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Summary . We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, T ] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution of
this LRT process under the null hypothesis that there is no QTL on [0, T ] and under the alterna-
tive that there exists a QTL at t⋆ on [0, T ]. We show that the LRT is asymptotically the square
of a non linear interpolated process. We propose a simple and original method to calculate the
maximum and the argmax of the LRT process using only statistics on markers and their ratio.
We finally propose a new method to calculate thresholds for QTL detection.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, χ2 process.

1. IntroductionWe study a ba
k
ross population: A × (A × B), where A and B are purely homozygouslines and we address the problem of dete
ting a Quantitative Trait Lo
us, so-
alled QTL (agene in�uen
ing a quantitative trait whi
h is able to be measured) on a given 
hromosome.The trait is observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, theobservations, whi
h we will assume to be independent and identi
ally distributed (iid). Theme
hanism of geneti
s, or more pre
isely of meiosis, implies that among the two 
hromo-somes of ea
h individual, one is purely inherited from A while the other (the �re
ombined"one), 
onsists of parts originated from A and parts originated from B, due to 
rossing-overs.Using the Haldane (1919) distan
e and modelling, ea
h 
hromosome will be represented bya segment [0, T ]. The distan
e on [0, T ] is 
alled the geneti
 distan
e (whi
h is measured inMorgans). The key point is that, if the true position of the QTL is t = t⋆, the response Yobeys to a mixture model with known weights :
p(t)f(µ+q,σ)(.) + {1 − p(t)} f(µ−q,σ)(.) (1)where f(µ,σ)(.) denotes a Gaussian density with mean µ and varian
e σ2. (µ, q, σ) arethe unknown parameters. At every lo
ation t ∈ [0, T ], we perform a likelihood ratio test(LRT) of the hypothesis “q = 0” in formula (1) based on n observations Y1, ..., Yn. We
all Λn(t) the obtained quantity. The dependen
e on t of the weights is pre
isely des
ribed



2 Céline Delmasin Se
tion 3. We denote pj(t) the value of the weight p(t) for the jth observation. Thepro
ess {Λn(t), t ∈ [0, T ]} will be 
alled �likelihood ratio test pro
ess" and taking as teststatisti
 the maximum of this pro
ess 
omes down to perform a LRT in a model when thelo
alisation of the QTL is an extra parameter.In the spe
ial 
ase where the weights are 0 or 1 depending on the individual, Lander andBotstein (1989) stated that the asymptoti
 distribution of the LRT pro
ess along [0, T ] isthe square of an Ornstein-Uhlenbe
k pro
ess. This result has been proved by Cier
o (1998).Bounds for the distribution of the maximum of a regularization of an Ornstein-Uhlenbe
kpro
ess were proposed by Azaïs and Cier
o-Ayrolles (2002), Azaïs and Ws
hebor (2009).Some results about the asymptoti
 distribution of the LRT pro
ess under the null hypoth-esis are given in Rebaï et al. (1994) for a spe
ial modelling of the weights. Their resultsare inferred from the bounds given by Davies (1977), Davies (1987) for the maximum ofsu�
iently regular Gaussian and 
hi-square pro
esses.In this paper we 
onsider the modelling of the weight used by geneti
ists to dete
t QTL, so
alled Interval Mapping. We give the asymptoti
 distribution of the LRT pro
ess along theinterval [0, T ] under the null hypothesis that there is no QTL on [0, T ] (q = 0) and underthe alternative that there is one QTL at t⋆ on [0, T ] whi
h means that the quantitative traitfor ea
h individual is distributed as the mixture in formula (1) with t = t⋆.The main result of the paper (theorem 1 and theorem 3) is that the LRT pro
ess is as-ymptoti
ally the square of a �non linear interpolated pro
ess". It des
ribes the fa
t that,when we analyze data, the likelihood pro�le (ie. the path observed of the LRT pro
ess)is smooth between markers. Besides, we have a 
lose formula (lemma 1 and lemma 2) to
ompute the maximum of the LRT pro
ess. This formula allows us to give advi
e on how toanalyze data : we should �rst perform tests on markers and then 
al
ulate only one otherstatisti
 in ea
h marker interval if the ratio between the s
ore statisti
s on the �ankingmarkers ful�ll a given 
ondition. Finally, we propose a new method suitable whatever thegeneti
 map, using Monte-Carlo Quasi Monte-Carlo (Genz (1992)), to 
al
ulate thresholdsfor QTL dete
tion. This method will be 
ompared with Rebaï et al. (1994)'s method basedon Davies (1977), and with Feingold and al. (1993)'s method based on Siegmund (1985).Note that in this arti
le, we also prove that the LRT pro
ess obtained by Rebaï et al. (1994),Rebaï et al. (1995) is asymptoti
ally the square of a �linear interpolated pro
ess" and wegeneralize their results to the alternative hypothesis. Besides, we show that the law of themaximum of the square of the �non linear interpolated pro
ess" is the same as the law ofthe maximum of the square of the �linear interpolated pro
ess". We refer to the book ofVan der Vaart (1998) for element of asymptoti
 statisti
s used in proofs.
2. ModelThe 
hromosome is the segment [0, T ]. K geneti
 markers are lo
ated on the 
hromosome,one at ea
h extremity. t1 = 0 < t2 < ... < tK = T are the lo
ations of the markers. The�genome information" at t will be denoted X(t). The Haldane (1919) model 
an be writtenmathemati
ally : let N(t) be a standard Poisson pro
ess, the law of X(t) is 1

2 (δ1 + δ−1)and X(t) = (−1)N(t)X(t1). The Haldane (1919)'s fun
tion r : [0, T ]
2 7−→

[

0, 1
2

] is su
h as



Likelihood Ratio Test process for QTL detection 3:
r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t) −N(t′)| odd) =

1

2
(1 − e−2|t−t′|)

r̄(t, t′) will be the fun
tion equal to 1 − r(t, t′).We are interested in a quantitative trait Y whi
h depends on the value ofX(t) at t⋆ ∈ [t1, tK ]whi
h is the lo
ation of the QTL. The quantitative trait veri�es :
Yj = µ + X(t⋆) q + σεwhere ε is a Gaussian white noise and q the e�e
t of the QTL.Besides, the �genome information" is available only at lo
ations of geneti
 markers, thatis to say at t1, t2, ..., tK . We denote by Xj(t) the value of the variable X(t) for the jthobservation. So, in fa
t, our observation on ea
h individual is (Yj , Xj(t1), ..., Xj(tK)).These observations are supposed to be iid. The goal of this study is to test if q is equal tozero. The 
hallenge is that t⋆ is unknown.

3. Only 2 genetic markersTo begin, we suppose that there are only two markers (K = 2) lo
ated at 0 and T : 0 = t1 <
t2 = T . As explained previously, we are looking for a QTL lying at a position t⋆ ∈ [t1, t2].Let t ∈ [t1, t2]. It is 
lear that the weight p(t) satis�es p(t) = P

{

X(t) = 1
∣

∣X(t1),X(t2)
}.Consider for example the 
ase X(t1) = X(t2) = 1, then by the Bayes rule :

P
{

X(t) = 1
∣

∣X(t1) = 1,X(t2) = 1
}

=
(1/2) P {N(t) −N(t1) even}P {N(t2) −N(t) even}

(1/2) P {N(t2) −N(t1) even}So that, in general ∀t ∈]t1, t2[ :
p(t) = Q1,1

t 1X(t1)=11X(t2)=1 + Q1,−1
t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (2)where :
Q1,1

t =
r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)We 
an remark that we have :
Q−1,−1

t = 1 −Q1,1
t and Q−1,1

t = 1 −Q1,−1
tBesides, p(t1) = 1X(t1)=1 and p(t2) = 1X(t2)=1. So, the weights p(t) are 
ontinuous at t1and t2.Let θ = (q, µ, σ) be the parameter of the model at t �xed and θ0 = (0, µ, σ) the true valueof the parameter under H0. The likelihood of the triplet (Y, X(t1), X(t2)) with respe
t tothe measure λ ⊗ N ⊗ N , λ being the Lebesgue measure, N the 
ounty measure on N, is

∀t ∈ [t1, t2] :
L(θ, t) =

[

p(t)f(µ+q,σ)(y) + {1 − p(t)} f(µ−q,σ)(y)
]

g(t) (3)



4 Céline Delmaswhere
g(t) =

1

2

{

r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}

+
1

2

{

r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}The likelihood Ln(θ, t) for n observations is obtained by the produ
t of n terms as above.
θ̂ = (q̂, µ̂, σ̂) will be the maximum likelihood estimator (MLE) of θ.Under H0, there is no QTL lying on the interval [t1, t2]. Besides, under H1, it is supposedthat there is only one lo
ation where the QTL lies. The lo
ation of the QTL, t⋆ (t⋆ ∈ [t1, t2]),will be added in the de�nition of H1. So, the alternative hypothesis 
an be written :

Hat⋆ : �the QTL is lo
ated at the position t⋆ with e�e
t q = a/
√
n where a ∈ R

⋆ "The QTL e�e
t q is su
h as q = a/
√
n in order to deal with Le Cam (1986)'s theory.

