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D. Tlalolini, C. Chevallereau, and Y. Aoustin

Abstract— Fast human walking includes a phase where the
stance heel rises from the ground and the stance foot rotates
about the stance toe. This phase where the biped becomes
underactuated is not present during the walk of humanoid robots.
The objective of this study is to determine if the introduction of
this phase for a 3D biped robot is useful to reduce the energy
consumed in the walking. In order to study the efficiency of this
new gait, two cyclic gaits are presented. The first cyclic motion
is composed of successive single support phases with flat stance
foot on the ground, the stance foot does not rotate. The second
cyclic motion is composed of single support phases that includes
a sub-phase of rotation of the supporting foot about the toe.
The single support phases are separated by a double support
phase. For simplicity this double support phase is considered
as instantaneous (passive impact). For these two gaits, optimal
motions are designed by minimizing a functional torques cost.
The given performances of actuators are taken into account. It
is shown that for fast motion a foot rotation sub-phase is useful
to reduce the functional cost. These gaits are illustrated with
simulation results.

Index Terms— Biped robot, robot dynamics, Fully actuated
robot, Newton-Euler algorithm, Cyclic walking gait, parametric
optimization.

I. I NTRODUCTION

The design and development of anthropomorphic robots
with capability of walking naturally like human is one of the
current greatest challenges of science. Research efforts has led
in recent times to the development of remarkable anthropo-
morphic robots as the Honda Humanoid Robot introduced in
1997 [1], which could go up/down stairs. ASIMO appeared in
2000 [2],which walks continuously while changing directions.
JOHNNIE at the Technical University of Munich [3], which
overall weight is about 40 kg and the height is 1.80 m. HRP2
is another humanoid robot showing abilities to work with
human [4]. Despite that each of these robots are noteworthy for
their autonomy and interaction with their environment since
these combine many desirable features needed to satisfy the
dynamic bipedal locomotion close to human locomotion, they
only execute flat-footed (fully-actuated phase) walking. From
studies of human walking gait authors proved the fundamental
role of the feet during the walking gait in double support
phases and in single support phases. Thus, for human walking
gait in single support, a rotation of the foot is observed with
a partial contact of the sol with the ground, located between
the heel and the toe, [5]. Furthermore it is shown that the
feet, with joint torques at the ankle which are significant,
play a role more important to insure an equilibrium of the
biped than to help the locomotion, [6], [7] and [8]. Extending
the analysis of walking with point feet, [9] has outlined a
solution to the problem of walking with both fully-actuated
and under-actuated phases for a planar biped robot with
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non-trivial feet. In reference [10], solving an optimization
problem considering under-actuated, fully-actuated and over-
actuated phases for planar motion, is shown that for fast
motions the use of a foot rotation sub-phase (under-actuated
phase) is significant to reduce the energy consumed during
the walking. Then, it is extremely important and interesting
to study the walking gait of an anthropomorphic biped with
rotation feet. In this paper, the main objective is to extend
our analysis of optimal reference with foot rotation to optimal
trajectories generation for an anthropomorphic robot to achieve
an optimal fast motion. Therefore, the efforts are focused on
the design of reference trajectories for a dynamically stable
walking three-dimensional biped robot including foot rotation.
In particular, in order to solve the under-actuation problem and
to ensure the feasibility of the robot’s motion during the foot
rotation sub-phase, we chosen the geometric evolution of the
robot [11], [12]. It corresponds to a motion compatible with
the dynamic model so that the center of pressure(CoP) is
forced to remain strictly of the front limit of the stance foot,
allowing the foot to rotate. The gait under study consists of
successive single support phases separated by instantaneous
double support phases. Single support phase is separated into
two sub-phases, a flat foot sub-phase and a foot rotation
sub-phase, in function of the biped velocity and the energy
cost. Motions minimizing an integral criterion based on the
vector of the square of the torques are defined for a gait.
Furthermore, some constraints such as actuator performances
and limits on the ground reaction force are taken into account.
Section II presents the geometric description and dynamic
model of the three-dimensional biped robot using Newton-
Euler formulation. Section III is devoted to the development of
the impact model for the instantaneous double support phase,
adding Newton variables to define the velocity of the reference
frame attached to the sole of the foot. The formulation of the
optimization problem for optimal cyclic gait with and without
foot rotation are defined in section IV. In the section V the
various constraints and the cost function taking into account
during the optimal processes are defined. The simulation
results are presented. The conclusions are given in sectionVI.

II. M ODELING OF THREE-DIMENSIONAL BIPED ROBOT

A. The biped

Since a precise modeling of three-dimensional biped robot
is particularly crucial for the development of dynamically
stable trajectories to achieve an anthropomorphic motion,we
considered an anthropomorphic biped robot which geometrical
(dimensions of the bodies) and inertial (masses, positionsof
the centers of mass, moments and products of inertia of each
body) distribution close to those of the human body. The
humanoid construction is assumed to consist of seven rigid
links connected by fourteen motorized joints to form a serial
structure. This serial structure or open kinematic chain is
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further composed of two identical sub-chains called the legs,
connected at the hip, and a body identified as a torso, which
is not directly actuated as is depicted in figure 1. Each leg
is composed of two massive links connected by a joint called
knee. The link at the extremity of each leg is called foot which
is connected at the leg by a joint called ankle. The general
specifications of the biped robot in terms of size and DoF
(degrees of freedom) are defined to imitate the human walk.
Therefore, each ankle of the biped robot consists of the pitch
and the yaw axes (flexion/extension and abduction/adduction)
and one additional roll axis to take into account the foot twist
rotation. The knees consist of the pitch axis (flexion/extension)
and the hips consist of the roll, pitch and yaw axes (rota-
tion, flexion/extension and abduction/adduction) to constitute
a biped walking system of two 3-DoF ankles, two 1-DoF
knees and two 3-DoF hips, table I. Each revolute joint is
assumed to be independently actuated and ideal (frictionless).
The action of the walking motion associates single support
phases separated by impacts with full contact between the sole
of the feet and the walking surface (ground).

