1}
= {1 − 2r(t, tr)} {1 − 2r(tr, t⋆)} = e−2(t⋆−t)



Likelihood Ratio Test process for QTL detection 23As we deal with Poisson proesses, it is reversible. So, If (t, t⋆) ∈ [t⋆r, tK ]\Tk× ]t⋆ℓ, t⋆r[ :
E [X(t⋆) {2p(t) − 1}] =

{

1 − 2r(t⋆, tℓ)
} {

1 − 2r(tℓ, t)
}

= e−2(t−t⋆)So, if t and t⋆ do not belong to the same �Marker interval" :
E [X(t⋆) {2p(t) − 1}] = e−2|t−t⋆| (17)A non linear interpolationConerning the non linear interpolation, we have to adapt formula (5) of Setion 3.1 to the�Marker interval". ∀t ∈ [t1, tK ]\Tk we have :

Sn(t) =
{

α(t) Sn(tℓ) + β(t) Sn(tr)
}

/

√

E

[

{2p(t) − 1}2
] (18)where α(t) = Q1,1

t +Q1,−1
t − 1, β(t) = Q1,1

t −Q1,−1
t and ∀k ∀k′, Cov

H0
{Sn(tk),Sn(tk′)} =

e−2|tk−tk′ |.It omes ∀(t, t⋆) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :
mt⋆(t) =

{

α(t) mt⋆(tℓ) + β(t) mt⋆(tr)
}

/

√

E

[

{2p(t) − 1}2
]Weak onvergene of the sore proessEah trajetory of the proess Sn(.) is a ontinuous funtion on [0, T ]. In the same way asin the proof of theorem 1 in Setion 5.1, in order to prove the tightness of the sore proess,we have to verify that onditions a) and b) of theorem 8.2 of Billingsley (1999) are ful�lled.Aording to Prohorov, Sn(0) is tight, so a) is ful�lled.We remind the modulus of ontinuity of Sn(t) :

wSn
(δ) = sup|t′−t|<δ |Sn(t′) − Sn(t)| where 0 < δ 6 TLet de�ne wk

Sn
(δ), the modulus of ontinuity of Sn(t) only between the markers k and k+1:

wk
Sn

(δ) = sup|t′−t|<δ |Sn(t′ + tk) − Sn(t+ tk)| where 0 < δ 6 tk+1 − tkAs the sore proess is tight when there are only two markers (f. proof of theorem 1),aording to b) of theorem 8.2 of Billingsley (1999), we have for a given k:
∀ǫ > 0 ∀η > 0 ∃δk with 0 < δk < tk+1 − tk suh that P

{

wk
Sn

(δk) > η
}

6 ǫSo, let ǫ > 0, ǫ′ = ǫ/(K − 1), η > 0 and we impose δ = mink∈{1,...,K−1}(δk)then ∀k ∈ {1, ...,K − 1} P
{

wk
Sn

(δ) > η
}

6 ǫ′.As wSn
(δ) > w1

Sn
(δ) + ... + wK−1

Sn
(δ), then P {wSn

(δ) > η} 6
∑K−1

k=1 P
{

wk
Sn

(δ) > η
}

6 ǫwhih means b) of theorem 8.2 of Billingsley (1999) is ful�lled. So, the tightness of thesore proess is proved.To onlude, the tightness and the onvergene of �nite-dimensional imply the weak on-vergene of the sore proess.
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7.3. Linear interpolated process in presence of several markersIn presene of several markers, the proess Vn(.) is suh as ∀t ∈ [t1, tK ]\Tk :
Vn(t) =

{

tr − t

tr − tℓ
Sn(tℓ) +

t− tℓ

tr − tℓ
Sn(tr)

}

/
√

τ(t)where
τ(t) =

(

tr − t

tr − tℓ

)2

+ 2
(tr − t)(t− tℓ)

(tr − tℓ)2
e−2(tr−tℓ) +

(

t− tℓ

tr − tℓ

)2It an be seen easily that τ(t) 6= 0, ∀t ∈ [t1, tK ]\Tk .
Vn(.) remains asymptotially a Gaussian proess with mean equal to 0 under H0, unitvariane, and ∀k ∀k′, Cov