3.1. A “non linear interpolated process"Theorem 1 With the previous de�ned notations, and de�ning respe
tively Λn(.) and Sn(.),the LRT pro
ess and the s
ore pro
ess for n observations,
Sn(.) ⇒ Z(.) , Λn(.)

F.d.→ {Z(.)}2as n tends to in�nity, under H0 and Hat⋆ where :
• ⇒ is the weak 
onvergen
e and F.d.→ is the 
onvergen
e of �nite-dimensional distribu-tions
• Z(.) is the Gaussian pro
ess with 
ovarian
e fun
tion ∀(t, t′) ∈ [t1, t2]

2 :
Γ(t, t′) =

4E {p(t)p(t′)} − 1
√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]and expe
tation ∀(t, t⋆) ∈ [t1, t2]

2 :
• under H0, m(t) = 0

• under Hat⋆

mt⋆(t) =
a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]Another way of 
hara
terizing Z(.) is that Z(.) is the non linear interpolated pro
ess su
has ∀t ∈ [t1, t2] :

Z(t) = { α(t) Z(t1) + β(t) Z(t2) } /
√

E

[

{2p(t) − 1}2
]



Likelihood Ratio Test process for QTL detection 5where ∀t ∈]t1, t2[, α(t) = Q1,1
t +Q1,−1

t − 1, β(t) = Q1,1
t −Q1,−1

t and α(t1) = 1, β(t1) = 0,
α(t2) = 0, β(t2) = 1, Cov {Z(t1),Z(t2)} = e−2(t2−t1).In the same way, ∀(t, t⋆) ∈ [t1, t2]

2 :
mt⋆(t) = { α(t) mt⋆(t1) + β(t) mt⋆(t2) } /

√

E

[

{2p(t) − 1}2
]The quantity E

[

{2p(t) − 1}2
] is given in formula (9) of the proof of the theorem in Se
tion5.1. E {p(t)p(t′)} is given in appendix 7.1. E [X(t⋆) {2p(t) − 1}] is given in formula (14) ofthe proof in Se
tion 5.1.We limit our attention to �nite dimensional 
onvergen
e sin
e for the appli
ations, theinterval studied is always dis
retized, Wu et al. (2007).Figures 1 represent the 
ovarian
e fun
tion Γ(t, t′) and also the mean fun
tion mt⋆(t). T isequal to 0.2M. We 
an remark that the 
ovarian
e fun
tion is regular.Contrary to Azaïs et al. (2006) and Azaïs et al. (2009), the shift at position t is not Γ(t, t⋆).The model 
onsidered here is more 
ompli
ated due to the fa
t that an observation in
ludesthe quantitative trait Y and the �genome information", X(t1) and X(t2).

Mean fun
tion Covarian
e fun
tion
Fig. 1. Mean function and Covariance function (a = 4, σ = 1, T = 0.2M)

3.2. RemarksAs it is well known, for regular model, LRT is equivalent to s
ore test in the sense that
∀t ∈ [t1, t2] :

Λn(t) = {Sn(t)}2
+ oPθ0

(1)We remind that, as in the proof of the theorem in Se
tion 5.1, the notation oPθ0
(1) is shortfor a sequen
e of random ve
tors that 
onverges to zero in probability under H0 (i.e. no



6 Céline DelmasQTL on the whole interval studied).A little algebra shows (see Se
tion 5.1) :
Sn(t) =

n
∑

j=1

(yj − µ) (2pj(t) − 1)

√
n σ

√

E

[

{2p(t) − 1}2
]

(4)The s
ore test 
an be obtained, repla
ing µ by µ̂ =
∑

yj/n, a

ording to Prohorov, andrepla
ing σ by σ̂ =
∑

(yj − µ̂)2/n, a

ording to Slutsky's lemma. Nevertheless, in thisarti
le, in order to make the reading easier, the s
ore test statisti
 is de�ned as in formula(4). The s
ore pro
ess 
onsidered in theorem 1 is based on this formula. Howewer, we havethe same result as in theorem 1 for the other s
ore pro
ess be
ause the tightness of thispro
ess is obvious a

ording to the proof of theorem 1.After some 
al
ulations, we 
an remark that :
Sn(t) = { α(t) Sn(t1) + β(t) Sn(t2) } /

√

E

[

{2p(t) − 1}2
] (5)with Cov

H0
{Sn(t1),Sn(t2)} = e−2(t2−t1). α(t) and β(t) are given quantities in theorem 1.It 
omes :

Λn(t) = { α(t) Sn(t1) + β(t) Sn(t2) }2
/ E

[

{2p(t) − 1}2
]

+ oPθ0
(1)Besides, by 
ontiguity (
f. proof of theorem 1 in Se
tion 5.1), the quantity oPθ0
(1) 
onvergesalso to zero under Hat⋆ . That is to say, the LRT statisti
 at a position t between the twogeneti
 markers is asymptoti
ally equal to the square of a non linear interpolation betweenthe s
ore test statisti
s on the markers.

3.3. A “linear interpolated process"To 
onstru
t an approximation of Sn(.) (and Λn(.)), we introdu
e a new pro
ess Vn(.) whi
his obtained from Sn(.) by :
• linear (or polygonal) interpolation
• renormalizationMore pre
isely :

Vn(t) =

{

t2 − t

t2 − t1
Sn(t1) +

t− t1
t2 − t1

Sn(t2)

}

/
√

τ(t) (6)where
τ(t) = V

H0

{

t2 − t

t2 − t1
Sn(t1) +

t− t1
t2 − t1

Sn(t2)

}

=

(

t2 − t

t2 − t1

)2

+ 2
(t− t1)(t2 − t)

(t2 − t1)2
e−2(t2−t1) +

(

t− t1
t2 − t1

)2It 
an be seen easily that τ(t) 6= 0, ∀t ∈ [t1, t2]. Vn(.) remains asymptoti
ally a Gaussianpro
ess, 
entered under H0, with unit varian
e and Cov
H0

{Sn(t1),Sn(t2)} = e−2(t2−t1).Some 
omments about the pro
ess Vn(.) :
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ording to formula (10) in Se
tion 5.1 and after some 
al
ulations, we 
an estab-lish that asymptoti
ally, the pro
ess V 2
n (.) 
orresponds to likelihood ratio tests for amixture model whose weights verify :

p(t) = 1X(t1)=11X(t2)=1 +
t2 − t

t2 − t1
1X(t1)=11X(t2)=−1 +

t− t1
t2 − t1

1X(t1)=−11X(t2)=1(7)We 
an remark that these weights are an approximation at the �rst order of theweights 
onsidered previously in formula (2). So, Vn(.) will be a good approximationif and only if the geneti
 markers are 
lose to ea
h other.(b) V 2
n (.) is a generalization of the pro
ess studied, under H0, by Rebaï et al. (1995) :the number of individuals in ea
h 
lass is not equal to the expe
tations (respe
tively
nr̄(t1, t2)/2, nr(t1, t2)/2, nr(t1, t2)/2, nr̄(t1, t2)/2) but is still random (respe
tively
∑n

j=1 1Xj(t1)=11Xj(t2)=1, ∑n
j=1 1Xj(t1)=11Xj(t2)=−1, ∑n

j=1 1Xj(t1)=−11Xj(t2)=1 and
∑n

j=1 1Xj(t1)=−11Xj(t2)=−1).(
) By 
ontiguity (
f. proof of theorem 1 in Se
tion 5.1), under Hat⋆ , Vn(.) is asymp-toti
ally the same pro
ess as under H0 on whi
h the mean fun
tion m̃t⋆(t) has beenadded. m̃t⋆(t) is su
h as :
m̃t⋆(t) =

{

t2 − t

t2 − t1
mt⋆(t1) +

t− t1
t2 − t1

mt⋆(t2)

}

/
√

τ(t)(d) Vn(.) is de�ned here with Cov
H0

{Sn(t1),Sn(t2)} = e−2(t2−t1). In order to 
onsiderother 
ovarian
es between Sn(t1) and Sn(t2), τ(.) has to be adapted. It 
an easilybe seen that the new pro
ess V 2
n (.) is still a generalization of the pro
ess studied byRebaï et al. (1995) provided that E

[

{2p(t) − 1}2
]

