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Summary . We consider the likelihood ratio test (LRT) process related to the test of the ab-
sence of QTL on the interval [0, 7] representing a chromosome (a QTL denotes a quantitative
trait locus, i.e. a gene with quantitative effect on a trait). We give the asymptotic distribution of
this LRT process under the null hypothesis that there is no QTL on [0, 7] and under the alterna-
tive that there exists a QTL at ¢* on [0, 7]. We show that the LRT is asymptotically the square
of a non linear interpolated process. We propose a simple and original method to calculate the
maximum and the argmax of the LRT process using only statistics on markers and their ratio.
We finally propose a new method to calculate thresholds for QTL detection.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance parameters
present only under the alternative, QTL detection, x? process.

1. Introduction

We study a backcross population: A x (A x B), where A and B are purely homozygous
lines and we address the problem of detecting a Quantitative Trait Locus, so-called QTL (a
gene influencing a quantitative trait which is able to be measured) on a given chromosome.
The trait is observed on n individuals (progenies) and we denote by Y;, j = 1,...,n, the
observations, which we will assume to be independent and identically distributed (iid). The
mechanism of genetics, or more precisely of meiosis, implies that among the two chromo-
somes of each individual, one is purely inherited from A while the other (the “recombined"
one), consists of parts originated from A and parts originated from B, due to crossing-overs.
Using the Haldane (1919) distance and modelling, each chromosome will be represented by
a segment [0, 7]. The distance on [0,7] is called the genetic distance (which is measured in
Morgans). The key point is that, if the true position of the QTL is ¢t = t*, the response YV’
obeys to a mixture model with known weights :

PO fpta.0) () +{1 =P} fu—g.0) () (1)

where f(, »)(.) denotes a Gaussian density with mean p and variance 0. (u, ¢, o) are
the unknown parameters. At every location ¢ € [0,7T], we perform a likelihood ratio test
(LRT) of the hypothesis “¢ = 0”7 in formula (1) based on n observations Yi,...,Y,,. We
call A, (t) the obtained quantity. The dependence on t of the weights is precisely described
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in Section 3. We denote p;(t) the value of the weight p(t) for the jth observation. The
process {A,(t), t € [0,T]} will be called “likelihood ratio test process" and taking as test
statistic the maximum of this process comes down to perform a LRT in a model when the
localisation of the QTL is an extra parameter.

In the special case where the weights are 0 or 1 depending on the individual, Lander and
Botstein (1989) stated that the asymptotic distribution of the LRT process along [0,7] is
the square of an Ornstein-Uhlenbeck process. This result has been proved by Cierco (1998).
Bounds for the distribution of the maximum of a regularization of an Ornstein-Uhlenbeck
process were proposed by Azais and Cierco-Ayrolles (2002), Azais and Wschebor (2009).
Some results about the asymptotic distribution of the LRT process under the null hypoth-
esis are given in Rebal et al. (1994) for a special modelling of the weights. Their results
are inferred from the bounds given by Davies (1977), Davies (1987) for the maximum of
sufficiently regular Gaussian and chi-square processes.

In this paper we consider the modelling of the weight used by geneticists to detect QTL, so
called Interval Mapping. We give the asymptotic distribution of the LRT process along the
interval [0, 7] under the null hypothesis that there is no QTL on [0,T] (¢ = 0) and under
the alternative that there is one QTL at ¢* on [0, T] which means that the quantitative trait
for each individual is distributed as the mixture in formula (1) with ¢t = ¢*.

The main result of the paper (theorem 1 and theorem 3) is that the LRT process is as-
ymptotically the square of a “non linear interpolated process". It describes the fact that,
when we analyze data, the likelihood profile (ie. the path observed of the LRT process)
is smooth between markers. Besides, we have a close formula (lemma 1 and lemma 2) to
compute the maximum of the LRT process. This formula allows us to give advice on how to
analyze data : we should first perform tests on markers and then calculate only one other
statistic in each marker interval if the ratio between the score statistics on the flanking
markers fulfill a given condition. Finally, we propose a new method suitable whatever the
genetic map, using Monte-Carlo Quasi Monte-Carlo (Genz (1992)), to calculate thresholds
for QTL detection. This method will be compared with Rebai et al. (1994)’s method based
on Davies (1977), and with Feingold and al. (1993)’s method based on Siegmund (1985).

Note that in this article, we also prove that the LRT process obtained by Rebai et al. (1994),
Rebai et al. (1995) is asymptotically the square of a “linear interpolated process" and we
generalize their results to the alternative hypothesis. Besides, we show that the law of the
maximum of the square of the “non linear interpolated process" is the same as the law of
the maximum of the square of the “linear interpolated process". We refer to the book of
Van der Vaart (1998) for element of asymptotic statistics used in proofs.

2. Model

The chromosome is the segment [0, T]. K genetic markers are located on the chromosome,
one at each extremity. t; = 0 < t5 < ... < tg = T are the locations of the markers. The
“genome information" at ¢ will be denoted X (¢). The Haldane (1919) model can be written
mathematically : let N(t) be a standard Poisson process, the law of X (t) is 1 (61 4+ 6_1)

and X (t) = (~1)N® X (t;). The Haldane (1919)’s function r : [0, T]> — [0, 1] is such as

2
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r(t,t) =P(X(H)X(t') = —1) = P(IN(t) — N(')| odd) = % (1 — e 2=

7(t,t") will be the function equal to 1 — r(t,t').
We are interested in a quantitative trait ¥ which depends on the value of X (t) at t* € [t1,tk]
which is the location of the QTL. The quantitative trait verifies :

Yi=p + X(t*) q¢ + o¢

where ¢ is a Gaussian white noise and ¢ the effect of the QTL.

Besides, the “genome information" is available only at locations of genetic markers, that
is to say at t1,%2,...,tx. We denote by X;(t) the value of the variable X (¢) for the jth
observation. So, in fact, our observation on each individual is (Y;, X;(t1), ..., X;(tk)).
These observations are supposed to be iid. The goal of this study is to test if q is equal to
zero. The challenge is that t* is unknown.

3. Only 2 genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T': 0 =t <
to = T. As explained previously, we are looking for a QTL lying at a position t* € [t1, o]
Let ¢ € [t1,t2]. It is clear that the weight p(t) satisfies p(t) = P{X(t) = 1|X(t1), X (t2) }.
Consider for example the case X (¢1) = X (t2) = 1, then by the Bayes rule :

(1/2) P{N(t) — N(t1) even} P{N(t3) — N(t) even}

P{X(t)=1]|X(t1) =1,X(t2) =1} = (1/2) P{N(ty) — N(t;) even}

So that, in general V¢ €]t,to] :

p(t) = Qt X(t)=11x(ts)=1 + Qt (t1):11X(t2):71
+Q " 1X(t1):—11X(t2):1 + Q" T lxy=—1lx()=—1 (2)
where :
11 T(t1,t) 7(t, t2) 1,1 T(t1,t) r(t,t2)
L Rt te) R )
e M F) o rl ) r(tt)

r(t1,t2) ' 7(t1,1t2)
We can remark that we have :
QT =10 and QM =1-Q7
Besides, p(t1) = 1x(,)=1 and p(tz2) = Lx@,)=1. So, the weights p(t) are continuous at ¢,
and to.