Joint Motion specifications

Rotation Roll
Hip Flexion/Extension Pitch

Abduction/Adduction Yaw

Knee Flexion/Extension Pitch

Rotation Roll
Ankle Flexion/Extension Pitch

Abduction/Adduction Yaw

2×7 DoF = 14DoF

TABLE I: Activated Degrees of Freedom.
table

The model which describes the dynamic during the single
support phase and the model which describes the dynamic
when the swing foot impacts the ground are derived using the
Newton-Euler method. The vectorq = [q0, ...,q14]

T (figure 2,
left-hand side) describes the shape and the orientation of the
biped during a single support phase where the angle,q0 =
∠(xs,x0)z0, denote the angle of the rotation of the stance foot
about its toe. During the flat-foot sub-phase the stance foot
remains flat on the ground,q0 = 0, is now an absolute angle
referenced to the frameRs(xs,ys,zs). Thus, the vector of joint
configuration is reduced toq = [q1, ...,q14]

T , (figure 2, right-
hand side). The torques are grouped into a 14×1 torque vector
Γ = [Γ1, ...,Γ14]

T . The torqueΓi is applied at jointqi for 1≤
i ≤ 14.

B. Geometric description of the biped

To define the geometric structure of the biped walking
system we used the parametrization proposed for the manipu-
lator robots. We considered only symetric cyclic walking thus
the definition of the complete motion can be reduced to the
definition of the motion for one half step. Since the toe of the
right foot (stance foot) is in support during all the studiedhalf
step, the reference link is the ground and the supporting foot is
connected to the reference link by a rotating jointq0. The link

Right leg Left leg
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Fig. 1: The studied 3D biped, the Cartesian coordinates are indicated
at the middle of the hips and the toe of the feet with respect to the
reference frame,Rs(xs,ys,zs), attached to the sole of the foot.
figure
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Fig. 2: Model of the studied biped with coordinate convention. In
foot rotation sub-phase,q0, denotes a relative angle, while in flat-
foot sub-phaseq0 = 0 is an absolute angle.
figure

seven (swing foot) is considered the terminal link. Therefore
we have a simple open loop robot which geometric structure
can be described using the notation of Khalil and Kleinfinger
[13]. The definition of the link frames is presented in figure
3 and the corresponding geometric parameters are given in
Table II. The frameRs is fixed to the tip of the right foot to
form a right-handed coordinate frame. The frameR15 is fixed
to the tip of the left foot in the same way asRs. Each foot is
determined by the widthlp and the lengthLp.

C. Dynamic modelling

The gait is composed of stance phases. This stance phase
can be composed of a flat-foot phase only or two sub-phases:

aoustin
Note
A quoi servent les signes plus. Avec la règle du repère direct ils ne sont pas utiles.

aoustin
Note
Mais il est où ce fameux repère Rs?

aoustin
Note
j'ai du mal avec la définition de q0

aoustin
Note
a

aoustin
Note
Pour moi un repère absolue Galillein est de façon permanente un repère absolu.

aoustin
Note
Rf ?

aoustin
Note
figure?

aoustin
Note
Je pense qu'il faut agrandir la figure pour voire la dénomination de chaque repère.



3

z

xx

6
z

5
x

7
x

11
z

4
z

4
x

7
z

9
z

109
xx

11
x

xx

z

x

5
z
6

x
x

1
z

s
x

s
z

x

z

z

x

z

z
xx

1
x

lp

Lp

4
d

5
d

11
d

12
d

2

l

8
d

10
z
8

x

8
z

1d

1

z1

1
xx

2 3

zz00
xx

z

x

x

x

x

15
zz

13

l

15d

15

z14

13
xx

12

14

15
xx

z
12

z
3

Fig. 3: The multi-body model and link frames of the biped robot.
figure

a flat-foot sub-phase and a foot rotation sub-phase. A passive
impact exists at the end of the half step, the impacting foot is
assumed to be flat on the ground. The biped dynamic models
of the phase where the stance foot is flat on the ground, where
the stance foot rotates about the stance toe, and the impact
model are derived.

1) The single support phase model: flat-foot sub-phase:
During this sub-phase, the stance foot is assumed to remain in
flat contact on the horizontal ground,i.e., no sliding motion, no
take-off, no rotation. Therefore the configuration of the robot
is described by only fourteen coordinates. Letq∈ R

14 be the
generalized coordinates, whereq1, ...,q14 denote the relative
angles of the joints, ˙q ∈ R

14 and q̈ ∈ R
14 are the velocity

vector and the acceleration vector respectively. The dynamic
model is easily obtained with the method of Newton-Euler
[14], which must be adapted to determine the ground wrench.
Thus, the model is written in the form

[

RF

Γ

]

= f(q, q̇, q̈,Ft) (1)

whereΓ ∈R
14 is the joint torque vector,RF = [fR,mR]T is the

ground reaction wrench on the stance foot andFt represents
the external wrenches (forces and torques), exerted on link0
to the terminal link. In single support phase we assume that

j a( j) α j θ j r j d j
0 −1 − π

2 q0 0 0
1 0 π

2 q1 + π
2 l1 d1

2 1 π
2 q2 + π

2 0 0
3 2 π

2 q3 0 0
4 3 0 q4 0 d4
5 4 0 q5 0 d5
6 5 − π

2 q6−
π
2 0 0

7 6 − π
2 q7 0 0

8 7 0 q8 0 d8
9 8 π

2 q9−
π
2 0 0

10 9 − π
2 q10 0 0

11 10 0 q11 0 d11 = d5
12 11 0 q12 0 d12 = d4
13 12 π

2 q13+ π
2 0 0

14 13 − π
2 q14+ π

2 0 0
15 14 0 π l15 = −l1 d15 = d1

TABLE II: Geometric parameters of the biped.
table

Ft = 0. Note that this sub-phase exists under the assumption
that the zero moment point remains inside the convex hull of
the foot support region.