6= 0 (p(t) veri�es formula (7)).We will name W (.) the limiting pro
ess of Vn(.) : W (.) is the linear interpolated pro
ess.Figure 2 represents two paths of the pro
esses W (.) and Z(.) under the null hypothesis.We remind that Z(.) is the non linear interpolated pro
ess. We 
an observe that the pathsof the two pro
esses overlap when the distan
e between the two geneti
 markers is 20
M,that is to say 0.2M. As mentioned before, W (.) is a good approximation of Z(.) when thegeneti
 markers are 
lose to ea
h other. As expe
ted, we 
an remark that when the distan
ebetween the markers is 3M, the paths of the two pro
esses don't overlap anymore. Notethat same 
on
lusions hold under 
ontiguous alternatives (
f. Rabier (2010)).
3.4. Impact of the interpolations on data analysisIn this Se
tion, we state why the results about the non linear interpolation and about thelinear interpolation are important for data analysis. To begin, we present a theorem and alemma.Theorem 2 Let C1 and C2 be two 
ontinuous random variables, and let ρ̃ su
h as 0 <
ρ̃ < 1. Let 
onsider γ1(t) and γ2(t), two 
ontinuous fun
tions on [t1, t2], and let de�ne thepro
ess D(.) on [t1, t2] su
h as :

D(t) =
γ1(t) C1 + γ2(t) C2

√

{γ1(t)}2
+ {γ2(t)}2

+ 2 ρ̃ γ1(t) γ2(t)
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Fig. 2. Comparison between the paths, under H0, of the linear interpolated process W(.) and those
of the non linear interpolated process Z(.)then if the fun
tion γ2(t)

γ1(t)+γ2(t)
is bounded by 0 and 1 on [t1, t2], and if these bounds arerea
hed, then

sup
t∈[t1,t2]

{D(t)}2
= max

[

{C1}2
,
{C1}2

+ {C2}2 − 2 ρ̃ C1 C2

(1 + ρ̃)(1 − ρ̃)
1C2

C1
∈ ] ρ̃ , 1

ρ̃
[
, {C2}2

]

Lemma 1 With the previous de�ned notationsand reminding that W (t1) = Z(t1) and W (t2) = Z(t2),let ξ =
(t2 − t1)

{

e−2(t2−t1) W (t1) −W (t2)
}

{

e−2(t2−t1) − 1
}

{W (t1) +W (t2)}
+ t1 , then under H0 and Hat⋆

{W (ξ)}2
=

{W (t1)}2
+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)

{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
} and

sup
t∈[t1,t2]

{Z(t)}2
= sup

t∈[t1,t2]

{W (t)}2

= max

[

{W (t1)}2
, {W (ξ)}2

1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, {W (t2)}2

]

The proof of theorem 2 and lemma 1 are respe
tively given in Se
tions 5.2 and 5.3. A
-
ording to lemma 1, even when the geneti
 markers are not 
lose to ea
h other, the law ofthe supremum of the square of the two interpolated pro
esses is the same (see Figure 2).Howewer, when the supremum is obtained between markers, it is not obtained at the same
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ations are ξ for {W (.)}2 and ξ′ for {Z(.)}2, where ξ′ is su
h as :
(t2 − t1) β(ξ′)

α(ξ′) + β(ξ′)
+ t1 = ξOn the other hand, lemma 1 
an easily be adapted to the non asymptoti
 pro
esses. Indeed,we 
an repla
e Z(.) by Sn(.), and W (.) by Vn(.) everywhere in this lemma, sin
e the fo
usis on the same interpolations. As previously, when the supremum is obtained betweenmarkers, it is obtained at ξ for Vn(.) and ξ′ for Sn(.). Furthermore, we 
an advise not toperform a large number of tests between the geneti
 markers anymore. First, we shouldperform s
ore tests on markers. Then, only if the ratio observed between the s
ore statisti
son markers (ie. the ratio Sn(t2)/Sn(t1)) belongs to the interval ] e−2(t2−t1) , e2(t2−t1) [, wehave to 
al
ulate another quantity :

ζ =
{Sn(t1)}2

+ {Sn(t2)}2 − 2 e−2(t2−t1) Sn(t1) Sn(t2)
{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
}To 
on
lude, we should use as a test statisti
 :

max

[

{Sn(t1)}2
, ζ 1Sn(t2)

Sn(t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, {Sn(t2)}2

]

4. Several markers : the “Interval Mapping‘’ of Lander and Bo tstein (1989)In that 
ase suppose that there are K markers 0 = t1 < t2 < ... < tK = T . We 
onsidervalues t, t′ or t⋆ of the parameters that are distin
t of the markers positions, and theresult will be prolonged by 
ontinuity at the markers positions. For t ∈ [t1, tK ]\Tk where
Tk = {t1, ..., tK}, we de�ne tℓ and tr as :

tℓ = sup {tk ∈ Tk : tk < t} , tr = inf {tk ∈ Tk : t < tk}In other words, t belongs to the �Marker interval" (tℓ, tr).Theorem 3 We have the same result as in theorem 1 ex
ept that the following expressionsare more 
ompli
ated :
E

[

{2p(t) − 1}2
]

, E {p(t)p(t′)} , E [X(t⋆) {2p(t) − 1}] , α(t) , β(t)Besides, Z(.) is now the non linear interpolated pro
ess su
h as :
Z(t) =

{

α(t) Z(tℓ) + β(t) Z(tr)
}

/

√

E

[

{2p(t) − 1}2
]with ∀k ∀k′, Cov {Z(tk),Z(tk′)} = e−2|tk−tk′ |.In the same way, the mean fun
tion mt⋆(t) is now su
h as :

mt⋆(t) =
{

α(t) mt⋆(tℓ) + β(t) mt⋆(tr)
}

/

√

E

[

{2p(t) − 1}2
]All these expressions in
luding a proof are given in appendix 7.2.



10 Céline DelmasNote that ∀k ∀k′, Γ(tk, tk′) = e−2|tk−tk′ |. It is relative to an Ornstein-Uhlenbe
k pro
ess,as studied in Lander and Botstein (1989), and Cier
o (1998).The paths of three pro
esses are presented in Figure 3 (T = 1M):
• the Ornstein-Uhlenbe
k pro
ess.
• the pro
ess Z(.) with only 2 markers, lo
ated at t1 = 0 and t2 = 1M.
• the pro
ess Z(.) with markers lo
ated every 10
M.The paths of the last two pro
esses are smooth (due to the interpolation) whereas the pathsof the Ornstein-Uhlenbe
k pro
ess are very jerky. It's not suprising be
ause the Ornstein-Uhlenbe
k pro
ess 
an be viewed as a stationnary version of the Brownian motion.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

t(cM)

Ornstein−Uhlenbeck
Z(.) (only 2 markers)
Z(.) (markers every 10 cM)

Fig. 3. Paths of three different Gaussian processesRe
ently, the law of the LRT pro
ess under the null hypothesis has also been obtainedby Chang et al. (2009). Te
hni
al di�eren
es are presented in appendix 7.4. The originalityof our work is �rst, that we fo
us not only on the null hypothesis. Se
ondly, we show thatthe LRT pro
ess is asymptoti
ally the square of a �non linear interpolated pro
ess". Itdes
ribes the fa
t that, when we analyze data, the likelihood pro�le (ie. the path observedof the LRT pro
ess) is smooth between markers.
4.1. RemarksThe linear interpolated pro
ess W (.) presented in Se
tion 3.3 
an easily be generalized tothe 
ase of several markers. This is a generalization of the pro
ess studied, under H0, byRebaï et al. (1994). The details are given in appendix 7.3.In the same way, lemma 1 
an be generalized :Lemma 2 With the previous de�ned notations



Likelihood Ratio Test process for QTL detection 11and reminding that ∀k W (tk) = Z(tk),let ξ(tℓ, tr) =
(tr − tℓ)

{

e−2(tr−tℓ) W (tℓ) −W (tr)
}

{

e−2(tr−tℓ) − 1
}

{W (tℓ) +W (tr)} + tℓ, then under H0 and Hat⋆

[

W
{

ξ(tℓ, tr)
}]2

=

{

W (tℓ)
}2

+ {W (tr)}2 − 2 e−2(tr−tℓ) W (tℓ) W (tr)
{

1 + e−2(tr−tℓ)
}{

1 − e−2(tr−tℓ)
}and

sup
t∈[0,T ]

{Z(t)}2
= sup

t∈[0,T ]

{W (t)}2

sup
t∈[0,T ]

{W (t)}2
= max

[

{W (t1)}2
, ..., {W (tK)}2

, [W {ξ(t1, t2)}]2 1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

, ..., [W {ξ(tK−1, tK)}]2 1 W (tK )

W (tK−1)
∈ ] e−2(tK−tK−1) , e2(tK−tK−1) [

]

The proof of this lemma is largely inspired from the proof of lemma 1. Using lemma 2and using the same arguments as in Se
tion 3.4, we 
an advise to perform tests on markersand to 
al
ulate one other statisti
 in ea
h marker interval when it is required.
4.2. Application to the calculation of thresholdsThe theoreti
al results presented in this arti
le allow us to propose a new method to obtainthe α% quantile of the supremum of the pro
ess {Z(.)}2 under H0. This method is a dire
tappli
ation of lemma 2. Besides, Monte-Carlo Quasi Monte-Carlo (MCQMC) methods ofGenz (1992) whi
h are very fast have been 
onsidered. As the numeri
al 
omputation of amultivariate normal distribution is often a di�
ult problem, Genz des
ribed in his paper,a transformation that simpli�es the problem and pla
es into a form that allows e�
ient
al
ulations using standard numeri
al multiple integration algorithms. He suggests to usein parti
ular MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC) using Npoints have errors that are typi
ally O(1/

