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We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL
(a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the
interval [0, T ] representing a chromosome. The observation is the trait and the composition
of the genome at some locations called “markers”. We give the asymptotic distribution of
this LRT process under the null hypothesis that there is no QTL on [0, T ] and under local
alternatives with a QTL at t? on [0, T ]. We show that the LRT is asymptotically the square of
some Gaussian process. We give a description of this process as an “ non-linear interpolated
and normalized process ”. We propose a simple method to calculate the maximum of the LRT
process using only statistics on markers and their ratio. This gives a new method to calculate
thresholds for QTL detection.

Keywords: Gaussian process; Likelihood Ratio Test; Mixture models; Nuisance parameters
present only under the alternative; QTL detection; MCQMC

AMS Subject Classification: 62M86; 65C05; 62P10

1. Introduction

We study a backcross population: A× (A×B), where A and B are purely homozy-
gous lines and we address the problem of detecting a Quantitative Trait Locus,
so-called QTL (a gene influencing a quantitative trait which is able to be mea-
sured) on a given chromosome. The trait is observed on n individuals (progenies)
and we denote by Yj , j = 1, ..., n, the observations, which we will assume to be
Gaussian, independent and identically distributed (i.i.d.). The mechanism of ge-
netics, or more precisely of meiosis, implies that among the two chromosomes of
each individual, one is purely inherited from A while the other (the “recombined”
one), consists of parts originated from A and parts originated from B, due to
crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance on [0, T ]
is called the genetic distance, it is measured in Morgans. The genome X(t) of one
individual takes the value +1 if, for example, the “recombined chromosome” is
originated from A at location t and takes the value −1 if it is originated from B
. We use the Haldane [1] modeling that can be represented as follows: X(0) is a
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random sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poisson process
on [0, T ]. We assume an “analysis of variance model” for the quantitative trait :

Y = µ + X(t?) q + σε (1)

where ε is a Gaussian white noise and t∗ is the true location of the QTL.
In fact the “genome information” will be available only at certain fixed locations

t1 = 0 < t2 < ... < tK = T and the observation will be

(Y, X(t1), ..., X(tK)) .

So, we observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d. Calculation on the
Poisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(
∣∣N(t)−N(t′)

∣∣ odd) =
1

2
(1− e−2|t−t′|),

we set in addition

r̄(t, t′) = 1− r(t, t′).

It can be proved that, conditionally to X(t1), . . . , X(tK) , Y obeys to a mixture
model with known weights :

p(t∗)f(µ+q,σ)(.) + {1− p(t∗)} f(µ−q,σ)(.), (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the function
p(t) is the probability of P(X(t) = 1) conditionally to the observations of the
markers. It can be expressed from the functions r and r, see Sections 2 and 3 .

The challenge is that the true location t∗ is not known. If t∗ = t were known,
the model would be a regular model. If we define Λn(t) and Sn(t) as the likelihood
ratio test (LRT) statistic and the score test statistic (see Section 2 for a precise
definition) of the null hypothesis “q = 0”. It is well known that

Λn(t) = S2
n(t) + oP (1)

and that Sn(t) is asymptotically Gaussian. Note that following Van der Vaart [14]
we have use a multiplicative coefficient of 2 in the definition of the likelihood ratio
test.

When t∗ is unknown, considering the maximum of Λn(t) still gives the LRT of
“q = 0”. This paper gives the exact asymptotic distribution of this LRT statistic
under the null hypothesis and under contiguous alternatives. These distributions
have been given using some approximations by Cierco [2], Azäıs and Cierco-Ayrolles
[3], Azäıs and Wschebor [4]. In Rebäı et al. [5], Rebäı et al. [6], Chang et al. [7],
the authors focus only on the null hypothesis using some approximations.

The main result of the paper (Theorem 2.1 and 3.1) is that the distribution of
the LRT statistic is asymptotically that of the maximum of the square of a “non
linear normalized interpolated process”. It explains the fact that the paths of the
LRT process, Λn(.), are smooth between markers (cf. Wu et al. [8]). The second
important result is that we have a close simple formula for the distribution of the
maximum of the square of the “non linear normalized interpolated process” see
Lemma 2.2.
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Finally, we propose a new method suitable whatever the genetic map is, using
Monte-Carlo Quasi Monte-Carlo (Genz [9]), to calculate thresholds for QTL detec-
tion. We show that our method gives better performances than Rebäı et al. [6]’s
method based on Davies [10, 11], and Feingold and al. [12]’s method based on Sieg-
mund [13]. We will also apply it on real data. Our method is available in a Matlab
package with graphical user interface : “imapping.zip”. It can be downloaded at
www.stat.wisc.edu/∼rabier .

We refer to the book of Van der Vaart [14] for elements of asymptotic statistics
used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T
: 0 = t1 < t2 = T . For t ∈ [t1, t2] we define

p(t) = P
{
X(t) = 1

∣∣X(t1), X(t2)
}

and

x(t) = E
{
X(t)

∣∣X(t1), X(t2)
}

= 2p(t)− 1.