2) Newton-Euler algorithm: The Newton-Euler method
permits to calculate the dynamic model as defined in equation
(1). This method proposed by Luh, Walker et Paul [15] is based
on two recursive calculations. Associated with our choice of
parametrization the following algorithm is obtained ([14]. The
forward calculation, from the base (stance toe) to the terminal
link (swing toe) determines the velocity, the accelerations and
total forces and moments on each link. Then the backward
calculations, from swing toe to stance toe, gives the joint
torques and reaction forces using equation of equilibrium of
each link successively.

Forward recursive equations
For each linkj with its associated frameRj , and considering

the link j −1 as its antecedent, its angular velocityjω j , and
the linear velocityjV j of the originO j of Rj are

jω j = jω j−1 +σ j q̇ j
ja j (2)

jV j = jA j−1
( j−1V j−1 + j−1 ω j−1×

j−1 P j
)

...

+σ j q̇ j
ja j (3)

with jA j−1, the orientation matrix of the frameRj−1 in the
frame Rj , σ j = 0 when the j joint is a revolute joint,σ j = 1
when the j joint is prismatic joint andσ j = 1−σ j , ja j is an
unit vector along thezj axis, j−1P j is the vector expressing
the origin of frameRj in frameRj−1. The angular acceleration
of link j and the linear acceleration of the originO j of Rj are

j ω̇ j = jA j−1
j−1ω̇ j−1 +σ

(

q̈ j
ja j +

j ω j−1× q̇ j
j a j

)

(4)

j V̇ j = jA j−1
( j−1V̇ j−1 + j−1 U j−1

j−1P j
)

...

+σ j

(

q̈ j
ja j +2 jω j−1× q̇ j

j a j

)

(5)

where jU j = j
∧
ω̇ j +

j ∧
ω j

j ∧ω j . Matrices j
∧
ω̇ j ∈ R

3×3 and j ∧ω j

∈R
3×3 designate the skew matrices associated with the vectors

j ω̇ j and jω j respectively.
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The total inertial forces and moments for linkj are

jF j = M j
j V̇ j +

j U j
jMS j (6)

jM j = jJ j
j ω̇ j +

j ω j ×
( jJ j

jω j
)

+ j MS j ×
j V̇ j (7)

with jJ j inertia tensor of linkj with respect toRj frame, jMS j

is the first moments vector of linkj around the origin ofRj

frame andM j the mass of the linkj. The antecedent link to
the link 0 (stance foot) is not defined. For the iteration of the
stance foot, only the equations(4)− (7) are used.

The initial conditions are

ω0 = 0, ω̇0 = 0 and V̇0 = V̇0−g (8)

with g the acceleration due to gravity to take into account the
gravity effect, andV̇0 = 0 is the real acceleration of the frame
R0.

Note that if the stance foot rotates about its toe the initial
conditions are;ω0 = q̇0~ys andV̇0 = 0.

Backward recursive equations
The backward recursive equations are given as, forj =

14, ...,0

j f j = jF j +
j f j+1

j−1f j = j−1A j
j f j (9)

jm j = jM j +
j A j+1

j+1m j+1 + jP j+1×
j f j+1 (10)

These recursive equations will be initialized by the forcesand
moments exerced on the swing toe by the environmentj f j+1

and jm j+1. In single supportj f j+1 = 0, jm j+1 = 0. When
j = 0, 0f0 and 0m0 are the force exerted on the stance foot,
i.e., the ground reaction force and moment rewritten assfR

and smR expressed in the frameRs.
If we neglect the friction and the motor inertia effects, the

torque (or the force)Γ j , is obtained by projectingmj (or f j )
along the joint axis (zj )

Γ j =
(

σ j
j f j +σ j

jm j
)T ja j (11)

Γ0 is not defined, since there is no actuator.
3) Flat-foot sub-phase, the ZMP condition:The ground

reaction wrench is known in the reference frameRs. This
reference frame is associated with the stance foot. The position
of the ZMP (Zero Moment Point) defined as the point of the
sole such that the moment exerted by the ground is zero along
the axisxs andys is such that:

xZMP =
−smRy

s fRz

and yZMP =
smRx
s fRz

. (12)

The flat foot phase exists only if the foot does not rotate,
then for a rectangular foot theZMP must satisfy:

−lp

2
≤

smRx
s fRz

≤
lp

2
and −Lp ≤

−smRy

s fRz

≤ 0, (13)

where lp is the width andLp is the length of the feet.
Because of the stance foot is flat on the ground, theZMP

is equivalent to theCoP (Center of Pressure) (see [16], [17],
[18]).

4) Foot rotation sub-phase, angular momentum about the
toe: In this sub-phase the stance heel of the robot rises from
the ground and the robot begins to roll over the stance toe.
Thus the variable,q0 = ∠(xs,x0)z0, is added.