√
N) whereas Quasi Monte-Carlo methods (QMC)have errors O(1/N). In order to be sure that the fun
tions studied have ni
e properties forQMC, another Monte-Carlo step is required, this is MCQMC. We refer to Genz (1992) formore details. We use here fun
tion QSIMVNEF of Genz, whi
h is a Matlab fun
tion withsupporting fun
tions, for the numeri
al 
omputation of multivariate normal distributionexpe
ted values. This fun
tion has been adapted and a Newton method has been used inorder to obtain the thresholds.Our method is available in a Matlab pa
kage with graphi
al user interfa
e : �imapping.zip".It 
an be downloaded at www.math.univ-toulouse.fr/∼rabier .In this Se
tion, we propose to 
ompare the performan
es of our method with other methodsusually used in QTL dete
tion.In Rebaï et al. (1994), we 
an �nd an upper bound for the threshold. This bound is the



12 Céline Delmasquantity c2 su
h as :
1 − α = 2 Φ(−c) +

2 e−c2/2

π

K−1
∑

k=1

arctan





√

1 − e−2(tk+1−tk)

1 + e−2(tk+1−tk)



where Φ is the 
umulative distribution of the standardized normal distribution.This method is based on Davies (1977). However, it is sensitive to the number of geneti
markers. Indeed, the derivative of the pro
ess W (.) has a jump at ea
h markers lo
ation,and Davies (1977) upper bound is suitable when the derivative of the pro
ess has a �nitenumber of jumps.In Feingold and al. (1993), the authors propose a threshold based on the dis
rete pro
essresulting from tests only on markers. Besides, they suppose 
onstant the distan
e betweengeneti
 markers. The threshold c2 is su
h as :
1 − α = 1 − Φ(c) + 2 T c ϕ(c) ν(2c

√
∆)where ϕ is the density of a normal standardized, ∆ is distan
e between two 
onse
utivemarkers.This method is inspired from Siegmund (1985) where the fun
tion ν is fully des
ribed.In Figures 4 and 5, thresholds 
orresponding to di�erent methods are 
omputed. As ex-pe
ted, Rebaï's method is very sensitive to the number of geneti
 markers. We 
an observethat Feingold's method and our method give almost same results.Howewer, our method give di�erent results than Feingold when the number of geneti
 mark-ers is very small (
f. Figure 6). Indeed, Feingold's method requires the number of geneti
makers to be not too small (
f. Feingold and al. (1993)). The advantage of our method isthat this method is appropriate whatever the map.Method this paper Rebaï FeingoldThreshold 6.76 6.92 6.78

Fig. 4. Thresholds as a function of the method considered. The map consists of 6 genetic markers
equally spaced every 20cM (T = 1M, α = 95%).Method this paper Rebaï FeingoldThreshold 8.23 9.09 8.26

Fig. 5. Thresholds as a function of the method considered. The map consists of 51 genetic markers
equally spaced every 2cM (T = 1M, α = 95%).



Likelihood Ratio Test process for QTL detection 13Method this paper FeingoldThreshold 5.40 5.78

Fig. 6. Thresholds as a function of the method considered. The map consists of 2 genetic markers
(T = 1M, α = 95%).

5. ProofsNotations : Iθ will be the Fisher information matrix taken at the point θ . Iij(θ) refers tothe element ij of Iθ. I−1
ij (θ) refers to the element ij of I−1

θ , the inverse of Iθ.
5.1. Proof of theorem 1We �rst 
ompute the s
ore fun
tions and the Fisher information matrix. Let t ∈ [t1, t2].

∂logL

∂q
|θ0

=
y − µ

σ2
{2p(t) − 1}

∂logL

∂µ
|θ0

=
y − µ

σ2
,

∂logL

∂σ
|θ0

= − 1

σ
+

(y − µ)2

σ3

I11(θ0) =
E

[

{2p(t) − 1}2
]

σ2
, I22(θ0) =

1

σ2As the fourth-order moment of a standard normal distribution is equal to three,
I33(θ0) =

2

σ2After some 
al
ulations, we �nd : I12(θ0) = I13(θ0) = I23(θ0) = 0. So,
Iθ0

= Diag





E

[

{2p(t) − 1}2
]

σ2
,

1

σ2
,

2

σ2



 (8)where E

[

{2p(t1) − 1}2
]

= E

[

{2p(t2) − 1}2
]

= 1 and ∀t ∈]t1, t2[ :
E

[

{2p(t) − 1}2
]

= r̄(t1, t2)
(

2Q1,1
t − 1

)2

+ r(t1, t2)
(

2Q1,−1
t − 1

)2 (9)Indeed, ∀t ∈]t1, t2[ :
E

[

{2p(t) − 1}2
]

= 2

{

(

Q1,1
t

)2

r̄(t1, t2) +
(

Q1,−1
t

)2

r(t1, t2)

}

+ 2

{

(

Q−1,1
t

)2

r(t1, t2) +
(

Q−1,−1
t

)2

r̄(t1, t2)

}

− 1



14 Céline DelmasAs Q−1,1
t = 1 − Q1,−1

t , Q−1,−1
t = 1 − Q1,1

t and r̄(t1, t2) + r(t1, t2) = 1, we obtain formula(9).
E

[

{2p(t) − 1}2
] is always di�erent from zero sin
e the parameter t is bounded. It 
omes

∀t ∈ [t1, t2] :
Λn(t) =









n
∑

j=1

(yj − µ) {2pj(t) − 1}

σ
√
n

√

E

[

{2p(t) − 1}2
]









2

+ oPθ0
(1) (10)By 
onvention, the notation oPθ0

(1) is short for a sequen
e of random ve
tors that 
onvergesto zero in probability under H0 (i.e. no QTL on the whole interval studied).Study under H0 :Without loss of generality, we assume that n = 1 for the moment and we 
onsider the s
orefun
tion :
S(t) =

(y − µ) {2p(t) − 1}

σ

√

E

[

{2p(t) − 1}2
]

=
y − µ

σ
h(t)where the fa
t h(.) is a random pro
ess independent of y.It is easy to see that :

E {S(t)} = 0 , V {S(t)} = E

[

{h(t)}2
]

= 1

∀(t, t′) ∈ [t1, t2]
2 :

Γ(t, t′) := Cov {S(t), S(t′)} = E {h(t)h(t′)} =
E [{2p(t) − 1} {2p(t′) − 1}]

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

=
4E {p(t)p(t′)} − 1

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

(11)The formula for E {p(t)p(t′)} is given in appendix 7.1. As |p(t)p(t′)| 6 1, by dominated
onvergen
e theorem, E {p(t)p(t′)} is 
ontinuous at (t1, t
′), (t2, t

′) and (t1, t2). Then the
ovarian
e fun
tion is 
ontinuous at this points (be
ause the denominator is also 
ontinuous).So, the 
ovarian
e fun
tion is a 
ontinuous fun
tion on [t1, t2]
2.Let Sn(.) be the s
ore pro
ess for n observations :

Sn(t) =
n

∑

j=1

(yj − µ) (2pj(t) − 1)

σ
√
n

√

E

[

{2p(t) − 1}2
]

(12)When n tends to in�nity, an appli
ation of the Multivariate Central Limit Theorem showsthat for 0 6 s1 < s2 < ... < sd 6 T :
(Sn(s1), ..., Sn(sd))

′ L→ N(0e,Σ)
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e 
ovarian
e matrix, with unit varian
e and 
ovarian
e given by formula(11). 0e is a 
olumn ve
tor of zeros. As Λn(t) = S2
n(t) + oPθ0

(1):
(Λn(s1), ...,Λn(sd))

′ L→
{

N(0e,Σ)

}2Study under Hat⋆ :In this part, we set
Yj = µ +

a√
n
Xj(t

⋆) + σ εj (13)where εj is a Gaussian white noise. A

ording to formula (10), ∀t ∈ [t1, t2] :
Λn(t) = {Sn(t)}2

+ oPθ0
(1)We remind that oPθ0

(1) is short for a sequen
e of random ve
tors that 
onverges to zeroin probability under H0 (i.e. no QTL on the whole interval studied). Let oPθ0,t⋆
(1) be asequen
e of random ve
tors that 
onverges to zeros if there is no QTL at position t⋆. Then,it is 
lear that :

Λn(t) = {Sn(t)}2
+ oPθ0,t⋆

(1)Let θa,t⋆ be the parameter refering that we are under Hat⋆ . Under Hat⋆ , as the QTL islo
ated at position t⋆, the density of Y ∣

∣X(t0),X(t1) veri�es :
p(t⋆)f(µ+q,σ)(y) + {1 − p(t⋆)} f(µ−q,σ)(y)Let Qn and Pn two sequen
es of probability measures de�ned on the same spa
e (Ωn, An).