It is clear that p(t∗) is effectively the probability appearing in (2). An application
of the rule of total probabilities leads to

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (3)

where

Q1,1
t =

r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.

We can remark that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Let θ = (q, µ, σ) be the parameter of the model at t fixed. The likelihood of
the triplet (Y, X(t1), X(t2)) with respect to the measure λ⊗N ⊗N , λ being the
Lebesgue measure, N the counting measure on N, is ∀t ∈ [t1, t2] :

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
g(t) (4)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
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can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote Lt(θ) for the likelihood without this function. Thus we
set

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
and lt(θ) will be the loglikelihood. We first compute the Fisher information at a
point θ0 that belongs to H0.

∂lt
∂q
|θ0 =

y − µ
σ2

x(t) (5)

∂lt
∂µ
|θ0 =

y − µ
σ2

,
∂lt
∂σ
|θ0= −

1

σ
+

(y − µ)2

σ3

After some calculations, we find

Iθ0 = Diag

[
E
{
x2(t)

}
σ2

,
1

σ2
,

2

σ2

]
(6)

Our main result is the following

Theorem 2.1 : Suppose that the parameters (q, µ, σ2) vary in a compact and that
σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and define the
following local alternative

Hat? : “the QTL is located at the position t? with effect q = a/
√
n where a 6= 0 ”.

With the previous defined notations,

Sn(.)⇒ Z(.) , Λn(.)
F.d.−→ Z2(.) , sup Λn(.)

L−→ supZ2(.)

as n tends to infinity, under H0 and Hat? where :

• ⇒ is the weak convergence,
F.d.→ is the convergence of finite-dimensional distri-

butions and
L−→ is the convergence in distribution

• Z(.) is the Gaussian process with unit variance and
-covariance function

Γ(t, t′) =
E {x(t)x(t′)}√

E {x2(t)}
√

E {x2(t′)}

=
α(t)α(t′) + β(t)β(t′) + {α(t)β(t′) + α(t′)β(t)} ρ(t1, t2)√

α2(t) + β2(t) + 2α(t)β(t)ρ(t1, t2)
√
α2(t′) + β2(t′) + 2α(t′)β(t′)ρ(t1, t2)

where

ρ(t1, t2) = exp(−2|t1 − t2|)

α(t) = Q1,1
t −Q

−1,1
t

β(t) = Q1,1
t −Q

1,−1
t
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-expectation ∀(t, t?) ∈ [t1, t2]2 :

- under H0, m(t) = 0
- under Hat?,

mt?(t) =
a E {X(t?)x(t)}
σ
√
E {x2(t)}

= a/σ
√
E {x2(t?)} Γ(t, t∗).

It is clear that we have

Z(t) =
α(t)Z(t1) + β(t)Z(t2)√
V {α(t)Z(t1) + β(t)Z(t2)}

. (7)

In the sense of this equation, Z(.) will be called a ”non linear normalized interpo-
lated process”. As a consequence, the mean function, mt?(t), is also an interpolated
function. In particular, we have :

mt?(t) =
{α(t) mt?(t1) + β(t) mt?(t2)}√

V {α(t)Z(t1) + β(t)Z(t2)}
(8)

where

mt?(t1) =
a

σ
{α(t?) + β(t?)ρ(t1, t2)} = a ρ(t1, t

?)/σ

mt?(t2) =
a

σ
{α(t?)ρ(t1, t2) + β(t?)} = a ρ(t?, t2)/σ.

The computation of the maximum of the process Z2(.) can be performed by
using the following lemma.

Lemma 2.2: Let γ1(t) and γ2(t) be two functions such that γi(t)
γ1(t)+γ2(t) takes every

value in [0, 1], i = 1, 2. Let C1 and C2 be two real numbers and 0 < ρ̃ < 1 then

max
t∈[t1,t2]

{γ1(t)C1 + γ2(t)C2}2

γ2
1(t) + γ2

2(t) + 2ρ̃γ1(t)γ2(t)
= max

(
C2

1 , C
2
2 ,

C2
1 + C2

2 − 2ρ̃C1C2

1− ρ̃2
1C2
C1
∈ ] ρ̃ , 1

ρ̃
[

)
.

In particular, if C1 and C2 are two random variables defined on the same prob-
ability space with V(Ci) = 1, i = 1, 2, Cov(C1,C2) = ρ̃ with 0 < ρ̃ < 1 and if
γ1(t) and γ2(t) are two functions as above, the lemma gives the distribution of the
maximum on [t1, t2] of the square of the following normalized interpolated process
D(.) :

∀t ∈ [t1, t2], D(t) =
γ1(t)C1 + γ2(t)C2√

γ2
1(t) + γ2

2(t) + 2ρ̃γ1(t)γ2(t)
.

So, the lemma can be applied to the process Z(.) by taking γ1(t) = α(t), γ2(t) =
β(t), ρ̃ = ρ(t1, t2), C1 = Z(t1), C2 = Z(t2), as soon as we prove that γ3(t) =

β(t)
α(t)+β(t) takes every value in [0, 1]. Let’s now prove this.