Let 8 = (g, 1, o) be the parameter of the model at ¢ fixed and 6y = (0, u, o) the true value
of the parameter under Hy. The likelihood of the triplet (Y, X (¢1), X(¢2)) with respect to
the measure A ® N ® N, A being the Lebesgue measure, N the county measure on N, is
YVt € [tl, tz] :

L(0,t) = [p(t) fu+a.0) ) + {1 = p(O)} fu—a.n ()] (1) (3)



4 Céline Delmas
where
1.
g(t) = 3 {F(t1,t2) Ixepy=11x (=1 + 7(t1,t2) Ix(y=11x(t2)=—1}
1 _
+ B {r(t1,t2) Ixy=—1lx(ta)=1 + 7(t1,t2) Ix(y)=—11x(15)=—1}

The likelihood L, (0,t) for n observations is obtained by the product of n terms as above.
0 = (¢, 1, &) will be the maximum likelihood estimator (MLE) of 6.

Under Hy, there is no QTL lying on the interval [¢,¢3]. Besides, under Hj, it is supposed
that there is only one location where the QTL lies. The location of the QTL, t* (t* € [t1, t2]),
will be added in the definition of H;. So, the alternative hypothesis can be written :

Hga+ : “the QTL is located at the position t* with effect ¢ = a//n where a € R* "

The QTL effect ¢ is such as ¢ = a/+/n in order to deal with Le Cam (1986)’s theory.

3.1. A‘non linear interpolated process"
Theorem 1 With the previous defined notations, and defining respectively A, (.) and S, (.),
the LRT process and the score process for n observations,

F.d.
Su()=2Z() . Au() = {Z())
as n tends to infinity, under Hy and H, where :

e = is the weak convergence and ' is the convergence of finite-dimensional distribu-
tions

e Z(.) is the Gaussian process with covariance function V(t,t') € [t1,t2]? :

T(t,t) = AE {p(t)p(t')} — 1
VElero -7 e [t 1y
and ezxpectation V(t,t*) € [t1,t2]2 .

o under Hy, m(t) =0

o under H
a E[X (") {2p(t) — 1}]

o /E [{Qp(t) - 1}2}

Another way of characterizing Z(.) is that Z(.) is the non linear interpolated process such

as Vt € [thtg] N
Z(t) = { a(t) Z(t) + B(t) Z(t2) } /\[E [{2p(t) — 1}

M* (t) =
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where Vt €]ty ta[, a(t) = Qi+ QP =1, B(1) = Q1! — Q! and a(ty) = 1, B(h) =0,
Oé(tg) =0, ﬁ(tz) =1, Cov {Z(tl), Z(tg)} = g~ 2(t2—t1)

In the same way, V(t,t*) € [t1,t2)? :

mpe(8) = { alt) mes (01) + B(8) mes(t2) }/ ([ [{20(0) — 117]

The quantity E {{2p(t) — 1}2} is given in formula (9) of the proof of the theorem in Section

5.1. E{p(t)p(t")} is given in appendiz 7.1. E[X (t*){2p(t) — 1}] is given in formula (14) of
the proof in Section 5.1.

We limit our attention to finite dimensional convergence since for the applications, the
interval studied is always discretized, Wu et al. (2007).

Figures 1 represent the covariance function I'(¢,¢') and also the mean function my«(t). T is
equal to 0.2M. We can remark that the covariance function is regular.

Contrary to Azais et al. (2006) and Azais et al. (2009), the shift at position ¢ is not T'(¢,¢*).
The model considered here is more complicated due to the fact that an observation includes
the quantitative trait Y and the “genome information", X (¢;) and X (¢2).

m,.(t)

t'(cM) t(cM)

Mean function Covariance function

Fig. 1. Mean function and Covariance function (a = 4, o0 = 1, T = 0.2M)

3.2. Remarks
As it is well known, for regular model, LRT is equivalent to score test in the sense that
Vit € [tl, tg] :

An(t) = {Sa(0)}” + 0m,, (1)

We remind that, as in the proof of the theorem in Section 5.1, the notation op, (1) is short
for a sequence of random vectors that converges to zero in probability under Hy (i.e. no
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QTL on the whole interval studied).
A little algebra shows (see Section 5.1) :

S (t) = (y; — 1) 2p;(t) — 1)

- (4)
=Ly o\ [B [{2p() - 17]

The score test can be obtained, replacing u by it = ) y;/n, according to Prohorov, and
replacing o by ¢ = > (y; — )2 /n, according to Slutsky’s lemma. Nevertheless, in this
article, in order to make the reading easier, the score test statistic is defined as in formula
(4). The score process considered in theorem 1 is based on this formula. Howewer, we have
the same result as in theorem 1 for the other score process because the tightness of this
process is obvious according to the proof of theorem 1.

After some calculations, we can remark that :

Sult) = {alt) Sultr) + B(t) Sult2) }/1[E[{20(0) — 117] (5)

with Covy {Sa(t1),Sn(t2)} = e~2(t2=t1) (t) and S(t) are given quantities in theorem 1.
It comes :

An(t) = { alt) Sulh) + B(1) Sult2) 1 /E[{20(6) 11| + op,, (1)

Besides, by contiguity (cf. proof of theorem 1 in Section 5.1), the quantity op, (1) converges
also to zero under H,«. That is to say, the LRT statistic at a position ¢ between the two
genetic markers is asymptotically equal to the square of a non linear interpolation between
the score test statistics on the markers.

3.3. A‘linear interpolated process"
To construct an approximation of S, (.) (and A,(.)), we introduce a new process V;,(.) which
is obtained from S,,(.) by :

e linear (or polygonal) interpolation
e renormalization

More precisely :

to — 1 t—1
Va(t) = {t;_ = Salh) + ) sn(tg)} /() (6)
where
B to —t t—t
T(t) - VHO {tg 1 Sn(tl) + to — 1, Sn(tZ)}

2 2

[ttt (t—t)(t2=1) iyt t—t

N (t2—t1> 2 (ta —t1)? ¢ * to — 1y

It can be seen easily that 7(¢) # 0, Vt € [t1,t2]. Vi (.) remains asymptotically a Gaussian
process, centered under Ho, with unit variance and Covy, {Sn(t1),Sn(t2)} = e 2(ta=t1)

Some comments about the process V,,(.) :
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(a) According to formula (10) in Section 5.1 and after some calculations, we can estab-
lish that asymptotically, the process V,2(.) corresponds to likelihood ratio tests for a
mixture model whose weights verify :

o —1 t—11

1 11 —_ P —
P— X(t)=11x)=—1 + P—

p(t) = Ix(t)=1lx(ts)=1 + Ix(t)=—11x(t2)=1

(7)

We can remark that these weights are an approximation at the first order of the
weights considered previously in formula (2). So, V;,(.) will be a good approximation
if and only if the genetic markers are close to each other.