H0
{Sn(tk),Sn(tk′)} = e−2|tk−tk′ |. In the same way as what hasbeen done in Setion 3.3, the weights of the model of mixture orresponding to this proessverify :

p(t) = 1X(tℓ)=11X(tr)=1 +
tr − t

tr − tℓ
1X(tℓ)=11X(tr)=−1 +

t− tℓ

tr − tℓ
1X(tℓ)=−11X(tr)=1This weights are an approximation at the �rst order of the original weights. So, Vn(.) willbe a good approximation if and only if the geneti markers are lose to eah other. Thisproess Vn(.) is a generalization of the proess studied, under H0, by Rebaï et al. (1994).By ontiguity (in the same way of what has been done in Setion 5.1), under Hat⋆ , Vn(.) isasymptotially the same proess as under H0 on whih the mean funtion, m̃t⋆(t), has beenadded :

m̃t⋆(t) =

{

tr − t

tr − tℓ
mt⋆(tℓ) +

t− tℓ

tr − tℓ
mt⋆(tr)

}

/
√

τ(t)As previously, W (.), the limiting proess of Vn(.), is named the linear interpolated proess.
7.4. Comparison with Chang et al. (2009)The law of the LRT proess has also been obtained by Chang et al. (2009) under the nullhypothesis. We propose here to present tehnial di�erenes between our work and thework of Chang et al. (2009). As at a loation t, the LRT is asymptotially the square ofthe sore test, we will fous only on the sore proess as in Chang et al. (2009).The main di�erene between the two approahes is that we onsider the number of indi-viduals in eah lass as a random variable whereas in Chang et al. (2009), the numberof individuals in eah lass is supposed equal to the expetations (same remark as (b) ofSetion 3.3).Our approah allows us to ompute the sore funtion ∂ log L

∂q |θ0
for only one observationand to alulate the Fisher information matrix without approximation.Anyway, we obtain exatly the same Fisher information matrix as in Chang et al. (2009).However, there are some di�erenes onerning other quantities.7.4.1. Only two markers :Let onsider that there is only two markers as desribed in Setion 3. Let t ∈]t1, t2[. Theresult will be prolonged by ontinuity at the markers positions. Aording to formula (4)



Likelihood Ratio Test process for QTL detection 25of Setion 3.3 and using the fat that Q1,1
t = 1 −Q−1,−1

t and Q1,−1
t = 1 −Q−1,1

t , the soretest statisti is :
Sn(t) = (1 − 2Q−1,−1

t )

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n

√

E

[

{2p(t) − 1}2
]

+ (1 − 2Q−1,1
t )

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n

√

E

[

{2p(t) − 1}2
]With our notations, the test statisti used in formula (8) of Chang et al. (2009) is :

U⋆(t) =

√
n

2
(1 − 2Q−1,−1

t )
r̄(t1, t2) (ȳ11 − ȳ−1−1)

σ̂

√

E

[

{2p(t) − 1}2
]

+

√
n

2
(1 − 2Q−1,1

t )
r(t1, t2) (ȳ1−1 − ȳ−11)

σ̂

√

E

[

{2p(t) − 1}2
]where ȳ11 = 2

nr̄(t1,t2)

∑n
j=1 1Xj(t1)=11Xj(t2)=1 , ȳ−11 = 2

nr(t1,t2)

∑n
j=1 1Xj(t1)=−11Xj(t2)=1

ȳ1−1 = 2
nr(t1,t2)

∑n
j=1 1Xj(t1)=11Xj(t2)=−1 and ȳ−1−1 = 2

nr̄(t1,t2)

∑n
j=1 1Xj(t1)=−11Xj(t2)=−1.We an remark Sn(t) 6= U⋆(t) + oPθ0

(1). It is due to the approximations done by Chang etal. (2009).Let G1
n(t) and G2

n(t) be the quantities suh as :
G1

n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√

n r̄(t1, t2)

G2
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√

n r(t1, t2)