Since α(t1) = 1 and β(t1) = 0, γ3(t1) = 0. Since α(t2) = 0 and β(t2) = 1, γ3(t2) = 1.
So, the bounds 0 and 1 are reached. Besides,

β(t) =
r(t1, t)r(t, t2)r(t1, t2)− r(t1, t)r(t, t2)r(t1, t2)

r(t1, t2)r(t1, t2)
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has the same sign as

r(t, t2)r(t1, t2)− r(t, t2)r(t1, t2) = r(t1, t2)− r(t, t2) > 0.

Furthermore, α(t) + β(t) = 2Q1,1
t − 1 > 0 since t is bounded. So, γ3(t) which is the

ratio of two positive and continuous functions, takes every value in [0, 1].

Proof : Theorem 2.1

Preliminaries

We define some additional notation. For every t, the statistical model is regular with
an invertible Fisher information matrix given by (5) under H0. Its likelihood Lt(θ)
is given by (4) with θ = (q, µ, σ2). The log likelihood, associated to n observations
will be denoted by lnt (θ).

Let lnt (θ̂) be the maximized log likelihood and let lnt (θ̂|H0
) be the maximized log

likelihood under H0, with θ̂|H0
=
(
0, Y =

∑
Yj/n, 1/n

∑
(Yj − Y )2

)
.

The likelihood ratio statistics will be defined as

Λn(t) = 2
[
lnt (θ̂)− lnt (θ̂|H0

]
,

on n independent observations. Since the Fisher Information matrix is diagonal,
the score statistics of the hypothesis “q = 0” will be defined as

Sn(t) =

∂lnt
∂q |θ0√

V
(
∂lnt
∂q |θ0

) .

Since the model with t fixed is regular, it is easy to prove that for fixed t

Λn(t) = S2
n(t) + oP (1)

under the null hypothesis. Note that no coefficient 1/2 is present since we have
introduced a coefficient 2 in the definition of the likelihood ratio. Our goal is now
to prove that the rest above is uniform in t.

Study of the supremum of the LRT process

Let us consider now t as an extra parameter. Let t∗, θ∗ be the true parameter that
will be assumed to belong to H0. Note that t∗ makes no sense for θ belonging to
H0. It is easy to check that at H0 the Fisher information relative to t is zero so
that the model is not regular.

Conditionally to X(t1) and X(t2), the model is a mixture of Gaussian distri-
butions with different means, common unknown variance and a probability that
varies between two bounds as a consequence of Equation (2). This is a sub-model
of the general mixture of Gaussian distributions (with a probability that varies
freely between 0 and 1) as studied, for example in Section 4.3 of Azäıs et al. [15].
In particular it proves that Theorem 1 of Azäıs et al. [15] applies in the sense that

sup
t,θ)

lt(θ)− lt∗(θ∗) = sup
d∈D

 1√
n

n∑
j=1

d(Xj)


2

1d(Xj)>0

+ oP (1) (9)
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where the observation Xj stands for Yj , Xj(t1), Xj(t2) and where D is the set of
scores defined in Azäıs et al. [15], see also Gassiat [16]. A similar result is true
under H0 with a set D0. Let us precise the sets of scores D and D0. This sets are
defined at the sets of scores of one parameter families that converge to the true
model pt∗,θ∗ and that are differentiable in quadratic mean.

These sets are subset of the subsets obtained in the general model ( p ∈ [0, 1])
so it is easy to see that when we sum the four cases for X(t1) and X(t2)

D =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R3, t ∈ [t1, t2]

}
where l′ is the gradient with respect to θ. In the same manner

D0 =
{ 〈V, l′t(θ∗)〉√

V(〈V, l′t(θ∗)〉)
, V ∈ R2

}
,

where now the gradient is taken with respect to µ and σ only. Of course this
gradient does not depend on t.

Using the transform V → −V in the expressions of the sets of score, we see that
the indicator function can be removed in (9). Then, since the Fisher information
matrix is diagonal (see formula (6)) , it is easy to see that

sup
d∈D

 1√
n

n∑
j=1

d(Xj)


2− sup

d∈D0

 1√
n

n∑
j=1

d(Xj)


2

= sup
t∈[t1,t2]


 1√

n

n∑
j=1

∂lt
∂q (Xj) |θ0√

V
{
∂lt
∂q (Xj) |θ0

}


2 .

This is exactly the desired result.

Study of the score process under the null hypothesis

The study is based on the following key lemma :

Lemma 2.3: The conditional expectation x(t) of X(t) is linear in X(t1), X(t2)
:

x(t) = α(t)X(t1) + β(t)X(t2)

with α(t) = Q1,1
t −Q

−1,1
t and β(t) = Q1,1

t −Q
1,−1
t .