(b) V2(.) is a generalization of the process studied, under Hy, by Rebai et al. (1995) :
the number of individuals in each class is not equal to the expectations (respectively
ni(ty, ta)/2, nr(ty,t2)/2, nr(ty,ta)/2, n(t1,t2)/2) but is still random (respectively
D1 L= (ta) =1 201 L) =1 1 (6)=—15 251 1x; (01)=— 11 (1) =1 and
Z;'L:I 1X]-(t1):—11Xj(t2):—1)-

(c) By contiguity (cf. proof of theorem 1 in Section 5.1), under Hy, V() is asymp-
totically the same process as under Hp on which the mean function m«(t) has been
added. My« (t) is such as :

g (t) = { Lol t) + ti__“ mt*(tg)} NZIO)

to — 11 3]

(d) Va(.) is defined here with Cov, {Sn(t1),Sn(t2)} = e 2(27"). In order to consider
other covariances between S, (t1) and S, (t2), 7(.) has to be adapted. It can easily
be seen that the new process V,2(.) is still a generalization of the process studied by

Rebai et al. (1995) provided that E [{Qp(t) - 1}2} # 0 (p(t) verifies formula (7)).

We will name W (.) the limiting process of V,,(.) : W(.) is the linear interpolated process.
Figure 2 represents two paths of the processes W(.) and Z(.) under the null hypothesis.
We remind that Z(.) is the non linear interpolated process. We can observe that the paths
of the two processes overlap when the distance between the two genetic markers is 20cM,
that is to say 0.2M. As mentioned before, W (.) is a good approximation of Z(.) when the
genetic markers are close to each other. As expected, we can remark that when the distance
between the markers is 3M, the paths of the two processes don’t overlap anymore. Note
that same conclusions hold under contiguous alternatives (cf. Rabier (2010)).

3.4. Impact of the interpolations on data analysis

In this Section, we state why the results about the non linear interpolation and about the
linear interpolation are important for data analysis. To begin, we present a theorem and a
lemma.

Theorem 2 Let Cy and Cy be two continuous random variables, and let p such as 0 <
p < 1. Let consider v1(t) and ~2(t), two continuous functions on [t1,t2], and let define the
process D(.) on [t1,t2] such as :

_ Nt G+ 712(t) G
VIO + (e + 257() 120)

D(t)
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18

14

12

Plad —_W()
wollemme -

. . . . . . . . . ) . . . . . ,
2 4 6 8 10 12 14 16 18 20 o 50 100 150 200 250 300
t(cM) t(cM)

One path for the two processes (T' = 0.2M) Oune path for the two processes (T = 3M)

Fig. 2. Comparison between the paths, under Hy, of the linear interpolated process W, and those
of the non linear interpolated process Z

then if the function #% is bounded by 0 and 1 on [t1,t2], and if these bounds are
reached, then

wp (D) = max | (o2, (OF (G 2001 Ca

— ~ - {0512
teltsta] (L+p)(1—p) Gep. iy (G

Lemma 1 With the previous defined notations
and reminding that W (t1) = Z(t1) and W (t3) = Z(ts),

(t2 — tl) {672@27“) W(tl) — W(tQ)}
{e=2(ta=t1) — 1} {W(t1) + W (t2)}

2 AWt} + {W(ta)}* — 2271 W (k) Wi(ta)
W)} = {142t} {1 - 2kn))

let €=

+t1 , then under Hy and Hg4+

and

sup {Z(1)} = sup {W(1)}°

te[tl,tg] te[tl,tg]

= max | (W) (WOP Tyt o) s o (- V()

The proof of theorem 2 and lemma 1 are respectively given in Sections 5.2 and 5.3. Ac-
cording to lemma 1, even when the genetic markers are not close to each other, the law of
the supremum of the square of the two interpolated processes is the same (see Figure 2).
Howewer, when the supremum is obtained between markers, it is not obtained at the same
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positions. These locations are ¢ for {W(.)}* and ¢’ for {Z(.)}?, where ¢’ is such as :

(t2 —t1) B(E)
a(g’) + p(E)

On the other hand, lemma 1 can easily be adapted to the non asymptotic processes. Indeed,
we can replace Z(.) by S, (.), and W(.) by V,,(.) everywhere in this lemma, since the focus
is on the same interpolations. As previously, when the supremum is obtained between
markers, it is obtained at £ for V,,(.) and & for S, (.). Furthermore, we can advise not to
perform a large number of tests between the genetic markers anymore. First, we should
perform score tests on markers. Then, only if the ratio observed between the score statistics
on markers (ie. the ratio S, (t2)/S,(t1)) belongs to the interval | e=2(t2=t1) | 2(t2=t1) [ e
have to calculate another quantity :

C{Sn(t)} + {Sn(ta)} — 2 e72(21) G, (1)) S, (t)
B {1 + 6_2(t2—t1)} {1 _ e—2(t2—t1)}

+ti=¢

¢

To conclude, we should use as a test statistic :

2 2
max {Sn(tl)} ) Clsn(tz) €] e—2(t2—11) | ¢2(t2—1t1) [ {Sn(t2)}

Sn(t1)

4. Several markers : the “Interval Mapping” of Lander and Bo tstein (1989)

In that case suppose that there are K markers 0 = t; < t3 < ... < tgx = T. We consider
values ¢, t' or t* of the parameters that are distinct of the markers positions, and the
result will be prolonged by continuity at the markers positions. For ¢ € [t1,tx]|\Tr where
Ty = {t1,....,tx }, we define ¢’ and t" as :

th=sup{tp € Ty 1ty <t} , t" =inf{ty € Tp:t <t}

In other words, ¢ belongs to the “Marker interval" (¢¢,¢").

Theorem 3 We have the same result as in theorem 1 except that the following expressions
are more complicated :

E[{2p(0) = 11| . E{p(tp(t)} , E[X(E){2p(t) —1}] . alt) . B()

Besides, Z(.) is now the non linear interpolated process such as :

20 = { at) 2() + 6) 2(7) } /\JE [{20(0) — 1}’]

with Yk VE', Cov {Z(ty), Z(ty)} = e~ 2lt—tel,
In the same way, the mean function my(t) is now such as :

mee (1) = { at) me- () + B@) mes(¢7) } /| [E [{2p(1) = 1)]

All these expressions including a proof are given in appendiz 7.2.
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Note that Vk V&', T(tg, tx) = e~ 2lt=tw | Tt is relative to an Ornstein-Uhlenbeck process,
as studied in Lander and Botstein (1989), and Cierco (1998).
The paths of three processes are presented in Figure 3 (T' = 1M):

e the Ornstein-Uhlenbeck process.
e the process Z(.) with only 2 markers, located at ¢t; = 0 and ¢, = 1M.
e the process Z(.) with markers located every 10cM.
The paths of the last two processes are smooth (due to the interpolation) whereas the paths

of the Ornstein-Uhlenbeck process are very jerky. It’s not suprising because the Ornstein-
Uhlenbeck process can be viewed as a stationnary version of the Brownian motion.

o2r ~— Omstein-Unlenbeck ‘l

\ — () (only 2 markers) /{

04 ),I‘T = = Z()) (markers every 10 cM) ( “1
|

Fig. 3. Paths of three different Gaussian processes

Recently, the law of the LRT process under the null hypothesis has also been obtained
by Chang et al. (2009). Technical differences are presented in appendix 7.4. The originality
of our work is first, that we focus not only on the null hypothesis. Secondly, we show that
the LRT process is asymptotically the square of a “non linear interpolated process". It
describes the fact that, when we analyze data, the likelihood profile (ie. the path observed
of the LRT process) is smooth between markers.