Qn (respe
tively Pn) is the law 
orresponding to the density Ln(θa,t⋆ , t⋆) (resp Ln(θ0, t
⋆)).We will 
all the log likelihood ratio log dQn

dPn
. It veri�es : log dQn

dPn
= log

{

Ln(θa,t⋆ , t⋆)

Ln(θ0, t⋆)

}.Notations : Qn⊳Pn will mean the sequen
eQn is 
ontiguous with the respe
t to the sequen
e
Pn.Let b = (a, 0, 0)

′. As the model is di�erentiable in quadrati
 mean at θa,t⋆ :
log

(

dQn

dPn

)

=
b′√
n
∇ logLn(θ0, t

⋆) − 1

2
b′Iθ0

b + oPθ0
(1)Then, by the 
entral limit theorem :

log

(

dQn

dPn

)

L−→
H0

N(−1

2
ν2, ν2) with ν2 =

a2

σ2
E

[

{2p(t⋆) − 1}2
]So, by the iii) of Le Cam's �rst lemma, we have Qn ⊳ Pn.Up to now ∀t ∈ [t1, t2] :

Λn(t) = {Sn(t)}2
+ oPθ0,t⋆

(1)



16 Céline DelmasAs Qn ⊳ Pn, a

ording to iv) of Le Cam's �rst lemma :
Λn(t) = {Sn(t)}2

+ oPθa,t⋆
(1)So, 
al
ulations 
an be done with the s
ore pro
ess. A

ording to formula (12) and (13),we have :

Sn(t) =
1√
n

n
∑

j=1

εjhj(t) +
n

∑

j=1

a

σn
Xj(t

⋆)hj(t) = S0
n(t) +

n
∑

j=1

a

σn
Xj(t

⋆)hj(t)where hj(.) is the equivalent of the pro
ess h(.) de�ned above but for the individual j. S0
n(.)is the pro
ess obtained under H0.By the law of large number :

1

n

n
∑

j=1

Xj(t
⋆)hj(t) → E {X(t⋆)h(t)}Let suppose K = 2 for the moment and, for example (t, t⋆) ∈]t1, t2[

2. Let us 
ompute
E [X(t⋆) {2p(t) − 1}]. We 
ondition on X(t1) and X(t2). Consider, for example, the 
ase
X(t1) = X(t2) = 1. In this 
ase, p(t) = Q1,1

t and we have :
E

[

X(t⋆) {2p(t) − 1}
∣

∣ X(t1) = X(t2) = 1
]

= E

[

X(t⋆)
{

2Q1,1
t − 1

}

∣

∣ X(t1) = X(t2) = 1
]

=
{

2Q1,1
t − 1

}

E
[

X(t⋆)
∣

∣ X(t1) = X(t2) = 1
]

=
{

2Q1,1
t − 1

}

{

r̄(t1, t
⋆) r̄(t⋆, t2)

r̄(t1, t2)
− r(t1, t

⋆)r(t⋆, t2)

r̄(t1, t2)

}

=
{

2Q1,1
t − 1

} {

Q1,1
t⋆ −Q−1,−1

t⋆

}

=
{

2Q1,1
t − 1

} {

2Q1,1
t⋆ − 1

}Considering the four 
ases :
E [ X(t⋆) {2p(t) − 1}]

=
{

2Q1,1
t − 1

} {

2Q1,1
t⋆ − 1

} 1

2
r̄(t1, t2) +

{

2Q1,−1
t − 1

} {

2Q1,−1
t⋆ − 1

} 1

2
r(t1, t2)

+
{

2Q−1,1
t − 1

} {

2Q−1,1
t⋆ − 1

} 1

2
r(t1, t2) +

{

2Q−1,−1
t − 1

} {

2Q−1,−1
t⋆ − 1

} 1

2
r̄(t1, t2)

= r̄(t1, t2)
{

2Q1,1
t⋆ − 1

} {

2Q1,1
t − 1

}

+ r(t1, t2)
{

2Q1,−1
t⋆ − 1

} {

2Q1,−1
t − 1

} (14)A

ording to dominated 
onvergen
e theorem, E [ X(t⋆) {2p(t) − 1}] is 
ontinuous on [t1, t2]
2.As a 
on
lusion, ∀(t, t⋆) ∈ [t1, t2]

2 :
mt⋆(t) =

a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]



Likelihood Ratio Test process for QTL detection 17A non linear interpolationAfter some 
al
ulations, we 
an remark that :
Sn(t) = { α(t) Sn(t1) + β(t) Sn(t2) } /

√

E

[

{2p(t) − 1}2
]where Cov

H0
{Sn(t1),Sn(t2)} = e−2t2 , α(t1) = 1, β(t1) = 0, α(t2) = 0, β(t2) = 1 and

∀t ∈]t1, t2[ :
α(t) = Q1,1

t +Q1,−1
t − 1 and β(t) = Q1,1

t −Q1,−1
tAnd it 
omes :

mt⋆(t) = { α(t) mt⋆(t1) + β(t) mt⋆(t2) } /
√

E

[

{2p(t) − 1}2
]Weak 
onvergen
e of the s
ore pro
essTo begin, we remind that t1 = 0 and t2 = T . As p(t) and E

[

{2p(t) − 1}2
] are 
ontinuousfun
tions, ea
h traje
tory of the pro
ess Sn(.) is a 
ontinuous fun
tion on [0, T ]. Let de�nethe modulus of 
ontinuity of a 
ontinous fun
tion x on [0, T ] :

wx(δ) = sup|t′−t|<δ |x(t′) − x(t)| where 0 < δ 6 TA

ording to theorem 8.2 of Billingsley (1999), the s
ore pro
ess is tight if and only if thetwo following 
onditions hold :(a) the sequen
e Sn(0) is tight.(b) For ea
h positive ǫ and η, there exist a δ, with 0 < δ < T , and an integer n0 su
h that
P {wSn

(δ) > η} 6 ǫ ∀n > n0.A

ording to Prohorov, the sequen
e Sn(0) is tight. So, a) is veri�ed.Let de�ne the fun
tions α̃(t) and β̃(t) su
h as :
α̃(t) = α(t)/

√

E

[

{2p(t) − 1}2
]

, β̃(t) = β(t)/

√

E

[

{2p(t) − 1}2
]First, we 
an remark that ∀δ su
h as 0 < δ 6 T :

wSn
(δ) = sup|t′−t|<δ |Sn(t′) − Sn(t)|

= sup|t′−t|<δ

∣

∣

∣
{α̃(t′) − α̃(t)}Sn(t1) +

{

β̃(t′) − β̃(t)
}

Sn(t2)
∣

∣

∣

6 max {|Sn(t1)| , |Sn(t2)|}
{

wα̃(δ) + wβ̃(δ)
}Let ǫ > 0 and η > 0, as the sequen
e max {|Sn(t1)| , |Sn(t2)|} is uniformly tight, ∃M su
has ∀n > 1 P [ max {|Sn(t1)| , |Sn(t2)|} > M ] 6 ǫ.It 
omes, P

[

max {|Sn(t1)| , |Sn(t2)|}
{

wα̃(δ) + wβ̃(δ)
}

> M
{

wα̃(δ) + wβ̃(δ)
} ]

6 ǫAs α̃(t) and β̃(t) are 
ontinuous on the 
ompa
t [0, T ], a

ording to Heine's theorem,



18 Céline Delmasthese fun
tions are uniformly 
ontinuous. So, let υ > 0, ∃δ1 with 0 < δ1 < T , su
h as
wα̃(δ1) < υ/2 and ∃δ2 with 0 < δ2 < T su
h as wβ̃(δ2) < υ/2. Let δ = min(δ1, δ2) then
wα̃(δ) + wβ̃(δ) < υ. If we impose υ = η/M , then ∀n > 1, P {wSn

(δ) > η} 6 ǫ whi
h meansb) of theorem 8.2 of Billingsley (1999) is ful�lled. So, the tightness of the s
ore pro
ess isproved.To 
on
lude, the tightness and the 
onvergen
e of �nite-dimensional imply the weak 
on-vergen
e of the s
ore pro
ess.
5.2. Proof of theorem 2Introdu
ing the pro
ess W̃ (.) :We 
onsider the pro
ess W̃ (.) on [0, 1] su
h as :

W̃ (t) =
(1 − t) C1 + t C2

√

(1 − t)2 + t2 + 2 ρ̃ t (1 − t)We 
an remark that W̃ (0) = C1 and W̃ (1) = C2.The interest is on the supremum of the pro
ess {

W̃ (.)
}2 :

{

W̃ (t)
}2

=
(1 − t)2 {C1}2

+ 2t(1 − t)C1C2 + t2 {C2}2

(1 − t)2 + t2 + 2 ρ̃ t (1 − t)We will 
all respe
tively N(t) and D(t) the numerator and the denominator of the fra
tionabove.
∂N(t)

∂t
= 2 {(1 − t) C1 + t C2} {C2 − C1}We 
an remark that :