To prove this lemma use formula (3) and check that both sides coincide whatever
the value of X(t1), X(t2) is.
Now using ( 5) it is clear that

∂lnt
∂q
|θ0=

n∑
j=1

Yj − µ
σ2

xj(t) = 1/σ

n∑
j=1

εjxj(t) =
α(t)

σ

n∑
j=1

εjXj(t1) +
β(t)

σ

n∑
j=1

εjXj(t2)

(10)
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this proves ( 7).
On the other hand

Sn(tk) =

n∑
j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of central limit theorem implies that these two variables
have a limit distribution which is Gaussian centered distribution with variance

(
1 exp(−2|t2 − t1|)

exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance. The weak convergence of the score pro-
cess, Sn(.), is then a direct consequence of (10), the convergence of (Sn(t1), Sn(t2))
and the Continuous Mapping Theorem.

Study under the local alternative

Let us consider a local alternative defined by t∗ and q = a/
√
n. The model with t∗

fixed is differentiable in quadratic mean, this implies that the alternative defines a
contiguous sequence of alternatives. By Le Cam’s first Lemma, relation (9) remains
true under the alternative. It remains to compute the asymptotic distribution of
Sn(t) under this alternative. Indeed, under the alternative

Sn(t) =
a

nσ

n∑
j=1

Xj(t
∗)xj(t)√

V {x(t)}
+

1√
n

n∑
j=1

εj
xj(t)√
V {x(t)}

The second term has the same distribution as under the null hypothesis and the
first one gives the expectation. We have

E {Sn(t)} =
a E {X(t∗)x(t)}
σ
√
V {x(t)}

.

By the properties of conditional expectation

E {X(t∗)x(t)} = E {x(t∗)x(t)} .

This gives the result. �

Proof : Lemma 2.2
Without loss of generality, we can consider t ∈ [0, 1], γ1(t) = 1− t and γ2(t) = t.

So, the focus is on the function on [0, 1]

ψ(t) =
(1− t) C1 + t C2√

(1− t)2 + t2 + 2 ρ̃ t (1− t)
where 0 < ρ̃ < 1.
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We find that

∂ψ2(t)

∂t
= 0

⇔ {(1− t)C1 + tC2}

× [{C2 − C1} {1− 2(1− ρ̃)t(1− t)}+ (1− ρ̃)(1− 2t) {(1− t)C1 + tC2}] = 0.

Since {(1− t)C1 + tC2} corresponds to a minimum, the focus is on the second
term. After some calculations, we find that this second term is equal to zero for

ξ =
ρ̃ C1 − C2

(ρ̃− 1)(C2 + C1)
.

So, we just have to consider the cases ξ ∈ [0, 1] and ξ /∈ [0, 1]. Note that

ψ2(ξ) =
C2

1 + C2
2 − 2ρ̃C1C2

1− ρ̃2
.

This gives the result. �

3. Several markers : the “Interval Mapping‘’ of Lander and Botstein [17]

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T .
We consider values t, t′ or t? of the parameters that are distinct of the markers
positions, and the result will be prolonged by continuity at the markers positions.
For t ∈ [t1, tK ]\TK where TK = {t1, ..., tK}, we define t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t`, tr).

Theorem 3.1 : We have the same result as in Theorem 2.1, provided that we
make some adjustments and that we redefine Z(.) in the following way :

• in the definition of α(t) and β(t), t1 becomes t` and t2 becomes tr

• under the null hypothesis, the process Z(.) considered at marker positions is the
”squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaussian process
with covariance ρ(tk, tk′) = exp(−2|tk − tk′ |)

• at the other positions, Z(.) is obtained from Z(t`) and Z(tr) by interpolation and
normalization using the functions α(t) and β(t)

• at the marker positions, the expectation is such as mt?(tk) = aρ(tk, t
?)/σ

• at other positions, the expection is obtained from mt?(t
`) and mt?(t

r) by inter-
polation and normalization using the functions α(t) and β(t).

The proof of the theorem is the same as the proof of Theorem 2.1 as soon as we
can limit our attention to the interval (t`, tr) when considering a unique instant t
and to the intervals (t`, tr)(t′`, t′r) when considering two instants t and t′. For that
we need to prove that

x(t) = E {X(t)|X(t1), . . . , X(tK)} = E
{
X(t)|X(t`), X(tr)

}
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which is a direct consequence of the independance of the increments of Poisson
process.

3.1. Applications

3.1.1. Application to the calculation of thresholds

The theoretical results presented in this article allow us to propose a new method
to obtain the α% quantile of the maximum of the process Z2(.) under H0. This
method is a direct application of Lemma 2.2. If we call

h(tk, tk+1) =
Z2(tk) + Z2(tk+1)− 2ρ(tk, tk+1)Z(tk)Z(tk+1)

1− ρ2(tk, tk+1)
1Z(tk+1)

Z(tk)
∈]ρ(tk,tk+1), 1

ρ(tk,tk+1)
[

we have to compute the distribution of

M = max
{
Z2(t1), Z2(t2), h(t1, t2), ..., Z2(tK−1), Z2(tK), h(tK−1, tK)

}
.

According to chain rule, we have ∀c ∈ R

P(0 6M 6 c2) = P {−c 6 Z(t1) 6 c, ...,−c 6 Z(tK) 6 c} ×

P
{

0 6 h(t1, t2) 6 c2, ..., 0 6 h(tK−1, tK) 6 c2 | −c 6 Z(t1) 6 c, ...,−c 6 Z(tK) 6 c
}
.