4.1. Remarks

The linear interpolated process W(.) presented in Section 3.3 can easily be generalized to
the case of several markers. This is a generalization of the process studied, under Hy, by
Rebai et al. (1994). The details are given in appendix 7.3.

In the same way, lemma 1 can be generalized :

Lemma 2 With the previous defined notations
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and reminding that Vk W (ty) = Z(ty),

(tr —tf) {6—2(t"—t’5) Wt — W(tr)}
let g(tévtr) = ) + tf
{e*Q(t —tf) — 1} {W () + W ()}
, then under Hy and H g

2 AW} + W)} —2e 2O W) W)

[W {f(tz’tr)}] {1 + 672(17715@)} {1 _ 6—2(1&“45)}
and

sup {Z(t)}* = sup {W(t)}*
t€[0,T] te[0,T]

sup {W (1)} = max [{W ()} W)} W {6t )} Twen o) a2t |

t€[0,T] (t1)

2
PRXES) [W{E(tK—latK)}] ]-WV‘(/t(tK)) €] e 20tk —tK 1) , 20—t 1) [
K—1

The proof of this lemma is largely inspired from the proof of lemma 1. Using lemma 2
and using the same arguments as in Section 3.4, we can advise to perform tests on markers
and to calculate one other statistic in each marker interval when it is required.

4.2. Application to the calculation of thresholds

The theoretical results presented in this article allow us to propose a new method to obtain
the a% quantile of the supremum of the process {Z(.)}? under Hy. This method is a direct
application of lemma 2. Besides, Monte-Carlo Quasi Monte-Carlo (MCQMC) methods of
Genz (1992) which are very fast have been considered. As the numerical computation of a
multivariate normal distribution is often a difficult problem, Genz described in his paper,
a transformation that simplifies the problem and places into a form that allows efficient
calculations using standard numerical multiple integration algorithms. He suggests to use
in particular MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC) using N
points have errors that are typically O(1/v/N) whereas Quasi Monte-Carlo methods (QMC)
have errors O(1/N). In order to be sure that the functions studied have nice properties for
QMC, another Monte-Carlo step is required, this is MCQMC. We refer to Genz (1992) for
more details. We use here function QSIMVNEF of Genz, which is a Matlab function with
supporting functions, for the numerical computation of multivariate normal distribution
expected values. This function has been adapted and a Newton method has been used in
order to obtain the thresholds.

Our method is available in a Matlab package with graphical user interface : “imapping.zip".
It can be downloaded at www.math.univ-toulouse.fr/~rabier .

In this Section, we propose to compare the performances of our method with other methods
usually used in QTL detection.
In Rebal et al. (1994), we can find an upper bound for the threshold. This bound is the
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quantity ¢ such as :

9e~c?/2 K] 1 — e=2(tkr1—tw)
1l—a=2®(—c) + —Q ; arctan pRp creve)

where @ is the cumulative distribution of the standardized normal distribution.

This method is based on Davies (1977). However, it is sensitive to the number of genetic
markers. Indeed, the derivative of the process W (.) has a jump at each markers location,
and Davies (1977) upper bound is suitable when the derivative of the process has a finite
number of jumps.

In Feingold and al. (1993), the authors propose a threshold based on the discrete process
resulting from tests only on markers. Besides, they suppose constant the distance between
genetic markers. The threshold ¢? is such as :

l—a=1— ®() + 2T ¢ p(c) v(2eVA)

where ¢ is the density of a normal standardized, A is distance between two consecutive
markers.

This method is inspired from Siegmund (1985) where the function v is fully described.

In Figures 4 and 5, thresholds corresponding to different methods are computed. As ex-
pected, Rebai’s method is very sensitive to the number of genetic markers. We can observe
that Feingold’s method and our method give almost same results.

Howewer, our method give different results than Feingold when the number of genetic mark-
ers is very small (cf. Figure 6). Indeed, Feingold’s method requires the number of genetic
makers to be not too small (cf. Feingold and al. (1993)). The advantage of our method is
that this method is appropriate whatever the map.

Method ‘ this paper ‘ Rebai ‘ Feingold ‘
Threshold | 6.76 | 6.92 | 6.78 |

Fig. 4. Thresholds as a function of the method considered. The map consists of 6 genetic markers
equally spaced every 20cM (T = 1M, a = 95%).

Method ‘ this paper ‘ Rebai ‘ Feingold ‘
Threshold | 823 | 9.09 | 826 |

Fig. 5. Thresholds as a function of the method considered. The map consists of 51 genetic markers
equally spaced every 2cM (T = 1M, a = 95%).
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Method ‘ this paper ‘ Feingold
Threshold | 540 | 5.78

Fig. 6. Thresholds as a function of the method considered. The map consists of 2 genetic markers
(T = 1M, a = 95%).

5. Proofs

Notations : Iy will be the Fisher information matrix taken at the point 6 . I;;(0) refers to
the element ij of Iy. 1231(0) refers to the element ij of I,', the inverse of Iy.

5.1. Proof of theorem 1
We first compute the score functions and the Fisher information matrix. Let ¢ € [t1, to].

OlogL , y—p
e TR
8logL| _y—p 8logL‘ =—l—|— (y — p)?
ou fo o2 o % o o3
E [{2p(t) - 1}*] !
) = ————— , Dal0) =

As the fourth-order moment of a standard normal distribution is equal to three,

2
I33(6p) = =)

After some calculations, we find : I12(60) = I13(60) = I23(6p) = 0. So,

E[p0-11] 1

Iy, = Diag | ———5——, —, = (8)
where E [{Qp(tl) - 1}2} =E [{2p(t2) - 1}2} =1 and V¢ €]ty, to] :
E [{Qp(t) - 1}2} = F(t1, o) (2@2’1 - 1)2 + ot ) (2@}7‘1 - 1)2 9)

Indeed, Vt €]t1,t2] :
B [t - 1] =2{ (@) et + (@) vt
) { (Q;“)Q r(t1, ) + (Q;l"l)2 T(tl,tg)} 1
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As QM = P =1 — Q! and 7(ty, ta) + 7(t1, t2) = 1, we obtain formula
(9)-

E [{2p(t) - 1}2} is always different from zero since the parameter ¢ is bounded. It comes
Vt € [t17t2] :

2

An(t) = i (y; —m) {2p;(t) — 1} T op,, (1) (10)

=g i\ [E [{2p() — 1}?]

By convention, the notation op,, (1) is short for a sequence of random vectors that converges
to zero in probability under Hy (i.e. no QTL on the whole interval studied).