G1
n(t) and G2

n(t) are asymptotially standard normal variables under H0. Besides, G1
n(t)and G2

n(t) are independent. Note that G1
n(t) and G2

n(t) do not depend on t but we keep tas a parameter in order to adapt these test statistis to the ase of several markers in thenext Setion.Contrary to formula (9) of Chang et al. (2009) :
G1

n(t) 6= 1

2

√

r̄(t1, t2)n
ȳ11 − ȳ−1−1

σ̂
+ oPθ0

(1)

G2
n(t) 6= 1

2

√

r(t1, t2)n
ȳ1−1 − ȳ−11

σ̂
+ oPθ0

(1)We have :
Sn(t) =

{

√

r̄(t1, t2) (1 − 2Q−1,−1
t ) G1

n(t) +
√

r(t1, t2) (1 − 2Q−1,1
t ) G2

n(t)
}

/

√

E

[

{2p(t) − 1}2
](19)This formula is the orreted version of formula (10) of Chang et al. (2009) without approx-imations here. Aording to formula (19), the sore at a position t between two markers,



26 Céline Delmasis an interpolation not linear between the test statisti G1
n(t) and G2

n(t). Naturally, when ttends to t1 (resp. t2), Sn(t) tends to Sn(t1) (resp. Sn(t2)). It beomes a linear interpolationbetween Sn(t1) and Sn(t2) if a Taylor linearization is done onerning the weights of themodel of mixture (f. Setion 3.3).Finally, we agree with formula (11) of Chang et al. (2009) onerning the ovariane of theproess, it is exatly the same funtion as Γ(t, t′) of theorem 1 of this paper.Note that the non linear interpolation presented above, in formula (19), is not the sameinterpolation as presented in formula (5) of Setion 3.2 of this paper. Our interpolationis more intuitive, beause it is an interpolation between the test statisti on markers. Be-sides, it explains why the likelihood pro�les (ie. the paths of the proess Λn(.)) are smoothbetween markers.7.4.2. Several markers : the �Interval Mapping`' of Lander and Botstein (1989)Let onsider that there are several markers as desribed in Setion 4. We onsider values t,
t′ of the parameters that are distint of markers positions. Let t ∈ [t1, tK ]\Tk. We have :

G1
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(tℓ)=11Xj(tr)=1 − 1Xj(tℓ)=−11Xj(tr)=−1

}

σ
√

n r̄(tℓ, tr)

G2
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(tℓ)=11Xj(tr)=−1 − 1Xj(tℓ)=−11Xj(tr)=1

}

σ
√

n r(tℓ, tr)

Sn(t) =

{

√

r̄(tℓ, tr) (2Q1,1
t − 1) G1

n(t) +
√

r(tℓ, tr) (2Q1,−1
t − 1) G2

n(t)

}

/

√

E

[

{2p(t) − 1}2
]This last formula is the orreted version of formula (14) of Chang et al. (2009).Let (t, t′) ∈ ]tℓ, tr[ × [tr, tK ]\Tk. The di�erent ovarianes under H0 are :

Cov
H0

{

G1
n(t),G1

n(t′)
}

=
√

r̄(tℓ, tr) r̄ {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

Cov
H0

{

G1
n(t),G2

n(t′)
}

=
√

r̄(tℓ, tr) r {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

CovH0

{

G2
n(t),G1

n(t′)
}

= −
√

r(tℓ, tr) r̄ {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

Cov
H0

{

G2
n(t),G2

n(t′)
}

= −
√

r(tℓ, tr) r {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}This is exatly the same ovarianes as in formula (19) of Chang et al. (2009). Besides, weagree with formula (20) of Chang et al. (2009) whih establish a relationship between thetest statisti G when t and t′ belong to 2 onseutive marker interval (as above we suppose
t < t′):

G2
n(t′) =

1
√

r(tr, (t′)r)

{

√

r̄(tℓ, tr) G1
n(t) −

√

r(tℓ, tr) G2
n(t) −

√

r̄(tr, (t′)r) G1
n(t′)

}To onlude, the non linear interpolation proposed by Chang et al. (2009) is an approx-imation. We present here their interpolation without approximations. Howewer, theirapproximations don't a�et the �nal results onerning the proess.
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