(1 − t)2 + t2 + 2 t ρ̃ (1 − t) = 1 − 2( 1 − ρ̃) t (1 − t) (15)It 
omes : ∂D(t)
∂t = −2 (1 − ρ̃) (1 − 2t). So,
∂

{

W̃ (t)
}2

∂t
= [ 2 {(1 − t)C1 + tC2} {C2 − C1} {1 − 2(1 − ρ̃)t(1 − t)}

+ 2(1 − ρ̃)(1 − 2t) {(1 − t)C1 + tC2}2
]

/ {D(t)}2We have :
∂

{

W̃ (t)
}2

∂t
= 0

⇔ {(1 − t)C1 + tC2}
× [{C2 − C1} {1 − 2(1 − ρ̃)t(1 − t)} + (1 − ρ̃)(1 − 2t) {(1 − t)C1 + tC2}] = 0As {(1 − t)C1 + tC2} 
orresponds to a minimum, the fo
us is on the se
ond term. Thisse
ond term is equal to zero if :

C2

C1
=

1 + ρ̃

1 + (ρ̃− 1)t
− 1
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tion ψρ̃(t) su
h as :
ψρ̃(t) =

1 + ρ̃

1 + (ρ̃− 1)t
− 1As (ρ̃ − 1)t is a de
reasing fun
tion on [0, 1], then ψρ̃(t) is an in
reasing fun
tion on [0, 1]with ψρ̃(0) = ρ̃ and ψρ̃(1) = 1

ρ̃ .Let de�ne ψ−1
ρ̃ the inverse fun
tion of ψρ̃. After straightforward 
al
ulations, we �nd :

ψ−1
ρ̃ (u) =

ρ̃− u

(ρ̃− 1)(u+ 1)So, the extremum between 0 and 1 is obtained for :
ξ̃ =

ρ̃ C1 − C2

(ρ̃− 1) {C2 + C1}After some 
al
ulations, using formula (15), we �nd that :
(1 − ξ̃)2 + ξ̃2 + 2 ξ̃ ρ̃ (1 − ξ̃) =

1 + ρ̃

1 − ρ̃

{C1}2
+ {C2}2 − 2 ρ̃ C1 C2

{C1 + C2}2It 
omes :
{

W̃ (ξ̃)
}2

=
{C1}2

+ {C2}2 − 2 ρ̃ C1 C2

(1 + ρ̃)(1 − ρ̃)So :
sup

t∈[0,1]

{

W̃ (t)
}2

=
{

W̃ (ξ̃)
}2

1C2
C1

∈ ] ρ̃ , 1
ρ̃

[
+ {C2}2

1C2
C1

∈ [ 1
ρ̃

, +∞ [

+ {C1}2
1C2

C1
∈ [ 0 , ρ̃ ]

+ {C1}2
1C2

C1
∈ ] −∞ , 0[

T
|C1|>|C2|

+ {C2}2
1C2

C1
∈ ] −∞ , 0[

T
|C2|>|C1|

(16)A 
on
ise version of this formula is that the supremum of {

W̃ (.)
}2 is the maximum of threerandom variables :

sup
t∈[0,1]

{

W̃ (t)
}2

= max

[

{C1}2
,

{

W̃ (ξ̃)
}2

1C2
C1

∈ ] ρ̃ , 1
ρ̃

[
, {C2}2

]Let γ1(t) and γ2(t) be two 
ontinuous fun
tions on [t1, t2]. Besides, as in theorem 2, letsuppose that γ2(t)
γ1(t)+γ2(t)

is bounded by 0 and 1, and that these bounds are rea
hed. Wehave ∀t ∈ [t1, t2] :
W̃

(

γ2(t)

γ1(t) + γ2(t)

)

= D(t)And,
sup

t∈[t1,t2]

{D(t)}2
= sup

t∈[0,1]

{

W̃ (t)
}2It 
on
ludes the proof.
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5.3. Proof of lemma 1Study of the supremum of the linear interpolated pro
ess W (.) :Let 
onsider the pro
ess W (.) on [t1, t2]. It veri�es ∀t ∈ [t1, t2]:
W (t) =

{

t2 − t

t2 − t1
W (t1) +

t− t1
t2 − t1

W (t2)

}

/
√

τ(t)where
τ(t) =

(

t2 − t

t2 − t1

)2

+ 2
(t− t1)(t2 − t)

(t2 − t1)2
e−2(t2−t1) +

(

t− t1
t2 − t1

)2Using same notations as in theorem 2, let 
onsider :
γ1(t) =

t2 − t

t2 − t1
, γ2(t) =

t− t1
t2 − t1

, C1 = W (t1) , C2 = W (t2) , ρ̃ = e−2(t2−t1)We will 
all γ3(t) the ratio γ2(t)
γ1(t)+γ2(t)

. We have γ3(t) = t−t1
t2−t1

. So, γ3(t2) = 1, γ3(t1) = 0,and 0 6 γ3(t) 6 1. As a 
onsequen
e, a

ording to theorem 2 :
sup

t∈[t1,t2]

{W (t)}2
= max

[

{W (t1)}2
, {W (t2)}2

,

{W (t1)}2
+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)

{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
} 1W (t2)

W (t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

]In the same way as in the proof of theorem 2 (
f. Se
tion 5.2), we have :
{W (ξ)}2

=
{W (t1)}2

+ {W (t2)}2 − 2 e−2(t2−t1) W (t1) W (t2)
{

1 + e−2(t2−t1)
}{

1 − e−2(t2−t1)
}with :

ξ =
(t2 − t1)

{

e−2(t2−t1) W (t1) −W (t2)
}

{

e−2(t2−t1) − 1
}

{W (t1) +W (t2)}
+ t1Study of the supremum of the non linear interpolated pro
ess Z(.) :Let 
onsider the pro
ess Z(.) on [t1, t2]. It veri�es ∀t ∈ [t1, t2] :

Z(t) = {α(t)Z(t1) + β(t)Z(t2)} /
√

{α(t)}2
+ {β(t)}2

+ 2 α(t) β(t) e−2(t2−t1)Indeed, a

ording to the proof of theorem 1 (
f. Se
tion 5.1), Z(.) has unit varian
e.Using same notations as in theorem 2, let 
onsider :
γ1(t) = α(t) , γ2(t) = β(t) , C1 = Z(t1) , C2 = Z(t2) , ρ̃ = e−2(t2−t1)As previously, we will 
all γ3(t) the ratio γ2(t)

γ1(t)+γ2(t)
. We have γ3(t) = β(t)

α(t)+β(t) . To begin,we will admit that ∀t ∈ [t1, t2], 0 6 γ3(t) 6 1. Besides, γ3(t2) = 1 and γ3(t1) = 0.
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onsequen
e, a

ording to theorem 2 :
sup

t∈[t1,t2]

{Z(t)}2
= max

[

{Z(t1)}2
, {Z(t2)}2

,

{Z(t1)}2
+ {Z(t2)}2 − 2 e−2(t2−t1) Z(t1) Z(t2)

{

1 + e−2(t2−t1)
} {

1 − e−2(t2−t1)
} 1Z(t2)

Z(t1)
∈ ] e−2(t2−t1) , e2(t2−t1) [

]To 
on
lude, as Z(t1) = W (t1) and Z(t2) = W (t2) :
sup

t∈[t1,t2]

{Z(t)}2
= sup

t∈[t1,t2]

{W (t)}2The interest is now on the fun
tion γ3(t). ∀t ∈ [t1, t2], we have :
γ3(t) = 1 − Q1,1

t +Q1,−1
t − 1

2Q1,1
t − 1In order to proove that ∀t ∈]t1, t2[ 0 < γ3(t) < 1, we will proove that 0 < γ̄3(t) < 1 with

γ̄3(t) = (Q1,1
t +Q1,−1

t − 1)/(2Q1,1
t − 1).The 
al
ulation of the derivative of Q1,1

t shows that Q1,1
t is a de
reasing fun
tion on

]t1, (t1 + t2)/2] and an in
reasing fun
tion on [(t1 + t2)/2, t2[. The minimum is Q1,1
(t1+t2)/2.Sin
e Q1,1

(t1+t2)/2 =
{

1 + e−2(t1+t2) + 2e−t1−t2
}

/
{

2 + 2e−2(t2−t1)
}, we have Q1,1

(t1+t2)/2 >

1/2. By 
ontinuity, 0 < 2Q1,1
t − 1. The fo
us is now on the numerator of γ̄3(t). After
al
ulations, we obtain :

∂(Q1,1
t +Q1,−1

t )

∂t
=

−e−2(t−t1) − e−4t2+2t+2t1

2 r(t1, t2) r̄(t1, t2)As a 
onsequen
e, Q1,1
t + Q1,−1

t − 1 is a de
reasing fun
tion on ]t1, t2[. By 
ontinuity,
0 < Q1,1

t +Q1,−1
t − 1. So, γ̄3(t) > 0.On the other hand, the study of the derivative of Q1,1

t −Q1,−1
t shows that Q1,1

t > Q1,−1
t . It
omes ∀t ∈]t1, t2[, 0 < γ̄3(t) < 1 and 0 < γ3(t) < 1.
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7. Appendix