Study under Hj :
Without loss of generality, we assume that n = 1 for the moment and we consider the score
function :

sy = W W 2O -1 y=ny g,
E [{2p(t) — 1}*]

where the fact h(.) is a random process independent of y.
It is easy to see that :

E{S(t)} =0, V{S®)} =E[{a®)}] =1
V(t,t') € [t1,t)?
E[{2p(t) — 1} {2p(t) ~ 1}]

\/ [{229 2}\/ [{21) (t) —1}}

B {p(t)p(t)} — W

VB[ 1] [{2p<t’) - 1]

The formula for E {p(t)p(t')} is given in appendix 7.1. As |p(t)p(t')| < 1, by dominated
convergence theorem, E {p(¢)p(t')} is continuous at (¢1,t'), (t2,t') and (¢1,%2). Then the
covariance function is continuous at this points (because the denominator is also continuous).
So, the covariance function is a continuous function on [t1, 5]

Let Sy, (.) be the score process for n observations :

D(t, ') = Cov {S(t), S(t)} = E{h(t)h(t")} =

= o \/JE [{2p<t> - 1}2}

When n tends to infinity, an application of the Multivariate Central Limit Theorem shows
that for 0 <s1 <s9 < ... <84 <T:

(Sn(51), s Su(3a)) = N(0,)
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were Y is the variance covariance matrix, with unit variance and covariance given by formula
(11). 0 is a column vector of zeros. As A, (t) = S2(t) + op, (1):

2

(n(or) a0 5 {03}

Study under H;- :
In this part, we set

Yi=p = X(0) + oe (13)

a
Vvn
where ¢ is a Gaussian white noise. According to formula (10), V¢ € [tq, 2] :

An(t) = {Sa ()} + om,, (1)

We remind that op, (1) is short for a sequence of random vectors that converges to zero
in probability under Hy (i.e. no QTL on the whole interval studied). Let op, (1) be a

sequence of random vectors that converges to zeros if there is no QTL at position ¢*. Then,
it is clear that :

A(t) = {Sa (O} + om,, , (1)

Let 6,4+ be the parameter refering that we are under Hgu«. Under Hgx, as the QTL is
located at position ¢*, the density of Y| X (t), X (1) verifies :

p(t*)f(u+q,a) (y) + {1 - p(t*)} f(ufq,a)(y)

Let @,, and P, two sequences of probability measures defined on the same space (£2,,, A;,).
Q@ (respectively P,) is the law corresponding to the density L, (04.4+,t*) (resp Ly, (00,t ).
We will call the log likelihood ratio log ‘éP:. It verifies : log fli 7 = log {%}

Notations : @, <P, will mean the sequence @, is contiguous with the respect to the sequence
P,.

Let b = (a, 0, 0)". As the model is differentiable in quadratic mean at 6 ¢+ :

dQn b’ L1
log <dPn) = %VIOgLn(GO,t ) — §b,19ob + op,, (1)

Then, by the central limit theorem :

dQn L 1 2 92 . 2_a2 * 2
1og<dpn>?o>N(2y , v°) with v 7§E {2p(t )71}}

So, by the iii) of Le Cam’s first lemma, we have Q,, < P,,.
Up to now Vit € [t1,t2] :

Aa(t) = {8 (0} + op, . (1)
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As @, < P,, according to iv) of Le Cam’s first lemma :
An(t) = {Su (D)} + op, . (1)

So, calculations can be done with the score process. According to formula (12) and (13),
we have :

1 n n *
= U7 G0 3 X = 536 Z 0

where h;(.) is the equivalent of the process h(.) defined above but for the individual j. S(.)
is the process obtained under Hy.
By the law of large number :

*ZX (1) = E{X()h(1)}

Let suppose K = 2 for the moment and, for example (¢,t*) €]t1,t3[>. Let us compute
E[X(¢*) {2p(t) — 1}]. We condition on X (¢1) and X (t2). Consider, for example, the case
X(t1) = X(t2) = 1. In this case, p(t) = Q" and we have :

E[X(1%) {2p(t) = 1} | X(t1) = X(t2) = 1] =E | X(¢) {201 =1} | X(t2) = X (2) = 1]
- {2@}1 - 1} E[X(#) | X(h) = X(t2) = 1]

1.1 7(ty, t%) 7(t*, ta) r(ty, t)r(t*, ta2)
- {2Qt - 1} { 7(t1,t2) - 7(t1,t2) }

= {e@i" -1} {Qb' -t} = 2ot -1} {eqit -1}

Considering the four cases :

E[X(t") {2p(t) — 1}]
- {2@}1 - 1} {2@1 - 1} % F(t1, ) + {2Qt } {2@1 1 1} % r(t1, t2)
+{2Q;1’1 —1} {2@;1’1 1} % r(t1, t2) {2@;“1 —1} {2@;“1 —1} %F(tl,tg)
= F(t1, ) {2@};1 - 1} {2@,}71 - }

+r(ty, o) {2@,};*1 - 1} {2@}*1 - 1} (14)

According to dominated convergence theorem, E [ X (t*) {2p(t) — 1}] is continuous on [t1, t2]?.
As a conclusion, V(t,t*) € [t1,t2]?

a E[X(#) {2p(t) — 1}]
E [ {2p(t) - 1}*]

Ty * (t) =
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A non linear interpolation
After some calculations, we can remark that :

Sult) = {alt) Sultr) + B(E) Sult2) }/1[E[{20(0) — 117]

where Cov,, {Sn(t1),Sn(t2)} = 722, a(t1) = 1, f(t1) = 0, a(tz) = 0, B(tz) = 1 and
Vit E]tl,tQ[ :

aft) = Q' +Qy " —1 and S(t) = Q' — Q!

And it comes :

M (£) = { alt) mes (0) + B(8) mes(t2) }/ ([ [{2p(0) — 117]

Weak convergence of the score process
To begin, we remind that t; = 0 and t; = 7. As p(t) and E [{Qp(t) — 1}2} are continuous

functions, each trajectory of the process S, (.) is a continuous function on [0,T]. Let define
the modulus of continuity of a continous function x on [0,7] :

Wy (0) = supjy_y<s |x(t') — x(t)] where 0<6<T

According to theorem 8.2 of Billingsley (1999), the score process is tight if and only if the
two following conditions hold :

(a) the sequence S, (0) is tight.
(b) For each positive € and 7, there exist a §, with 0 < § < T, and an integer ngy such that
P{ws,(6) = n} <e VYn = ng.

According to Prohorov, the sequence S,(0) is tight. So, a) is verified.
Let define the functions &(t) and 3(t) such as :

a(t) = a(t)/\[E [{2p(t) = 1] . B(t) = B(t)/\[E [{2p(t) - 1)°]

First, we can remark that V0 such as 0 < 6 < T
ws, (6) = SUP|tr—t|<s 1Sn(t') = Su(t)]
= S’U,p|t/ t|<s ‘{OZ t/ — a( }S tl + { ﬂ } n(tz)‘
< maz {|Su(t)], 1Sa(t2)l} {wa(8) +w <6>}

Let € > 0 and 1 > 0, as the sequence max {|S, (t1)|, |Sn(t2)|} is uniformly tight, 3M such
asVn =1 P[max{|S.(t1)|,|Sn(t2)|} =2 M| <e.
It comes, P [max{\sn(tm 1S ()]} {w&(é) +w5(5)} > M{wd(é) +w5(6)} } <e

As a(t) and B(t) are continuous on the compact [0,7], according to Heine’s theorem,
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these functions are uniformly continuous. So, let v > 0, 36; with 0 < §; < T, such as
wa(01) < v/2 and 32 with 0 < 02 < T such as wz(d2) < v/2. Let & = min(d1,d2) then
wa(8) + wz(d) < v. If we impose v = n/M, then ¥n > 1, P{wg, (§) = n} < e which means
b) of theorem 8.2 of Billingsley (1999) is fulfilled. So, the tightness of the score process is
proved.