The first term is an integral over the density of a dimension K Gaussian vector.
It can be performed for large K using the function QSIMVNEF of Genz which
is a MCQMC program. QSIMVNEF also allows to calculate the second term.
Monte-Carlo Quasi Monte-Carlo (MCQMC) methods of Genz [9] are very fast.
As the numerical computation of a multivariate normal distribution is often a
difficult problem, Genz described in his paper, a transformation that simplifies
the problem and places it on [0, 1]K . A form that allows efficient calculations using
standard numerical multiple integration algorithms. He suggests to use in particular
MCQMC algorithms. Indeed, a simple Monte-Carlo method (MC) using N points
has errors that are typicallyO(1/

√
N) whereas Quasi Monte-Carlo methods (QMC)

have errors which can be aproximatively O(1/N). In order to have a confidence
interval an extra Monte-Carlo step is added, this is MCQMC. We refer to Genz [9]
for more details.
Note that here the function QSIMVNEF has been adapted and a Newton method
has been used in order to find the threshold c2

α such as P(0 6M 6 c2
α) = α.

Our method is available in a Matlab package with graphical user interface :
“imapping.zip”. It can be downloaded at www.stat.wisc.edu/∼rabier .

3.1.2. Comparison between different methods

In this section, we propose to compare the performances of our method with
those of other methods usually used in QTL detection. Note that all the methods
are asymptotic in terms of the number of individuals n.

In Rebäı et al. [6], the authors focus on another recombination model. They
propose an upper bound for the threshold corresponding to their model. This bound
is the quantity c̃2

α such as :

1− α = 2 Φ(−c̃α) +
2 e−c̃

2
α/2

π

K−1∑
k=1

arctan

( √
1− ρ(tk, tk+1)

1 + ρ(tk, tk+1)

)
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where Φ is the cumulative distribution of the standardized normal distribution.
This method is based on Davies [10]. However, it is sensitive to the number of
genetic markers. Indeed, the derivative of the process has a jump at each markers
location, and Davies [10] upper bound is suitable when the derivative of the process
has a finite number of jumps.

In Feingold and al. [12], the authors propose a threshold based on the discrete
process resulting from tests only on markers. Besides, they suppose constant the
distance between genetic markers. The threshold c2

α is such as :

1− α = 1 − Φ(cα) + 2 T cα ϕ(cα) ν(2cα
√

∆)

where ϕ is the density of a normal standardized, ∆ is distance between two con-
secutive markers. This method is inspired from Siegmund [13] where the function
ν is fully described. The method is also largely described in Siegmund and Yakir
[18].

In Tables 1, 2, 3 and 4, we propose to compare the different methods. The different
computed thresholds correspond to α = 95%, and since the three methods are
based on asymptotic results, we propose to check the percentage of false positives
on simulated data, in order to obtain the true level corresponding to each method.
We simulated under the null hypothesis, 10000 samples of n = 200, n = 100 and
n = 50 individuals. In order to perform the simulations, we considered exactly
Haldane modeling. The genetic markers (microsatellite markers or SNPs) have two
alleles : +1 and −1. In order to model the correlation and the recombination be-
tween markers, we used a standard Poisson process (cf. Section 1 for more details).
We analyzed data using our Lemma 1, that is to say performing LRT on mark-
ers and performing only one test in each marker interval if the ratio of the score
statistics on markers fulfills the given condition.

To begin with, in Table 1, we consider a chromosome of length T = 1 Morgan.
We consider the markers equally spaced and different densities of markers. We can
see that Feingold’s method and our method, give reasonable results for n = 100 and
n = 200 : the percentage of false positives is close to 5%. Note that for n = 50, the
percentage of false positives is not so far from 5%. On the other hand, as expected,
Rebäı’s method is very sensitive to the number of genetic markers. We can remark
that the more markers there are, the more conservative Rebäı’s method is.

In Tables 2 and 3, we propose to check the robustness of the different methods
(same framework as previously). In Table 2, the trait conditioned on the QTL
follows a centered exponential distribution with rate 1. We can remark that, as
expected, Rebäı’s method is too conservative. We can also see that Feingold’s
method and our method are robust for n = 200. When n = 100, the results are still
interesting. However, when n = 50, the two methods seem to be too conservative.
In Table 3, the trait conditioned on the QTL follows now a Student distribution
with 2 degrees of freedom. The three methods are not robust anymore. However,
the less markers there are, the better the methods are.

Let’s focus now more in details on the differences between our method and Fein-
gold’s method. As said before, in Feingold and al. [12], the authors focus only on the
discrete process which results from tests only at marker locations. Besides, in order
to obtain a theoretical result, they consider that the markers are equally spaced.
In our study, we consider the true “Interval Mapping” of Lander and Botstein [17]
: we consider the stochastic process which results from tests on the whole chromo-
some (i.e. on markers and between markers). Furthermore, we allow the markers
not to be equally spaced, which is generally the case in a biological experiment.