7.1. Formula for E {p(t)p(t′)}
∀(t, t′) ∈]t1, t2[

2 :
E {p(t)p(t′} =

1

2

{

Q1,1
t Q1,1

t′ r̄(t1, t2) +Q1,−1
t Q1,−1

t′ r(t1, t2)
}

+
1

2

{

Q−1,1
t Q−1,1

t′ r(t1, t2) +Q−1,−1
t Q−1,−1

t′ r̄(t1, t2)
}This quantity is 
ontinuous at t1 and t2 (
f. proof of theorem 1 in Se
tion 5.1)
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7.2. Sketch of the proof of theorem 3Let t ∈ [t1, tK ]\Tk. As t belongs to the �Marker interval" (tℓ, tr), some adjustments with Se
-tion 3 have to be done : t1 be
omes tℓ and t2 be
omes tr. So, p(t) is now the quantity equal to
P

{

X(t) = 1
∣

∣X(tℓ),X(tr)
}. In the same way, p(t), Q1,1

t , Q1,−1
t , Q−1,1

t and Q−1,−1
t des
ribedin formula (2) have to be adapted to the �Marker interval". The likelihood presented informula (3), is un
hanged ex
ept that the fo
us is on the triplet (

Y, X(tℓ), X(tr)
) and thefun
tion g(t) has to be adapted to the �Marker interval". Formula (10) of Se
tion 5.1 is alsosuitable t ∈ [t1, tK ]\Tk be
ause t is bounded. It 
omes, ∀(t, t′) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :

Γ(t, t′) =
4E {p(t)p(t′)} − 1

√

E

[

{2p(t) − 1}2
]

√

E

[

{2p(t′) − 1}2
]

E

[

{2p(t) − 1}2
] des
ribed in formula (9) of Se
tion 5.1 has to be adapted to the �Markerinterval".

∀(t, t′) ∈ ]tℓ, tr[2, the expression of E {p(t)p(t′)} 
an be dedu
ed from appendix 7.1 byadapting to the �Marker interval".Besides, if (t, t′) ∈ ]tℓ, tr[ × [tr, tK ]\Tk :
E {p(t)p(t′)}

=
1

2
r̄(tℓ, tr)

[

Q1,1
t′ r̄

{

(t′)ℓ, (t′)r
}

+Q1,−1
t′ r

{

(t′)ℓ, (t′)r
}

] [

Q1,1
t r̄

{

tr, (t′)ℓ
}

+Q−1,−1
t r

{

tr, (t′)ℓ
}

]

+
1

2
r̄(tℓ, tr)

[

Q−1,1
t′ r

{

(t′)ℓ, (t′)r
}

+Q−1,−1
t′ r̄

{

(t′)ℓ, (t′)r
}

] [

Q1,1
t r

{

tr, (t′)ℓ
}

+Q−1,−1
t r̄

{

tr, (t′)ℓ
}

]

+
1

2
r(tℓ, tr)

[

Q1,1
t′ r̄

{

(t′)ℓ, (t′)r
}

+Q1,−1
t′ r

{

(t′)ℓ, (t′)r
}

] [

Q1,−1
t r

{

tr, (t′)ℓ
}

+Q−1,1
t r̄

{

tr, (t′)ℓ
}

]

+
1

2
r(tℓ, tr)

[

Q−1,1
t′ r

{

(t′)ℓ, (t′)r
}

+Q−1,−1
t′ r̄

{

(t′)ℓ, (t′)r
}

] [

Q1,−1
t r̄

{

tr, (t′)ℓ
}

+Q−1,1
t r

{

tr, (t′)ℓ
}

]In the same way as what has been done in the proof of theorem 1 (
f. Se
tion 5.1),
∀(t, t⋆) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :

mt⋆(t) =
a E [X(t⋆) {2p(t) − 1}]

σ

√

E

[

{2p(t) − 1}2
]If (t, t⋆) ∈]tℓ, tr[2, then E [X(t⋆) {2p(t) − 1}] has the same expression as in formula (14) ofSe
tion 5.1 provided that we adapt to the �Marker interval".Besides, if (t, t⋆) ∈ ]tℓ, tr[ × [tr, tK ]\Tk :

E [X(t⋆) {2p(t) − 1}]
= 2 Q1,1

t E
{

X(t⋆)1X(tℓ)=11X(tr)=1

}

+ 2 Q1,−1
t E

{

X(t⋆)1X(tℓ)=11X(tr)=−1

}

+ 2 Q−1,1
t E

{

X(t⋆)1X(tℓ)=−11X(tr)=1

}

+ 2 Q−1,−1
t E

{

X(t⋆)1X(tℓ)=−11X(tr)=−1

}

= r̄(tℓ, t) r̄(t, tr) {1 − 2r(tr, t⋆)} + r̄(tℓ, t) r(t, tr) {2r(tr, t⋆) − 1}
+ r(tℓ, t) r̄(t, tr) {1 − 2r(tr, t⋆)} + r(tℓ, t) r(t, tr) {2r(tr, t⋆) − 1}
= {1 − 2r(t, tr)} {1 − 2r(tr, t⋆)} = e−2(t⋆−t)
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esses, it is reversible. So, If (t, t⋆) ∈ [t⋆r, tK ]\Tk× ]t⋆ℓ, t⋆r[ :
E [X(t⋆) {2p(t) − 1}] =

{

1 − 2r(t⋆, tℓ)
} {

1 − 2r(tℓ, t)
}

= e−2(t−t⋆)So, if t and t⋆ do not belong to the same �Marker interval" :
E [X(t⋆) {2p(t) − 1}] = e−2|t−t⋆| (17)A non linear interpolationCon
erning the non linear interpolation, we have to adapt formula (5) of Se
tion 3.1 to the�Marker interval". ∀t ∈ [t1, tK ]\Tk we have :

Sn(t) =
{

α(t) Sn(tℓ) + β(t) Sn(tr)
}

/

√

E

[

{2p(t) − 1}2
] (18)where α(t) = Q1,1

t +Q1,−1
t − 1, β(t) = Q1,1

t −Q1,−1
t and ∀k ∀k′, Cov

H0
{Sn(tk),Sn(tk′)} =

e−2|tk−tk′ |.It 
omes ∀(t, t⋆) ∈ [t1, tK ]\Tk × [t1, tK ]\Tk :
mt⋆(t) =

{

α(t) mt⋆(tℓ) + β(t) mt⋆(tr)
}

/

√

E

[

{2p(t) − 1}2
]Weak 
onvergen
e of the s
ore pro
essEa
h traje
tory of the pro
ess Sn(.) is a 
ontinuous fun
tion on [0, T ]. In the same way asin the proof of theorem 1 in Se
tion 5.1, in order to prove the tightness of the s
ore pro
ess,we have to verify that 
onditions a) and b) of theorem 8.2 of Billingsley (1999) are ful�lled.A

ording to Prohorov, Sn(0) is tight, so a) is ful�lled.We remind the modulus of 
ontinuity of Sn(t) :

wSn
(δ) = sup|t′−t|<δ |Sn(t′) − Sn(t)| where 0 < δ 6 TLet de�ne wk

Sn
(δ), the modulus of 
ontinuity of Sn(t) only between the markers k and k+1:

wk
Sn

(δ) = sup|t′−t|<δ |Sn(t′ + tk) − Sn(t+ tk)| where 0 < δ 6 tk+1 − tkAs the s
ore pro
ess is tight when there are only two markers (
f. proof of theorem 1),a

ording to b) of theorem 8.2 of Billingsley (1999), we have for a given k:
∀ǫ > 0 ∀η > 0 ∃δk with 0 < δk < tk+1 − tk su
h that P

{

wk
Sn

(δk) > η
}

6 ǫSo, let ǫ > 0, ǫ′ = ǫ/(K − 1), η > 0 and we impose δ = mink∈{1,...,K−1}(δk)then ∀k ∈ {1, ...,K − 1} P
{

wk
Sn

(δ) > η
}

6 ǫ′.As wSn
(δ) > w1

Sn
(δ) + ... + wK−1

Sn
(δ), then P {wSn

(δ) > η} 6
∑K−1

k=1 P
{

wk
Sn

(δ) > η
}

6 ǫwhi
h means b) of theorem 8.2 of Billingsley (1999) is ful�lled. So, the tightness of thes
ore pro
ess is proved.To 
on
lude, the tightness and the 
onvergen
e of �nite-dimensional imply the weak 
on-vergen
e of the s
ore pro
ess.
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7.3. Linear interpolated process in presence of several markersIn presen
e of several markers, the pro
ess Vn(.) is su
h as ∀t ∈ [t1, tK ]\Tk :
Vn(t) =

{

tr − t

tr − tℓ
Sn(tℓ) +

t− tℓ

tr − tℓ
Sn(tr)

}

/
√

τ(t)where
τ(t) =

(

tr − t

tr − tℓ

)2

+ 2
(tr − t)(t− tℓ)