To conclude, the tightness and the convergence of finite-dimensional imply the weak con-
vergence of the score process.

5.2. Proof of theorem 2

Introducing the process W(.):
We consider the process W (.) on [0, 1] such as :

. (1-t)Cy + tCy
Wi(t) = VAO—t2+2+25¢t(1—1)

We can remark that W (0) = C; and W (1) = Cs.

. 2
The interest is on the supremum of the process {W()} :

) - Am0ROP & 2100y & 2y

B (1—t)2 + 2+ 2pt(1—1t)

We will call respectively N(t) and D(t) the numerator and the denominator of the fraction
above.

ON(t
815):2 {1-%)Cy + tCy} {Cy—Ch}
We can remark that :
A=t +t2+2tp(1—t)=1-2(1—-p)t(1—1) (15)

It comes : agt(t) =—-2(1-p) (1 —2t). So,

8{W(t)}2
— g = [2{0 =00+ 10} {2 = Ci} {1 = 2(1 = p)i(1 — 1)}

+ 2051 =20 {(1 =G +1C2} | /{DO)Y
We have :
) {W(t)}2
ot
<~ {(1 — t)Cl + tCQ}

x [{Co=Cri{1 =201 =p)t(1 =)} + (1 =p)(1 = 2t){(1 = 1)C1 +1C}] = 0

As {(1 —t)Cy +tCs} corresponds to a minimum, the focus is on the second term. This
second term is equal to zero if :

=0

C__1+p
Cr 1+ (p—1)t
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Let define the function v;(t) such as :

__1+r
1+ (p—1)t
As (p — 1)t is a decreasing function on [0, 1], then 5(¢) is an increasing function on [0, 1]
with 95(0) = p and ¥,(1) = 3.
Let define wgl the inverse function of ;. After straightforward calculations, we find :

V(1)

-1 p—u
~ u) = ——————
Y= G
So, the extremum between 0 and 1 is obtained for :
é _ ﬁ Cl - CQ

(p—1){C2+ C1}

After some calculations, using formula (15), we find that :

_14+p {CP +{C)?—25Ci G

(1-6?+&+26p(1-¢)

1-p {Cy + Co}?
It comes :
- o2 G G 2501 G
{Wo} ==y
So :

s {0} = (WO} 1ea )5 00 + 1O la

t€[0,1] °

2 2
O Lg o) 1O Lz o) wanicisiel

2
O 1 oy onjcaisian (16)

. 2
A concise version of this formula is that the supremum of {W()} is the maximum of three

random variables :

sup]{Vi/'(t)}2 = max [{01}2 , {W(é)}2 1% SRS {Cg}z}

te[0,1

Let v1(t) and ~2(t) be two continuous functions on [t1,¢2]. Besides, as in theorem 2, let

suppose that #% is bounded by 0 and 1, and that these bounds are reached. We

have Vt € [tl,tg] :

= Y2(t) .
W (vl(t) +w(t)> =D®
And,

sup (DY = swp { ()}

te[tl,tg] tE[O,l]

It concludes the proof.
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5.3. Proof of lemma 1

Study of the supremum of the linear interpolated process W(.) :
Let consider the process W (.) on [t1,t2]. It verifies V¢ € [t1,ta]:

to —t
to — 11

W(t) + = b W(tg)}/\/r(t)

to — 1ty

W(t) = {

where

(t) = (tz—t>2 4o Ut =1 any | (t_tl>2

ta —t1 (ta —t1)?
Using same notations as in theorem 2, let consider :

to —t
to —ty

t—1t
) VQ(t) = ; tl s Cl = W(tl) s CQ = W(tz) , ﬁ — 6_2(t2—t1)
2— U

1(t) =

We will call v5(¢) the ratio #% We have y3(t) = =% So, y3(t2) = 1, v3(t1) = 0,

and 0 < v3(t) < 1. As a consequence, according to theorem 2 :
sup {W(H)} = max [{W(t)}* , (W(t)}* ,
e[ty ta]

W ()} + {W(t2)}” — 27270 W(t) W(ty) |
{1 + 672(t27t1)} {1 _ 672(t27t1)} %:fﬁ €] e 2(ta—t1) | 2(ta—t1) |

In the same way as in the proof of theorem 2 (cf. Section 5.2), we have :

2 W)Y + {(W(t2)}* —2 7270 W(h) W(ts)
{W(é-)} - {1 + 6—2(t2—t1)} {1 _ 6_2(t2_t1)}

with :

(tQ — tl) {672(15271‘/1) W(tl) — W(tg)}
{em202mt) — 1} {W (1) + W(t2)}

§= + 1

Study of the supremum of the non linear interpolated process Z(.) :
Let consider the process Z(.) on [t1,t2]. It verifies Vt € [t1,t2] :

2(t) = {a()Z(t) + BWZ ()} VHaF + {8} +2 alt) B(t) et

Indeed, according to the proof of theorem 1 (cf. Section 5.1), Z(.) has unit variance.
Using same notations as in theorem 2, let consider :

Nt =alt), y.t)=6t), Ci=2Z(t1), Co=Z(tz), p=e 271

As previously, we will call v3(t) the ratio #% We have y3(t) = % To begin,

we will admit that Vt € [t1,t2], 0 < y3(t) < 1. Besides, v3(t2) = 1 and 3(¢1) = 0.
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As a consequence, according to theorem 2 :
sup {Z()} = max [{2()) , {Z(2)}
te(ty,ta]

{Z(t)} + {2 (t2)}* — 2 7227 Z(ty) Z(ta) 1
{1 + 6_2(t2_t1)} {1 _ e—2(t2—t1)} géif; €] e 20t2—t1) | e2(t2—t1) |

To conclude, as Z(t;) = W(t1) and Z(t2) = W(ts) :
sup {Z(1)}* = sup {W(t)}*
tE[ty,t2] tE[ty,t2]

The interest is now on the function ~3(t). Vt € [tl, to], we have :

L Ql —1
2@% -

In order to proove that V¢ €]t1,%2[ 0 < v3(t) < 1, we will proove that 0 < J3(t) < 1 with
- 1,1 1,—1 1,1

Y(t) = (@ + @ —1)/(2Q, *12-1 1

The calculation of the derivative of Q);>" shows that @,’" is a decreasing function on

Jt1, (11 + tg )/2] and an increasing function on [(t1 + t2)/2,t2[. The minimum is Qét,11+t2)/2.
Since Q (rita))2 = = {14 e 2ttt) fge-ti=ta) /{94 9.-2(t2=1)} e have Q e >
1/2. By continuity, 0 < 2Qt1 ' — 1. The focus is now on the numerator of ~3(t). After
calculations, we obtain :

1,1 1,-1 —o(t— _
QI + Q™Y _em2(t=t1) _ g—4tat2t42t

ot o 2 r(ty, ta) 7(t1, o)

Y3(t) =1 -

As a consequence, Qi 1 Q; =1 _ 1 is a decreasing function on Jt1,t2[. By continuity,
0<Qr'+Qr ' —1. So, 43(t) > 0.