In Table 4, we compare the performances of the two methods. We consider differ-
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ent genetic maps for which markers are not equally spaced : the maps are described
in Table 5. Note that in order to compute Feingold’s method, since the markers
are not equally spaced anymore, we use for ∆ (i.e. the distance between markers),
the mean distance between markers. We can see on the different examples, that
our method generally respects the 5% level for n = 200, which is not the case of
Feingold’s method. See in particular map 6 which consists of 329 markers, and for
which the percentage of false positives corresponding to our method is 4.64% and
2.85% for Feingold’s method. The results of our method are still acceptable for
n = 100. For n = 50, our method is too conservative, specially when the number of
markers increases (see map 5 and map 6). On the other hand, the performances of
Feingold’s method could have maybe been improved, by testing different values of
∆. However, there is not any rule in order to choose an appropriate ∆. This way,
our method which is suitable for any genetic map, must be the most interesting
for geneticists.

To conclude, in Tables 6 and 7, we focus on the alternative hypothesis. First, in
Table 6, we consider the same map as in Table 1 (i.e. T = 1M). In particular, we
consider 6 genetic markers equally spaced on the chromosome. Using our threshold,
we compare the Theoretical Power (cf. our Theorem 2) and the Empirical Power
for different values of n and different locations t? of the QTL. We can see that for
n = 1000, the asymptotic is reached whatever the location of the QTL is. Finally,
in Table 7, we propose to compare the power of our method and Feingold’s method
on more dense genetic maps. We focus in particular on map 5 (241 markers) and
map 6 (329 markers), already studied under H0 (see Table 5 for the full description
of the maps). We compute the power obtained with Feingold’s threshold (12.12 for
map 5 and 12.55 for map 6) and the one obtained with our threshold (11.56 for
map 5 and 11.70 for map 6). However, we have to keep in mind that the power
corresponding to the Interval Mapping of Lander and Botstein [17] is the one
obtained with our threshold. We present the Theoretical Power and the Empirical
Power for different values of n. According to Table 7, it is always more powerful
to detect QTL with our method than with Feingold’s method, whatever the map
is, and whatever the value of n is. This was expected since we have already shown
in Table 4 that Feingold’s method was very conservative for maps 5 and 6. Note
that the asymptotic is reached for n = 1000 for map 6 whereas it seems that
more individuals are needed to reach the asymptotic for map 5. This concludes our
simulation study.

3.1.3. Application to a real QTL study

We propose here to illustrate our theoretical results by applying them for the
analysis of real data. The data issued from the study of Huang et al. [19] will be
used in which the authors focus on 12 rice chromosomes and generate a population
equivalent to a backcross population. We refer to Huang et al. [19] for the details of
the experiment. Note that this experiment is also largely described in examples 3.1
and 11.3 of Wu et al. [8]. As in Wu et al. [8], we will consider only chromosome 1 to
scan the existence of a QTL. The trait of interest, here, is the plant height measured
at age 10 weeks. 18 markers are located on chromosome 1 (T = 2.243 Morgan). The
location of the markers and their names are given in Table 8. Note that the data we
used are available on “http://www.acsu.buffalo.edu/∼ cxma/book/”. In order to
be able to use our method, we removed all the missing data of the data set : we kept
only the 55 observations for which the 18 genotypes at the different markers were
available. First, we computed the threshold corresponding to our method : 8.36 if
we consider a test at the 5% level. Then, we performed the “Interval Mapping”.
The solid line in Figure 1 represents the observed path of the LRT process on
[0, 2.243]. The dashed line refers to the threshold. Note that in this paper, we
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have proved that, in order to compute the supremum of the LRT process, we have
to perform one test on each marker and only one test at the maximum between
markers. However, since it is common for geneticists to perform tests everywhere
on the chromosome, we represent in Figure 1 the whole path of the LRT process on
[0, 2.243]. Note that in order to obtain this whole path, we used the interpolation
of Theorem 2.1. The value of the LRT on the whole chromosome is 25.47 which
is largely greater than our threshold 8.36. Besides, the peak is obtained at 197.4
cM. As a consequence, it seems that a QTL affecting the rice length is located
at 197.4 cM, that is to say between markers RZ730 and RZ801. This location
agrees with the one found by Huang et al. [19] (cf. their Table 3), who used the
software MAPMAKER for performing their QTL analysis. However, in Wu et al.
[8], the authors found the QTL at 217cM, i.e. between markers RG810 and RG331.
This different result can be explained by the fact that Wu et al. [8] used a different
recombination model (i.e. double recombinations between the QTL and its flanking
markers is not allowed in their model) and also by the fact that they kept in their
analysis the observations with missing genotypes at the markers.

In this paper we have presented some theoretical results which allow proposing a
simple method to calculate the maximum of the LRT process using only statistics
on markers and their ratio. This gives a new methodology to calculate thresholds
for QTL detection. It has been shown using simulated data that this method is
more efficient than Rebäı et al. [6]’s method based on Davies [10, 11], and Feingold
and al. [12]’s method based on Siegmund [13]. Furthermore, it can be easily used
for analyzing real data as it is demonstrated in the course of this paper. This
demonstrates the potentialities of the proposed method which is thought to be of
interest for geneticists.