Let qr = [q0;q] ∈ R
15 be the generalized coordinates, ˙qr ∈

R
15 and q̈r ∈ R

15 are the velocity vector and the acceleration
vector respectively. The dynamic model is obtained from

[

RF

Γ

]

= f(qr , q̇r , q̈r ,Ft) (14)

where Γ ∈ R
14 is the joint torque vector. Since only 14

torques are applied and 15 variablesqr describe the biped
configuration, the dynamic model is under-actuated.

The fact that the stance foot rotates about its toe and there is
no actuation between the stance toe and the ground, theCoP
is forced to remain strictly of the front limit of the stance
foot. In order to satisfy this condition, the position ofCoP is
imposed. Therefore the ground reaction wrench,RF , on the
stance foot is rewritten as

RF =
[s fRx,

s fRy,
s fRz,

smRx,
smRy,

smRz

]T
(15)

with the ground reaction moment aboutys, expresed in the
frameRs, smRy = 0.

From the fact thatq0 defines only the orientation of the
biped as a rigid body rotating about its toe, the angular
momentumσys about axisys is denoted by:

σys = mt(ẋcmzcm−xcmżcm) (16)

where mt is the mass of the biped,xcm and zcm are the
horizontal and vertical positions of the center of mass of the
biped and ˙xcm andżcm are the velocities respectively, measured
with respect to frameRs. Now, using the angular momentum
theorem, and from the rotational dynamic equilibrium of the
biped as a rigid body, the rate of change of the angular
momentum of the biped about its toe is:

σ̇ys = smRy +mtgxcm, (17)

sincesmRy = 0, this equation is rewritten as

σ̇ys = mtgxcm, (18)

which describes the external applied torque, whereg is the
acceleration due to gravity. For a motionqr , q̇r , q̈r , satisfy
(18), the condition describing the under-actuation is satisfied,
the torqueΓ and reaction force can be calculated of (14).
When the supporting foot is in rotation about the toe, in order
to maintain the balance in dynamic walking theCoP must be
remain on the lateral axis bounded bylp, then:

−lp

2
≤

smRx
s fRz

≤
lp

2
. (19)
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III. I MPACT MODEL

An impact occurs at the end of the single support phase
when the swing foot contacts the ground. This impacts is
assumed to be instantaneous and inelastic,i.e., the velocity
of the swing foot touching the ground is zero after its impact.
We assume that the ground reaction at the instant of the impact
is described by a Dirac delta-function with intensityIw f . The
previous stance foot is motionless before the impact and not
remains on the ground after the impact.

Under these hypothesis, the solution of the impact consists
to determine the velocity after the impact and the impulsive
forces, by considering known the velocity before the im-
pact. Let us introduce the generalized coordinates as;X =
[X0,α0,q]T ∈ R

20, where X0 and α0 are the position and
the orientation variables of frameR0. The robot velocity
is V = [sV0,

sω0, q̇]T ∈ R
20, with sω0y = q̇0 and the robot

acceleration iṡV = [sV̇0,
sω̇0, q̈]T ∈ R

20, with sω̇0y = q̈0. Using
these generalized coordinates the dynamic model in double
support, under the Lagrange form, can be written as:

D(X)V̇ +C(V,q)+G(X)+DJFw f =

[

RF

Γ

]

(20)

whereFw f represents the vector of ground reaction forces and
moments on the swing foot,D ∈ R

20×20 is the symmetric
definite positive inertia matrix,C∈R

20 represents the Coriolis
and centrifugal forces,G∈ R

20 is the vector of gravity,DJ ∈
R

20×6 is the Jacobian matrix of the robot. These matrix are
computed using the Newton-Euler algorithm (see appendix).

The model of impact can be obtained by integrating (20)
over the duration of the impact. The torques provided by
the actuators at the joints, Corilois and gravity forces have
finite value, thus they do not influence the impact. Therefore,
because of the fact that the stance foot take-off the ground after
the impact, the impulsive ground reaction on this foot must
be null. Consequently the impact equations can be written as:

D(X(T))∆V = −DJIw f (21)

where Iw f is the intensity of Dirac delta-fuction for the
impulsive contact force [19].∆V is the variation of velocity
at the impact,∆V = V+ −V−, whereV− is the velocity of
the robot before impact andV+ its velocity after impact.
X(T) denotes the configuration of the robot at instant of the
impact, which does not present instantaneous change. The
swing foot after the impact becomes the stance foot. Therefore,
its velocity becomes zero after the impact, which may be
written as:

DT
J V+ = 0 (22)

[

sV−
0

sw−
0

]

=

[

03×1

q̇0 ~ys

]

(23)

The combined set of equations (21) and (22) form the
systems of equations

[

D(X(T)) DJ

DT
J 06×6

][

V+

Iw f

]

=

[

D(X(T))V−

06×1

]

. (24)

Solving (24) yields

[

V+

Iw f

]

=

[

∆v

∆Iw f

]

V− (25)

where,

∆Iw f =
(

DT
J D−1DJ

)−1
DT

J (26)

and

∆v = −D−1DJ∆Iw f + I20. (27)

From the hypotesis that the previous supporting foot takes
off, the contact conditions on this foot do not directly affect
the impact equation, the model is independent on the fact that
the impact occurs at the end of the flat-foot sub-phase or at
the end of the foot rotation sub-phase.

In order to validate the impact model, it mus be verified that
the impulsive force must be directed upward and be inside
the friction cone. To ensure a take-off of stance foot, the
vertical velocity component of foot tip must be positive. The
equilibrium of the foot at the impact allows to determine the
position of the ZMP. This constraint is developed in [20].

IV. GAIT OPTIMIZATION FOR THE CYCLIC WALKING

A. Gait without foot rotation

1) The optimization parameters:The biped is driven by 14
torques, and its configuration is given in single support phase
by 14 coordinatesq. To transform the optimization problem
into a finite dimension problem, the joint motion is described
as a parametric function. We choose a polynomial function of
time. q(0),q(Tf ) are the initial and final configurations of the
single support phase, respectively,Tf is the duration of this
phase.