On the other hand, the study of the derivative of Qtl’l - Qtl’_l shows that Q%’l > Qtl’_l. It
comes Vit €]t1,t2], 0<73(t) <1 and 0 < ~3(t) < 1.
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7. Appendix

7.1. Formula for E {p(¢)p(¢')}
Y(t,t') €]ty ta[?

E {p(0)p(t'} = %{ B () + QU QN ol t2) )
+5 {Q;“Q;“ Pt te) + Q7 TN T (k) )

This quantity is continuous at ¢; and ¢ (cf. proof of theorem 1 in Section 5.1)
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7.2. Sketch of the proof of theorem 3

Let t € [t1,tx]\Tk. Ast belongs to the “Marker interval" (¢, "), some adjustments with Sec-
tion 3 have to be done : ¢; becomes t* and 5 becomes t". So, p(t) is now the quantity equal to
P{X(t) =1]|X(t"), X(t")}. In the same way, p(t), QP QP QM and QY described
in formula (2) have to be adapted to the “Marker interval". The likelihood presented in
formula (3), is unchanged except that the focus is on the triplet (Y, X (t*), X(¢")) and the
function g(¢) has to be adapted to the “Marker interval". Formula (10) of Section 5.1 is also

suitable ¢ € [t1,tx]\T; because ¢ is bounded. It comes, V(¢,t') € [t1, tx]\Tk X [t1,tx]\Tk :
AE {p(t)p(t)} —1

VE 20 - 1] B [t2pt0) - 1]

E [{2p(t) . 1}2} described in formula (9) of Section 5.1 has to be adapted to the “Marker

interval".
V(t,t') €]t*,t"[?, the expression of E{p(t)p(t')} can be deduced from appendix 7.1 by
adapting to the “Marker interval".

Besides, if (¢,t') € |t,t"[ x [t", tx]\ Tk :

Lt t') =

E {p(t)p(t")}

R ) [ QL (@) + QU () ) ] [T (e @)+ Qe (e (1))

R [ @) @) )+ QT @] @it (e @) ) + QTR ()}
QU'F L@ @)y @y e (@) @) @b e @)y + Q7 R (L (1))

Pt ) [ Q@ @) @)} + QT @] @b e @) Qe L ()

In the same way as what has been done in the proof of theorem 1 (cf. Section 5.1),
Y(t,t*) € [t1, tx]\Tk X [t1, tx]\Tk :

_|_
NN =N = =

a E[X(t*){2p(t) — 1}]
o JE [{zp(t) - 1}2}

If (¢,t*) €]t’, "2, then E [X (¢*) {2p(t) — 1}] has the same expression as in formula (14) of
Section 5.1 provided that we adapt to the “Marker interval".

Besides, if (¢,t*) € Jt*,t"[ x [t",tx]\Tk :
E[X(t") {2p(t) — 1}]
=2Qy" E{X(t")1x(y=1lx@ry=1} + 2 Q1 " E{X () lx@o=1lx(r=—1}
+2Q M E{X () 1xpty—1lxen=r} + 2Q; VT E{X () 1xpe=—1lx(r)=—1}
=7t t) F(t,t7) {1 —2r(t", )} + F(t5) r(t,t7) {2r(t",t*) — 1}
+r(t ) 7t 7)) {1 —=2r(t",tN) ) 4+ r(tht) r(t,t7) {2r(t7, %) — 1}
={1—2r(t,t")} {1 —2r(t",t*)} = 2" ~D

my (t) =
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As we deal with Poisson processes, it is reversible. So, If (¢,t*) € [t*", tx|\Txx Jt*, ¢*7[ :
E[X (") {2p(t) — 1}] = {1 = 2r(t*, ")} {1—2r(t",0)} = e72(071)
So, if ¢t and t* do not belong to the same “Marker interval" :
E[X(t) {2p(t) = 1}] = 21" (17)

A non linear interpolation
Concerning the non linear interpolation, we have to adapt formula (5) of Section 3.1 to the
“Marker interval". V¢ € [t1,tx]\T) we have :

Sult) = { alt) Sut') + B(t) Sult") } /\/E [{20() — 11’] (18)

where a(t) = T4 Ql o, B(t) = %’1 — Q%’A and Vk VE', Covy,,, {Sn(tk), Su(tx)} =

e—2|tk tk’l_
It comes V(¢,t*) € [t1,tx]\Tk x [t1,tx]\Tk :

me (t) = { at) mp(t°) + B(t) me-(t7) }/ \/m

Weak convergence of the score process

Each trajectory of the process S, (.) is a continuous function on [0,7]. In the same way as
in the proof of theorem 1 in Section 5.1, in order to prove the tightness of the score process,
we have to verify that conditions a) and b) of theorem 8.2 of Billingsley (1999) are fulfilled.
According to Prohorov, S, (0) is tight, so a) is fulfilled.

We remind the modulus of continuity of Sy, (%) :

ws,, (6) = supy_i<s |Sn(t') — Su(t)] where 0<3<T

Let define wf (), the modulus of continuity of S, (¢) only between the markers k and k + 1

wgn (0) = supp—4|<s IS (' +tg) — Sp(t+t;)| where 0<§ < tpyr — tk

As the score process is tight when there are only two markers (cf. proof of theorem 1),
according to b) of theorem 8.2 of Billingsley (1999), we have for a given k:

Ve > 0Vn > 036, with 0 <y <tpy1 —t such that P{w§ (6s) =n} <e

So, let € >0, € =¢/(K —1), n >0 and we impose § = mingegy,.. x—1}(0x)

then Vk € {1,..., K — 1} P{wgn(é) >n} <€

As wg, (6) > wh (8) + ... + wh ~1(6), then P{ws, (8) =n} < Sp ' P{wk 8) =0} <e
which means b) of theorem 8.2 of Billingsley (1999) is fulfilled. So, the tightness of the
score process is proved.

To conclude, the tightness and the convergence of finite-dimensional imply the weak con-
vergence of the score process.
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7.3. Linear interpolated process in presence of several markers
In presence of several markers, the process V,,(.) is such as Vt € [t1,tx]\T :

-t

e
lt) = {5 Sult) + 5 .00 b VD

tr — ¢t

where

7(t) = <H>2 Lo W=Dt oy (t—tf )2

- té (tr _ t£)2 = tl

It can be seen easily that 7(t) # 0, Vt € [t1,tx]\Tk .