December 17, 2012 azaisdelmasrabiercorrigcolour

14 J.M. Azäıs et al.

Table 1. Threshold and Percentage of False Positives (10000 samples of size n) as a function of the number of markers and

the method considered. The chromosome is of length T = 1 Morgan and the markers are equally spaced.

number of markers 101 51 41 26 21 11 6 3 2

Rebäı

threshold 9.74 9.09 8.88 8.43 8.20 7.58 6.92 6.07 5.22
n = 200 2.55% 3.23% 3.25% 3.82% 4.05% 4.48% 4.53% 4.55% 5.13%
n = 100 2.52% 2.90% 3.17% 3.59% 3.91% 4.32% 4.52% 4.80% 5.49%
n = 50 2.01% 2.51% 2.82% 3.53% 3.39% 3.84% 4.51% 4.58% 5.50%

Feingold

threshold 8.45 8.17 8.06 7.81 7.67 7.18 6.59 5.71 5.08
n = 200 4.67% 4.91% 4.74% 5.37% 5.19% 5.57% 5.25% 5.46% 5.55%
n = 100 4.72% 4.67% 4.92% 5.07% 5.04% 5.23% 5.38% 5.83% 5.82%
n = 50 3.92% 4.35% 4.25% 5.00% 4.58% 4.89% 5.43% 5.70% 5.96%

this paper

threshold 8.41 8.27 8.16 7.91 7.75 7.29 6.76 6.04 5.41
n = 200 4.76% 4.71% 4.63% 5.17% 4.99% 5.24% 4.76% 4.64% 4.61%
n = 100 4.80% 4.40% 4.69% 4.78% 4.84% 4.97% 4.95% 4.89% 4.87%
n = 50 3.97% 4.15% 4.06% 4.75% 4.37% 4.63% 4.88% 4.70% 5.01%

Table 2. Percentage of False Positives (10000 samples of size n) when the trait conditioned on the QTL, follows a centered

exponential distribution with rate 1. The chromosome is of length T = 1 Morgan and the markers are equally spaced (same

thresholds as in Table 1).

number of markers 101 51 41 26 21 11 6 3 2

Rebäı
n = 200 2.18% 3.03% 3.07% 3.19% 3.97% 4.24% 4.23% 4.83% 5.41%
n = 100 1.84% 2.30% 2.68% 2.94% 3.23% 3.98% 4.03% 4.45% 5.50%
n = 50 1.21% 1.86% 2.06% 2.40% 2.42% 3.03% 3.88% 3.90% 5.38%

Feingold
n = 200 4.03% 4.84% 4.59% 4.60% 5.00% 5.34% 5.07% 5.87% 5.86%
n = 100 3.61% 3.58% 4.44% 4.19% 4.35% 4.93% 4.84% 5.68% 6.03%
n = 50 2.78% 3.39% 3.46% 3.43% 3.34% 3.81% 4.90% 4.90% 5.83%

this paper
n = 200 4.11% 4.63% 4.27% 4.33% 4.84% 5.03% 4.61% 4.94% 4.86%
n = 100 3.65% 3.43% 4.25% 3.90% 4.13% 4.69% 4.39% 4.53% 4.86%
n = 50 2.84% 3.23% 3.27% 3.24% 3.18% 3.55% 4.38% 3.94% 4.69%

Table 3. Percentage of False Positives (10000 samples of size n) when the trait conditioned on the QTL, follows a Student

distribution with 2 degrees of freedom. The chromosome is of length T = 1 Morgan and the markers are equally spaced (same

thresholds as in Table 1).

number of markers 101 51 41 26 21 11 6 3 2

Rebäı
n = 200 1.26% 1.67% 1.83% 1.95% 2.14% 2.59% 2.93% 3.47% 4.64%
n = 100 0.80% 1.41% 1.88% 1.60% 1.93% 2.14% 3.12% 3.57% 4.68%
n = 50 0.70% 1.16% 1.10% 1.49% 1.45% 2.28% 2.88% 3.07% 4.33%

Feingold
n = 200 2.69% 2.83% 2.95% 2.74% 3.24% 3.34% 3.62% 4.20% 5.01%
n = 100 2.15% 2.57% 2.89% 2.44% 2.64% 2.74% 3.87% 4.37% 5.04%
n = 50 1.61% 2.06% 1.98% 2.23% 2.13% 3.00% 3.58% 3.92% 4.74%

this paper
n = 200 2.71% 2.69% 2.85% 2.56% 3.01% 3.10% 3.23% 3.49% 4.13%
n = 100 2.25% 2.42% 2.68% 2.18% 2.56% 2.53% 3.49% 3.62% 4.11%
n = 50 1.68% 1.94% 1.79% 2.06% 2.02% 2.82% 3.18% 3.12% 3.73%
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Table 4. Threshold and Percentage of False Positives (10000 samples of size n) as a function of the

genetic map and the method considered.

genetic map map 1? map 2? map 3? map 4? map 5? map 6?