To insure continuity between two successive half steps, the
position and velocity of the biped at the beginning and end of
each phase must be taken into account by the parameters of
the polynomial functions. So, third-order polynomial functions
are needed. Thus each of the fourteen joint variables is defined
by a third-order polynomial,

qk(t) =
3

∑
j=0

ak j(t)
j , k = 1, . . . ,14 ∀ t ∈ [0,Tf ] (28)

where k is the joint number. The polynomial functions
qk(t),k = 1, . . . ,14 are uniquely defined byqi ,qf , q̇i , q̇f . The
indicesi and f correspond to the initial (att = 0) and final (at
t = Tf ) configuration1 of the robot, respectively.

In fact, the initial and final configurations for the stance
phase are double support configurations with the two feet
flat on the ground. Thus only 8 independent variables are
necessary to define the initial and final configurations of
the biped legs. We use the twist motion of the swing foot
denoted byψ f and its position(xf ,yf ) in the horizontal plane
as well as the situation of the middle of the hips defined

1To avoid any collision of the swing foot with the ground, one define an
intermediate configuration att = Tf /2. In such case, the joint motion will be
described by a cubic spline function.

aoustin
Note
infinitesimal dtime of the impact

aoustin
Note
function

aoustin
Note
(21)-(22)

aoustin
Note
+D^{-1}D_{J}

aoustin
Note
must

aoustin
Note
impact

aoustin
Note
matrices

aoustin
Note
one defines (je crois)



6

by (xh,yh,zh,θh,φh) where θh and φh are the inclination in
the sagittal plane and rotation about axiszh of the torso.
The desired trajectory has the particularity to be cyclic: two
following half steps must be identical and, more precisely,the
legs will swap their roles from one half step to the next. The
condition of periodicity is used to define the trajectory only on
one half step to reduce the number of optimization parameters.
In this way, we avoid to use two single support models.

Since the position of the robot is constant during the passive
impact (touch down configuration) and since the legs swap
their roles from one half step to the next, the generalized
coordinates must be relabeled as a matrixE:

qi = Eqf (29)

where,E14×14 describes an anti-diagonal identity matrix

E =

















0 0 0 0
(ր)

I2

0 0 0
(ր)

− I3 0

0 0
(ր)

I4 0 0

0
(ր)

− I3 0 0 0
(ր)

I2 0 0 0 0

















(30)

The final configurationqf is determined from the inverse
kinematics solution of each leg.

The velocity of the robot after the impact can be defined as
function of the velocity before the impact. Then, from (25),
the last fourteen rows ofV+ should be used to obtain the
inicial velocity q̇i by:

q̇i = EV+
(7:20)

. (31)

Using (29) and (31), the polynomial functionsq(t), can
be defined as function ofTf , q̇f ,xf ,yf ,ψ f ,xh,yh,zh,θh,φh. The
optimal trajectory is defined by 23 parameters only.

2) Torque and forces:When functionq(t) is chosen, the
joint velocity and the joint acceleration can be deduced by
the derivation of the polynomial function. The dynamic model
(1) gives the torques required to produce the motion and the
reaction force.

B. Walk with foot rotation

1) The flat-foot sub-phase:When a sub-phase with foot
rotation is added, the optimization process is modified. The
two sub-phases are described separately and the condition
of continuity in configuration and velocity between the sub-
phases are added. For each sub-phase, the final state of the
biped is chosen to be defined from the optimization variables,
the initial state is deduced from the continuity conditions.

The flat-foot sub-phase is described as previously. The
difference is only that the final configuration for this phaseis
not a double support configuration but a single support with
flat stance foot configuration, thus 14 variables are used to
describe this configuration (qf ), and 29 optimization variables
describe this sub-phase,Tf , qf and q̇f .

2) The foot-rotation sub-phase:During the foot rotation
sub-phase, the biped is driven by 14 torques, and its configura-
tion is given in single support phase by 15 coordinatesqr . Thus
the biped is under-actuated and its motion cannot be freely
chosen. Studies of control of such an under-actuated robot
[11], [12] have shown that a geometric evolution of the robot
qr(s) can be chosen. For a given functionqr(s) within some
limits, function s(t) corresponding to a motion compatible
with the dynamic model can be deduced using (17). In
the optimization process, the joint evolution is describedby
function qr(s). This way solves the under-actuation problem
and avoids the use of equality constraints as in [21], this point
is detailed in IV-B.3.

We choose to define the evolution of the joint variables as
a polynomial ofs, wheres is a monotonic function from 0
to 1. qr(0),qr(1) are the initial and final configurations of the
foot rotation support phase, respectively. Then,

qrk(s) =
3

∑
j=0

ak j(s)
j , k = 0, ...,14 ∀ s∈ [0,1] (32)

where k is the joint number. The polynomial functions
qrk(s),k = 0, . . . ,14 are uniquely defined byqir ,qf r ,

dqir
ds ,

dqf r
ds .

The indicesir , f r correspond to the initial (ats= 0), final (at
s= 1) state of the robot for this sub-phase, respectively. The
velocity of the robot is ˙qr = dqr

ds ṡ. Since ˙s is not given, only
the direction of the joint velocity is given, not its amplitude.