V() remains asymptotically a Gaussian process with mean equal to 0 under Hy, unit
variance, and Vk Vk', Covy {Sn(tx), Su(tw)} = e 2lt—twl In the same way as what has
been done in Section 3.3, the weights of the model of mixture corresponding to this process
verify :

tr—t t—tf
Fr— Ix@oy=11x@ry=—1 + i Ix@y=—11x(tr)=1

p(t) = 1xuey=1lx@r)=1 + o T

This weights are an approximation at the first order of the original weights. So, V;,(.) will
be a good approximation if and only if the genetic markers are close to each other. This
process V;,(.) is a generalization of the process studied, under Hyp, by Rebai et al. (1994).
By contiguity (in the same way of what has been done in Section 5.1), under H;, V,,(.) is
asymptotically the same process as under Hy on which the mean function, - (), has been
added :

ro_ 4
mt*u):{ttmt*(tf) Lozt mt*<tr>}/w<t>

tr_té tr_tZ

As previously, W(.), the limiting process of V,,(.), is named the linear interpolated process.

7.4. Comparison with Chang et al. (2009)

The law of the LRT process has also been obtained by Chang et al. (2009) under the null
hypothesis. We propose here to present technical differences between our work and the
work of Chang et al. (2009). As at a location ¢, the LRT is asymptotically the square of
the score test, we will focus only on the score process as in Chang et al. (2009).

The main difference between the two approaches is that we consider the number of indi-
viduals in each class as a random variable whereas in Chang et al. (2009), the number
of individuals in each class is supposed equal to the expectations (same remark as (b) of
Section 3.3).

OJlog L

Our approach allows us to compute the score function 9 lg, for only one observation
and to calculate the Fisher information matrix without approximation.

Anyway, we obtain exactly the same Fisher information matrix as in Chang et al. (2009).
However, there are some differences concerning other quantities.

7.4.1. Only two markers :
Let consider that there is only two markers as described in Section 3. Let ¢ €]tq,t2[. The
result will be prolonged by continuity at the markers positions. According to formula (4)
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of Section 3.3 and using the fact that Q%’l =1- Q;Lfl and Qtl’*1 =1- Q;l’l, the score
test statistic is :

" (s = 1) {1, ()21 1 )=t — 1, )= 11 (1) =
Sn(t)=(1—2Q;1"1)Z(yj W {1x =11 (=1 = L) =11, (1) =1

o v\ [E[{2p(t) - 1)°]

(120 i: (v — 1) {1, () =11, (0)=—1 — 1, (t)=—11 %, (ta) =1 }

o v\ [E[{2p(t) - 1)°]

With our notations, the test statistic used in formula (8) of Chang et al. (2009) is

@ (1 _ QQt—l,—l) f(tlatQ) (3311 - ?—1—1) + ? (1 _ 2@;171) T(tl,tg) (]]1_1 — ?]—11)

Us(t) =
2
E [{2p(t) - 1)°] & \[E [{2p(t) - 1¥°]
where 71, = nf(t21,t2) Z?:l Ix;y=11x,(t2)=1 » Y-11= n’r(t21,t2) E?:l Lx;(t)=—11x;(t2)=1
Y11= m Z?:l 1X,-(t1):11Xj(t2):—1 and y_1-1 = #ﬂz) Z;L:1 1Xj(t1):—11Xj(t2):—1~

We can remark S,,(t) # U*(t) + op, (1). It is due to the approximations done by Chang et
al. (2009).

Let GL(t) and G2(t) be the quantities such as :

G,}L(t) = i (y] - /’[’) {1Xj(t1):11Xj(t2):1 - 1Xj(t1):*11Xj(t2):—1}

=1 n f(tl,tg)
G2(t) = Zn: (yj — 1) {1Xj(t1):11Xj(t2):71 - 1Xj(t1):711Xj(t2):1}
" =1 n T(t1,t2)

GL(t) and G?(t) are asymptotically standard normal variables under Hy. Besides, G} (t)
and G2(t) are independent. Note that G (¢) and G2(¢) do not depend on ¢ but we keep ¢
as a parameter in order to adapt these test statistics to the case of several markers in the
next Section.

Contrary to formula (9) of Chang et al. (2009) :

3"é S VT 7(t1,t2)n o &y +0p90(1)

GA(1) # % it I o, (1)
We have :
Salt) = { Vil t2) (1= 2@, Gh(1) + Vil t) (1-207) GR( ) /\JE [{26() — 1))

(19)

This formula is the corrected version of formula (10) of Chang et al. (2009) without approx-
imations here. According to formula (19), the score at a position ¢ between two markers,
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is an interpolation not linear between the test statistic G} (t) and G2(¢). Naturally, when ¢
tends to ¢ (resp. t2), Sn(t) tends to S, (t1) (resp. Sn(t2)). It becomes a linear interpolation
between S, (t1) and S, (t2) if a Taylor linearization is done concerning the weights of the
model of mixture (cf. Section 3.3).

Finally, we agree with formula (11) of Chang et al. (2009) concerning the covariance of the
process, it is exactly the same function as T'(¢,¢') of theorem 1 of this paper.

Note that the non linear interpolation presented above, in formula (19), is not the same
interpolation as presented in formula (5) of Section 3.2 of this paper. Our interpolation
is more intuitive, because it is an interpolation between the test statistic on markers. Be-
sides, it explains why the likelihood profiles (ie. the paths of the process A, (.)) are smooth
between markers.

7.4.2. Several markers : the “Interval Mapping‘’ of Lander and Botstein (1989)
Let consider that there are several markers as described in Section 4. We consider values t,
t' of the parameters that are distinct of markers positions. Let ¢ € [t1,tx]\Tr. We have :

n

Z (5 — 1) {1x;0=11x; =1 — 1x,(¢0)=—11x, (0r)=—1}
o \/n Tt )

G(t) =

Jj=1

G2 (1) = z": (5 — 1) {1x, =115, 00=—1 = Ix,()=—11x,0m)=1}

= o /nr(tttr)

5,0 = {7, ) (201" = 1) GR0) + el 200t - 1) G20y B [12m0) - 11

This last formula is the corrected version of formula (14) of Chang et al. (2009).
Let (t,t') € Jt',¢"[ x [t",tx]\Tx. The different covariances under Hy are :

oV, {Ga (1), Ga(t)} = ¢t“f‘ R (e
oviy {G(), G} = \/e(tt, 1) r{(v), (1)} e 20D
7 1620, }——VtH0TW%@W}gqmtn
0%, {GR0, GRX)} = /ot ) r ()0, ()7} 00

This is exactly the same covariances as in formula (19) of Chang et al. (2009). Besides, we
agree with formula (20) of Chang et al. (2009) which establish a relationship between the
test statistic G when ¢ and ' belong to 2 consecutive marker interval (as above we suppose
t<t):

G%(t’)zl(t/)r){ F(t4tr) GL(E) — Jr(th tr) G2(t) — /7, (¢)") GL(Y }

r(tr,

To conclude, the non linear interpolation proposed by Chang et al. (2009) is an approx-
imation. We present here their interpolation without approximations. Howewer, their
approximations don’t affect the final results concerning the process.
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