Feingold

threshold 5.79 6.59 7.38 7.76 12.12 12.55
n = 200 6.25% 4.03% 3.74% 3.63% 3.32% 2.85%
n = 100 5.97% 4.24% 3.21% 3.57% 2.96% 2.72%
n = 50 6.29% 4.12% 3.02% 2.93% 2.25% 2.02%

this paper

threshold 6.14 6.25 6.85 7.07 11.56 11.70
n = 200 5.31% 4.87% 4.92% 4.90% 4.62% 4.64%
n = 100 5.00% 5.26% 4.52% 5.02% 4.01% 4.20%
n = 50 5.12% 5.02% 4.13% 4.23% 3.33% 3.39%

?The different maps are described in Table 5.

Table 5. The different genetic maps considered (K is the number of markers, T is the length of the chromosome in Morgan, tk
is the location of marker k in Morgan).

T K marker locations

map 1 1.50 3 t1 = 0, t2 = 0.50, t3 = 1.50

map 2 1 6 t1 = 0, t2 = 0.80, t3 = 0.85, t4 = 0.90, t5 = 0.95, t6 = 1

map 3 1 14 ∀k = 1, ..., 11 tk = 0.01(k − 1), t12 = 0.40, t13 = 0.70, t14 = 1

map 4 1 23 ∀k = 1, ..., 11 tk = 0.01(k − 1), t12 = 0.40, tk = 0.90 + 0.01(k − 13) ∀k = 13, ..., 23

map 5 8.50 241
∀k = 1, ..., 101 tk = 0.01(k − 1) , ∀k = 102, ..., 181 tk = 1.05 + 0.05(k − 102) ,

∀k = 182, ..., 191 tk = 5.30 + 0.30(k − 182) , ∀k = 192, ..., 241 tk = 8.01 + 0.01(k − 192)

map 6 10 329 ∀k = 1, ..., 301 tk = 0.01(k − 1) and ∀k = 302, ..., 329 tk = 3.25 + 0.25(k − 302)

Table 6. Theoretical Power and Empirical Power (EP) as a func-

tion of the location of the QTL t? in Morgan (a = 4, 100000 paths

for the Theoretical Power, 10000 samples of size n for EP). The

chromosome is of length T = 1 Morgan, 6 markers are equally

spaced every 0.2 Morgan.

t? 0.10 0.43 0.75 0.88

EP for n = 50 82.32% 87.76% 84.68% 82.10%

EP for n = 100 85.62% 90.12% 88.56% 85.84%

EP for n = 200 87.14% 91.17% 89.73% 87.73%

EP for n = 1000 88.51% 92.20% 90.33% 89.20%

Theoretical Power 88.61% 92.01% 90.56% 88.94%

Table 7. Theoretical Power and Empirical Power (EP) as

a function of the genetic map and the method considered

(a = 4, 10000 paths for the Theoretical Power, 10000 samples

of size n for EP). The location of the QTL t? (in Morgan) is

3.10 for map 5 and 0.70 for map 6.

genetic map map 5? map 6?

Feingold

Theoretical Power 77.87% 78.76%
EP for n = 1000 76.43% 78.12%
EP for n = 200 74.25% 75.96%
EP for n = 100 70.82% 71.35%
EP for n = 50 63.21% 61.87%

this paper

Theoretical Power 80.67% 82.86%
EP for n = 1000 79.23% 82.60%
EP for n = 200 77.22% 80.39%
EP for n = 100 74.55% 76.69%
EP for n = 50 67.82% 69.10%

?The different maps are described in Table 5.
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Table 8. Names and

locations (in Morgan)

of markers on rice chro-

mosome 1 (T = 2.243

Morgan).

name location

RG472 0.000
RG246 0.192
K5 0.353
U10 0.401
RG532 0.448
W1 0.601
RG173 0.756
RZ276 0.906
Amy1B 0.944
RG146 0.977
RG345 1.320
RG381 1.345
RZ19 1.580
RG690 1.662
RZ730 1.794
RZ801 2.125
RG810 2.151
RG331 2.243

Figure 1. Path of the LRT process (solid line) and threshold (dashed line) in the case of a real QTL
study. Data comes from the study of Huang et al. [19] : the focus is on chromosome 1 of rice (map

described in Table 8) and the trait is the plant height measured at age 10 weeks.
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[20] J.M. Azäıs, E. Gassiat, C. Mercadier, Asymptotic distribution and local power of the likelihood ratio
test for mixtures, Bernoulli 12(5) (2006), pp. 775–799.

[21] P. Billingsley, Convergence of probability measures, Wiley, New-York (1999).
[22] J.K. Ghosh and P.K. Sen, On the asymptotic performance of the log likelihood ratio statistic for the

mixture model and related results, Inst. Statistics Mimeo Series 1467 (1984).
[23] L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer (1986).
[24] C.E. Rabier, PhD thesis, Université Toulouse 3 Paul Sabatier (2010).