In fact, the initial state for this sub-phase are the final state
for the flat-foot sub-phaseqir = [(qf 0 = 0);qf ], thus there are
known by the 29 optimization parameters for the flat-foot sub-
phase. The initial velocity of the robot is known, ˙qir = [(q̇f 0 =

0); q̇f ]. The initial vectordqir
ds can be deduced if ˙s(0) is known,

this term will be an optimization variable.
The final configuration is a double support configuration

with only one foot flat on the ground, thus 9 coordinates are
used to define this configurationxf ,yf ,ψ f ,xh,yh,zh,θh,φh,qf 0.
The joint pathqr(s) during the foot rotation sub-phase can be
calculated with 25 optimization variables : 9 forqr f , 15 for
dqr f
ds and ṡ(0).
3) From joint trajectories to joint motions:The joint evo-

lution is given asqr(s), but since the robot is under-actuated,
functions(t) must be such that the robot motion satisfies (17).
Because ˙qr(s) is proportional to ˙s, the angular momentum

σys = mt(ẋcmzcm−xcmżcm), (33)

can be rewritten as:

σ = I(s)ṡ(s)
σ̇ = mgxcm(qr(s))

(34)

These two equations can be combined to have for 0≤ s≤ 1
[12]:

1
2I(0)2ṡ(0)2 = 1

2I(s)2ṡ(s)2 +V(s)

V(s) = −mg
s

R

0
I(ξ)xg(ξ)dξ (35)

Since functionI(s) andV(s) can be calculated for any given
function qr(s), it follows that the initial value ˙s(0) permits to

aoustin
Note
David, que signifie (flêche)

aoustin
Note
initial

aoustin
Note
are separately described

aoustin
Note
Super, ici c'est net bien présenté!



7

define the function ˙s completely and thuss(t).

ṡ(s) =

√

I(0)2ṡ(0)2−2V(s)
I(s)2 (36)

Polynomialsqr(s) is defined with the assumption thats is a
well defined increasing function, thus the following conditions
must be satisfied:

ṡ(0) >

√

2 max
s

(V(s))

I(0)2

I(s) 6= 0 f or 0≤ s≤ 1

(37)

These constraints are taken into account in the optimization
process.

The value of ˙s at the end of the foot rotation sub-phase can
be deduced from (36), thus the velocity of the robot at the end
of the foot rotation sub-phase is :

q̇r f =

√

I(0)2ṡ(0)2−2V(1)

I(1)2

dqr f

ds
(38)

Since the impact occurs in the configurationqr f with the
velocity q̇r f , the initial state of the robot for the flat-foot
sub-phase can be deduced from equations (29) and (31). The
duration of the foot-rotation phase is not a direct optimization
variable, it is the result of the integration of the functionṡ(s)
than defines at which times= 1, i.e.,

Tr =

Z 1

0

1
ṡ

ds (39)

4) Torque and forces:For the foot rotation sub-phase, when
the functionqr(s) is chosen, ˙s(s) can be calculated by (36).
Thus the joint velocity is:

q̇r(s) =
dqr

ds
ṡ(s), (40)

and the joint acceleration can be written as:

q̈r(s) =
d2qr

ds2 ṡ2 +
dqr

ds
s̈(s) (41)

In order to deduce ¨s, we use the linearity of the torqueΓ
with respect to the acceleration ¨s and the fact that the torque
about the toe is zero. Therefore,

Γ̄ = us̈+v (42)

where, from (14) withFt = 0,

Γ̄ =

[

RFR

Γ

]

= f(qr(s), q̇r(s), q̈r(s)) (43)

Using the Newton-Euler algorithm,̄Γ is calculated for ¨s= 0
ands̈= 1; these vectors are denoted bȳΓ0 andΓ̄1 respectively.
For anys̈ we have:

Γ̄ = (Γ̄1− Γ̄0)s̈+ Γ̄0 = us̈+v (44)

Thus,v = Γ̄0 andu = (Γ̄1− Γ̄0) are obtained.
Then, s̈ is easily obtained from fifth row of (44), because

smRy = 0, as:

s̈= −
v5

u5

(45)

The indix 5 correspond to the fifth row ofv and u. Then
the torques required to produce the motion are computed as:

Γ = u
(7:20)

(−
v5

u5

)+v
(7:20)

, (46)

and the ground reaction forces as:

RF = u
(1:6)

(−
v5

u5

)+v
(1:6)

. (47)

V. OPTIMAL WALK

A. Constraints and limitations

The objective of this study is to define a feasible optimal
trajectory for a given robot with given actuators. Then, in order
to insure that such trajectory is possible, many constraints
given by physical or others limitations present during the
evolution of the gait cycle have to be considered.

1) Magnitude constraints on position, velocities and torque:

• Each actuator has physical limits such that

|Γi |−Γi,max≤ 0, for i = 1, ...,14 (48)

whereΓi,max denotes the maximum value for each actu-
ator.

|q̇i |− q̇i,max≤ 0, for i = 1, ...,14 (49)

where q̇i,max denotes the maximum velocity for each
actuator.

• The upper and lower bounds of joints for the configura-
tions during the motion are:

qi,min ≤ qi ≤ qi,max, for i = 1, ...,14 (50)

qi,min andqi,max respectively stands for the minimum and
maximum joint limits.

2) Geometric constraints in double support phase:

• Position and orientation limitations to define the left foot
and the middle of the hips situations described in (IV).