(tr − tℓ)2
e−2(tr−tℓ) +

(

t− tℓ

tr − tℓ

)2It 
an be seen easily that τ(t) 6= 0, ∀t ∈ [t1, tK ]\Tk .
Vn(.) remains asymptoti
ally a Gaussian pro
ess with mean equal to 0 under H0, unitvarian
e, and ∀k ∀k′, Cov

H0
{Sn(tk),Sn(tk′)} = e−2|tk−tk′ |. In the same way as what hasbeen done in Se
tion 3.3, the weights of the model of mixture 
orresponding to this pro
essverify :

p(t) = 1X(tℓ)=11X(tr)=1 +
tr − t

tr − tℓ
1X(tℓ)=11X(tr)=−1 +

t− tℓ

tr − tℓ
1X(tℓ)=−11X(tr)=1This weights are an approximation at the �rst order of the original weights. So, Vn(.) willbe a good approximation if and only if the geneti
 markers are 
lose to ea
h other. Thispro
ess Vn(.) is a generalization of the pro
ess studied, under H0, by Rebaï et al. (1994).By 
ontiguity (in the same way of what has been done in Se
tion 5.1), under Hat⋆ , Vn(.) isasymptoti
ally the same pro
ess as under H0 on whi
h the mean fun
tion, m̃t⋆(t), has beenadded :

m̃t⋆(t) =

{

tr − t

tr − tℓ
mt⋆(tℓ) +

t− tℓ

tr − tℓ
mt⋆(tr)

}

/
√

τ(t)As previously, W (.), the limiting pro
ess of Vn(.), is named the linear interpolated pro
ess.
7.4. Comparison with Chang et al. (2009)The law of the LRT pro
ess has also been obtained by Chang et al. (2009) under the nullhypothesis. We propose here to present te
hni
al di�eren
es between our work and thework of Chang et al. (2009). As at a lo
ation t, the LRT is asymptoti
ally the square ofthe s
ore test, we will fo
us only on the s
ore pro
ess as in Chang et al. (2009).The main di�eren
e between the two approa
hes is that we 
onsider the number of indi-viduals in ea
h 
lass as a random variable whereas in Chang et al. (2009), the numberof individuals in ea
h 
lass is supposed equal to the expe
tations (same remark as (b) ofSe
tion 3.3).Our approa
h allows us to 
ompute the s
ore fun
tion ∂ log L

∂q |θ0
for only one observationand to 
al
ulate the Fisher information matrix without approximation.Anyway, we obtain exa
tly the same Fisher information matrix as in Chang et al. (2009).However, there are some di�eren
es 
on
erning other quantities.7.4.1. Only two markers :Let 
onsider that there is only two markers as des
ribed in Se
tion 3. Let t ∈]t1, t2[. Theresult will be prolonged by 
ontinuity at the markers positions. A

ording to formula (4)
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tion 3.3 and using the fa
t that Q1,1
t = 1 −Q−1,−1

t and Q1,−1
t = 1 −Q−1,1

t , the s
oretest statisti
 is :
Sn(t) = (1 − 2Q−1,−1

t )

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n

√

E

[

{2p(t) − 1}2
]

+ (1 − 2Q−1,1
t )

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n

√

E

[

{2p(t) − 1}2
]With our notations, the test statisti
 used in formula (8) of Chang et al. (2009) is :

U⋆(t) =

√
n

2
(1 − 2Q−1,−1

t )
r̄(t1, t2) (ȳ11 − ȳ−1−1)

σ̂

√

E

[

{2p(t) − 1}2
]

+

√
n

2
(1 − 2Q−1,1

t )
r(t1, t2) (ȳ1−1 − ȳ−11)

σ̂

√

E

[

{2p(t) − 1}2
]where ȳ11 = 2

nr̄(t1,t2)

∑n
j=1 1Xj(t1)=11Xj(t2)=1 , ȳ−11 = 2

nr(t1,t2)

∑n
j=1 1Xj(t1)=−11Xj(t2)=1

ȳ1−1 = 2
nr(t1,t2)

∑n
j=1 1Xj(t1)=11Xj(t2)=−1 and ȳ−1−1 = 2

nr̄(t1,t2)

∑n
j=1 1Xj(t1)=−11Xj(t2)=−1.We 
an remark Sn(t) 6= U⋆(t) + oPθ0

(1). It is due to the approximations done by Chang etal. (2009).Let G1
n(t) and G2

n(t) be the quantities su
h as :
G1

n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√

n r̄(t1, t2)

G2
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√

n r(t1, t2)

G1
n(t) and G2

n(t) are asymptoti
ally standard normal variables under H0. Besides, G1
n(t)and G2

n(t) are independent. Note that G1
n(t) and G2

n(t) do not depend on t but we keep tas a parameter in order to adapt these test statisti
s to the 
ase of several markers in thenext Se
tion.Contrary to formula (9) of Chang et al. (2009) :
G1

n(t) 6= 1

2

√

r̄(t1, t2)n
ȳ11 − ȳ−1−1

σ̂
+ oPθ0

(1)

G2
n(t) 6= 1

2

√

r(t1, t2)n
ȳ1−1 − ȳ−11

σ̂
+ oPθ0

(1)We have :
Sn(t) =

{

√

r̄(t1, t2) (1 − 2Q−1,−1
t ) G1

n(t) +
√

r(t1, t2) (1 − 2Q−1,1
t ) G2

n(t)
}

/

√

E

[

{2p(t) − 1}2
](19)This formula is the 
orre
ted version of formula (10) of Chang et al. (2009) without approx-imations here. A

ording to formula (19), the s
ore at a position t between two markers,



26 Céline Delmasis an interpolation not linear between the test statisti
 G1
n(t) and G2

n(t). Naturally, when ttends to t1 (resp. t2), Sn(t) tends to Sn(t1) (resp. Sn(t2)). It be
omes a linear interpolationbetween Sn(t1) and Sn(t2) if a Taylor linearization is done 
on
erning the weights of themodel of mixture (
f. Se
tion 3.3).Finally, we agree with formula (11) of Chang et al. (2009) 
on
erning the 
ovarian
e of thepro
ess, it is exa
tly the same fun
tion as Γ(t, t′) of theorem 1 of this paper.Note that the non linear interpolation presented above, in formula (19), is not the sameinterpolation as presented in formula (5) of Se
tion 3.2 of this paper. Our interpolationis more intuitive, be
ause it is an interpolation between the test statisti
 on markers. Be-sides, it explains why the likelihood pro�les (ie. the paths of the pro
ess Λn(.)) are smoothbetween markers.7.4.2. Several markers : the �Interval Mapping`' of Lander and Botstein (1989)Let 
onsider that there are several markers as des
ribed in Se
tion 4. We 
onsider values t,
t′ of the parameters that are distin
t of markers positions. Let t ∈ [t1, tK ]\Tk. We have :

G1
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(tℓ)=11Xj(tr)=1 − 1Xj(tℓ)=−11Xj(tr)=−1

}

σ
√

n r̄(tℓ, tr)

G2
n(t) =

n
∑

j=1

(yj − µ)
{

1Xj(tℓ)=11Xj(tr)=−1 − 1Xj(tℓ)=−11Xj(tr)=1

}

σ
√

n r(tℓ, tr)

Sn(t) =

{

√

r̄(tℓ, tr) (2Q1,1
t − 1) G1

n(t) +
√

r(tℓ, tr) (2Q1,−1
t − 1) G2

n(t)

}

/

√

E

[

{2p(t) − 1}2
]This last formula is the 
orre
ted version of formula (14) of Chang et al. (2009).Let (t, t′) ∈ ]tℓ, tr[ × [tr, tK ]\Tk. The di�erent 
ovarian
es under H0 are :

Cov
H0

{

G1
n(t),G1

n(t′)
}

=
√

r̄(tℓ, tr) r̄ {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

Cov
H0

{

G1
n(t),G2

n(t′)
}

=
√

r̄(tℓ, tr) r {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

CovH0

{

G2
n(t),G1

n(t′)
}

= −
√

r(tℓ, tr) r̄ {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}

Cov
H0

{

G2
n(t),G2

n(t′)
}

= −
√

r(tℓ, tr) r {(t′)ℓ, (t′)r} e−2{(t′)ℓ−tr}This is exa
tly the same 
ovarian
es as in formula (19) of Chang et al. (2009). Besides, weagree with formula (20) of Chang et al. (2009) whi
h establish a relationship between thetest statisti
 G when t and t′ belong to 2 
onse
utive marker interval (as above we suppose
t < t′):

G2
n(t′) =

1
√

r(tr, (t′)r)

{

√

r̄(tℓ, tr) G1
n(t) −

√

r(tℓ, tr) G2
n(t) −

√

r̄(tr, (t′)r) G1
n(t′)

}To 
on
lude, the non linear interpolation proposed by Chang et al. (2009) is an approx-imation. We present here their interpolation without approximations. Howewer, theirapproximations don't a�e
t the �nal results 
on
erning the pro
ess.
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