Pf ,l ≤ Pf ≤ Pf ,u and Ph,l ≤ Ph ≤ Ph,u (51)

wherePf = [xf ,yf ,ψ f ]
T and Ph = [xh,yh,zh,θh,φh,qf 0]

T

denotes the coordinates to define such configuratios,Pf ,l ,
Ph,l and Pf ,u, Ph,u are lower limit and upper limit ofPf

andPh.
• In order to avoid the internal collision of both feet through

the lateral axis the heel and the toe of the left foot must
satisfy

yheel≤−a and ytoe≤−a (52)

with a >
lp
2 and lp is the width of right foot.
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3) Walking constraints:
• During the single support phase, the reaction force exerted

by the ground on the stance foot as well as impulsive
force acting on the swing foot impacting the ground must
be directed upward to avoid take-off, and must be inside
the friction cone defined by the friction coefficientµ to
avoid the sliding of the biped. This is equivalent to write

√

R2
Fx

+R2
Fy

≤ µRFz (53)
√

I2
w fx

+ I2
w fy

≤ µIw fz (54)

The conditions of no take-off are deduced by

Rfz ≥ 0 (55)

Iw fz ≥ 0. (56)

• The swing foot must not touch the ground before the
prescribed end of the single support phase, then theztip

position coordinate of the swing foot tip must be greater
than a smooth curve of pre-specified amplitud

ztip ≤ f (k,Az), with f (−d) = f (d) = 0 ∀ k ∈ [−d,d]
(57)

whereAz denotes maximum height of the swing foot and
d = xf is the step lenght.

• In order to maintain the balance in dynamic walking, the
Zero Moment Point which is equivalent to the Center of
Pressure (CoP), of the stance foot must be satisfy, for the
flat-foot sub-phase

−lp

2
≤

smRx
s fRz

≤
lp

2
and −Lp ≤

−smRy

s fRz

≤ 0, (58)

and for the foot rotation sub-phase

−lp

2
≤

smRx
s fRz

≤
lp

2
. (59)

where lp is the width andLp is the length of the feet.
• Constraint on the existence of the functions(t) is consid-

ered to define the polynomialsqr(s). This constraint can
be simply written as

ṡ(0) >

√

2 max
s

(V(s))

I(0)2

I(s) 6= 0 f or 0≤ s≤ 1

(60)

B. Cost function

In electrical motors and for a cycle of walk, most part of the
energy consumption is due to the loss by Joule effect neglect-
ing the friction. Thus the optimized criterion is proportional
to this loss of energy. It is defined as the integral of the norm
of the torque for a displacement of one meter:

JΓ =
1
d

(

Z Tf

0
Γ(t)TΓ(t)dt+

Z 1

0
Γ(s)TΓ(s)

1
ṡ

ds

)

(61)

whereTf is the duration of the flat-foot sub-phase of one half
step,d = xf is the step length. The total duration of one half
step is defined byT = Tf +Tr , with Tr obtained of (39).

C. Optimization problem

The objective of this optimization procedure will be to select
a feasible solution by minimizing the criterion (61), for a given
motion velocity of the robot, satisfying constraints (48)-(60).
Let P= [P1,P2, ...,P54]

T be the optimization parameters,JΓ(P)
the criterion andg(p) = [g1(p),g2(p), ...,gl (p)]T the inequality
constraints to satisfy, the optimization problem can be formally
stated as:

Minimize JΓ(P)
subject to g j(P) ≤ 0 j = 1, ..., l

}

(62)

This constrained nonlinear optimization problem is solved
using thefminconfunction from the package Matlab. Thus, this
optimization problem, under constraints, is solved numerically.

The main parameters, used in the presented study, for this
humanoid robot are given in table V-E. The parameters are
defined with respect to reference frame fixed at each body,
see Figure 3.

D. Walk without foot rotation

The chosen motion velocity for the three-dimensional
bipedal robot is 1.2 m/s (4.32 km/h), which corresponds to an
average walking speed. For this motion, the flat-foot presents
a twist rotation equals 0.103 rd. The optimal walk has the
following characteristics: for one half step, the durationTf is
0.29 s, the step length is 0.354 m. The value of the torque
cost criterionC is 11745.23 N2ms.

Figure 4 presents the stick-diagram of one step of an optimal
walk. Figure 5 shows the validity of nonsliding (53) and
no take-off (55) constraints. The Coulomb friction coefficient
µ is 3/4. The average vertical reaction force is 401.7 N,
which is coherent with the weight of the biped with mass
equals 40.75 kg. For this stable gait, the evolution of CoP
is illustrated in figure 6. This trajectory is the result of the
optimization process which evolution remains within the foot
area, satisfying (58). The applied torques are shown in figure
8. Note that the torques on the stance leg are higher than on
the swing leg, the highest torques concern the hip and the
knee. The figure 7 show the position and velocity states of the
robot, walking at 1.2m/s.

E. Walk with foot rotation

For purpose of show that the use of a foot rotation sub-
phase during the single support phase reduces the functional
cost, the chosen motion velocity for this simulation is 1.3
m/s (4.68 km/h). This motion velocity is such that a gait
with foot rotation is more efficient than a gait without foot
rotation. During the evolution of this motion, the foot in
rotation finishes with an angle equals to 0.435 rd and a twist
rotation equals 0.101 rd. The optimal walk has the following
characteristics: for one half step, the duration of the flat-foot
and foot rotation sub-phases isTf = 0.130 s andTr = 0.202
s, respectively. The step length is 0.433 m. The value of the
torque cost criterionC is 3693.98 N2ms.
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Parameters of the biped for the right leg Parameters of the biped for the left leg
Body Foot Femur Tibia Torso Foot Femur Tibia

Frame s 3 4 7 14 11 10
Mass (Kg) 0.678 2.188 5.025 24.97 0.678 2.188 5.025

Inertia (kg·m2)

JXX 0.0012618 0.001905 0.06645 3.0115 0.00091027 0.001905 0.06645
JXY 0 0 0 -0.0044581 0 0 0
JXZ 0 0 0 -0.67669 -0.000539 0 0
JYY 0 0.089816 0.20922 3.3357 0.002858 0.13689 0.31733
JYZ 0 0 0 -0.013753 0 0 0
JZZ 0 0 0 0.43827 0.0026717 0.13689 0.31733

Mass center(m)
x -0.1035 0.16856 0.16856 0.096309 -0.0315 0.22344 0.22344
y 0 0 0 0.001904 0 0 0
z 0.034 0 0 0.28128 -0.02525 0 0

TABLE III: Parameters of the biped used in the optimal process.J is the inertia tensor measured with respect to reference frame fixed at
each body.
table
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Fig. 4: Stick diagram of the evolution of the biped robot’s motion, during onehalf step, walking at 1.2m/s with a stable gait.
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Fig. 7: Evolution of the joint angles and joint velocities versus time. The curves correspond to the stance and swing legs of the robot walking
at 1.2m/s
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figure

Figure 9 presents the stick-diagram of one step of an optimal
walk for the studied three-dimensional bipedal robot. This
optimal motion regroups the flat-foot and foot rotation sub-
phases. The introduction of this sub-phase let us obtain an
optimal fast motion with a stable gait, which represents the
60.7 % of the total motion. Figure 10 shows the validity of
nonsliding and no take-off constraints, during the both sub-

phases. The Coulomb friction coefficientµ is 3/4. The average
vertical reaction force is 404.37 N, which is coherent with the
weight of the biped robot. For this stable gait, the evolution
of CoP is illustrated in figure 11. This trajectory is the result
of the optimization process which evolution remains within
the foot area during the flat-foot sub-phase. The CoP during
the foot rotation sub-phase is located at the toe, showing a
discontinuity during its evolution due to the transition from
flat-foot (fully actuated) sub-phase to foot rotation (under-
actuated) sub-phase. The applied torques are shown in figure
12. Note that the curves have a discontinuity due to the
transition from flat-foot sub-phase to foot rotation sub-phase.
The torques measured at the stance and swing leg in order to
achieve an optimal walk (1.3m/s) with a stable gait describing
a rotation about the stance toe, validate the induction of this
sub-phase to reduce the energy consumed in the walking. The
figure 13 show the position and velocity states of the robot,
walking at 1.3m/s. q0 defines the orientation of the biped.
During the foot rotation sub-phase the angle,q0, increases up
to an optimal valueq0 = 0.435 rd.

VI. CONCLUSIONS

In this paper a solution to achieve walking motion with
flat-foot and foot rotation sub-phases has been proposed. The
studied robot was a three-dimensional biped with geometrical
and inertial distribution close to those of the human body.
Since the desired motion is based on the solution of an optimal
problem and in order to use classical algebraic optimization
techniques, the optimal trajectory is defined by a small number
of parameters. Some inequality constraints such as the limits
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Fig. 9: Stick diagram of the evolution of the biped robot’s motion, during onehalf step, walking at 1.3m/s with a stable gait. In (d) the
stance foot begins to rotate about its toe.
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Fig. 13: Evolution of the joint angles and joint velocities versus time. The curves correspond to the stance and swing legs of the robot
walking at 1.3m/s, where the stance foot rotates with angle,q0, about its toe.
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on torque and velocity, the condition of no take-off and no
sliding during motion and impact, some limits on the motion
of the free leg are taken into account. The desired walking gait
was assumed to consist of single supports and instantaneous
double supports defined by passive impacts. The single support
phase can be composed of a foot rotation sub-phase or not.
It is shown that this sub-phase allows to reduce the cost

criterion for fast motions. The torques were computed for
sampling times using the inverse dynamic model. This model
was obtained with the recursive Newton-Euler algorithm. The
main contribution of the paper was to extend the optimal
trajectories generation of the planar biped robots [10] to an
three-dimensional biped robot with rotation of the feet to
achieve an optimal fast motion. The developed method has
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Fig. 10: The ground reaction force during the single support phase.
The dash-dotted and solid curve depicts the vertical and the horizontal
component of the ground reaction force, respectively.
figure

-0.2

-0.1

0 -0.1

0

0.1-0.1

0

0.1

Z
-a

x
is

Y-axis

X-axis

pL

pl
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figure

shown that an appropriate choice of the geometric evolution
of the robot, corresponding to a motion compatible with the
dynamic model, allows to solve the under-actuation sub-phase
and to ensure the stability of the robot’s motion. Our future
study will focus on the introduction of an over-actuated phase
to achieve a walking motion where the rear foot rotates around
its toe and the front foot rotates around its heel until the foot
is flat on the ground.

APPENDIX A

COMPUTATION OF D AND DJ MATRIX BY USING THE

NEWTON-EULER EQUATIONS

According to the methode of Walker [29], the inertia matrix,
D, is calculated by the two recursive calculations of the
Newton-Euler algorithm. Using this method we have:





sfR
smR

Γ



 = D(X)





sV̇0
sω̇0

q̈



+N(X,V)+DJFw f . (A-1)

In consequence, from this equation, the transpose of theith

column ofD(X) is equal to[sfR,smR,Γ]T if
[

sV̇0,
sω̇0, q̈

]T
= eT

i , V = 0, g = 0, Fw f = 0 (A-2)
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Fig. 12: The needed joint torques during the motion
figure

with ei ∈ R
20 the unit vector, whose elements are zero except

the ith element which is equal to 1.
The Jacobian matrix,DJ, is calculated by using the same

method, by noting from (A-1) that theith column is equal to
[sfR,smR,Γ]T if

[

sV̇0,
sω̇0, q̈

]T
= 0T , V = 0, g = 0, Fw f = ei (A-3)

with ei ∈R
6 the unit vector, whose elements are zero except

the ith element which is equal to 1.
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