
HAL Id: hal-00483101
https://hal.science/hal-00483101

Submitted on 12 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving allocation problems of hard real-time systems
with dynamic constraint programming

Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche,
Narendra Jussien

To cite this version:
Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, Narendra Jussien. Solving
allocation problems of hard real-time systems with dynamic constraint programming. 14th Interna-
tional Conference on Real-Time and Network Systems (RTNS’06), 2006, Poitiers, France, France.
pp.214-223. �hal-00483101�

https://hal.science/hal-00483101
https://hal.archives-ouvertes.fr


Solving Allocation Problems of Hard Real-Time Systems with Dynamic
Constraint Programming

Pierre-Emmanuel Hladik1, Hadrien Cambazard2, Anne-Marie D́eplanche1, Narendra Jussien2

1 IRCCyN, UMR CNRS 6597 2 École des Mines de Nantes, LINA CNRS
1 rue de la Nöe – BP 9210 4 rue Alfred Kastler – BP 20722

44321 Nantes Cedex 3, France 44307 Nantes Cedex 3, France
{hladik,deplanche}@irccyn.ec-nantes.fr {hcambaza,jussien}@emn.fr

Abstract

In this paper, we present an original approach (CPRTA
for ”Constraint Programming for solving Real-Time Al-
location”) based on constraint programming to solve an
allocation problem of hard real-time tasks in the context
of fixed priority preemptive scheduling. CPRTA is built on
dynamic constraint programming together with a learning
method to find a feasible processor allocation under con-
straints. It is a new approach which produce in its cur-
rent version as acceptable performances as classical al-
gorithms do. Some experimental results are given to show
it. Moreover, CPRTA shows very interesting properties. It
is complete —i.e., if a problem has no solution, the algo-
rithm is able to prove it—, and it is non-parametric —i.e.,
it does not require specific initializations—. Thanks to its
capacity to explain failures, it offers attractive perspec-
tives for guiding the architectural design process.

1. Introduction

Real-time systems have applications in many indus-
trial areas: telecommunication systems, automotive, air-
craft, robotics, etc. Today’s applications are becoming
more and more complex, as much in their software part
(an increasing number of concurrent tasks with various in-
teraction schemes), as in their execution platform (many
distributed processing units interconnected through spe-
cialized network(s)), and in their numerous functional and
non-functional requirements too (timing, resource, power,
etc. constraints). One of the main issues in the archi-
tectural design of such complex distributed applications
is to define an allocation of tasks onto processors so as
to meet all the specified requirements. In general, it is
a difficult constraint satisfaction problem. Even if it has
to be solved off-line most of the time, it needs efficient
and adaptable search techniques which are able to be in-
tegrated into a more global design process. Furthermore,
it is desirable that those techniques return relevant infor-
mation intended to help the designer who is faced with
architectural choices. The ”binary” result, in particular,

(has a feasible allocation been found?: yes and here it
is, or no, and that’s all) which is usually returned by the
search algorithm is not satisfactory in failure situations.
The designer would expect some explanations justifying
the failure and enabling him to revisit his design. There-
fore, more sophisticated search techniques that would be
able to collect some knowledge about the problem they
solve are required. Here are the general objectives of the
work we are conducting.

More precisely, the problem we are concerned with
consists in assigning a set of periodic, preemptive tasks
to distributed processors in the context of fixed prior-
ity scheduling, to respect schedulability but also to ac-
count for requirements related to memory capacity, co-
residence, redundancy, and so on. We assume that the
characteristics of tasks (execution time, priority, etc.) and
the ones of the physical architecture (processors and net-
work) are all known a priori —Only static real-time sys-
tems are here considered—.

Assigning a set of hard preemptive real-time tasks in
a distributed system under allocation and resource con-
straints is known to be an NP-Hard problem [14]. Up to
now, it has been massively tackled with heuristic meth-
ods [18], simulated annealing [21] and genetic algorithms
[16]. Recently, Szymanek et al. [20] and especially Ekelin
[7] have used constraint programming to produce an as-
signment and a pre-runtime scheduling of distributed sys-
tems under optimization criteria. Even if their context is
different from ours, their results have shown the ability of
such an innovative approach to solve an allocation prob-
lem for embedded systems and have encouraged us to go
further.

Like numerous hybridation schemes [9, 4], the way
we are investigating uses the complementary strengths of
constraint programming and optimization methods from
operational research. In this paper, we present its prin-
ciple and study its performances. It is a decomposition-
based method (related to logic Benders-based decompo-
sition [9]) which separates the allocation problem from
the scheduling one: the allocation problem is solved by
means ofdynamic constraint programmingtools, whereas

1



the scheduling problem is treated with specific real-time
schedulability analysis. The main idea is to ”learn”
from the schedulability analysis to re-model the allocation
problem so as to reduce the search space. In that sense, we
can compare this approach to a form oflearning from mis-
takes. Lastly we underline that a fundamental property of
this method is the completeness : when a problem has no
solution, it is able to prove it (contrary to heuristic meth-
ods that are unable to decide).

The remainder of this paper is organized as follows. In
section 2, we describe the problem. Section 3 is dedicated
to the description of the master- and sub-problems, and
the relations between them. The logical Benders decom-
position scheme is briefly introduced and the links with
our approach are put forward. In Section 4 the method is
applied to a case study. Some experimental results are pre-
sented in Section 5. Section 6 shows how it is possible to
set up a failure analysis able to aid the designer to review
his plans. It is a first attempt that proves its feasibility and
will need to go deeper. The paper ends with concluding
remarks in Section 7.

2 The problem description

2.1 The real-time system architecture
The hard real-time system we consider can be modeled

by a software architecture: the set of tasks, and a hard-
ware architecture: the execution platform for the tasks, as
represented in Fig. 1.

p1 p2

p3 p4 m4

m1 m2

m3

τ1

τ2 τ3

τ4

τ5

τ6

τi : (Ti, Ci, prioi, µi)
cij : (dij , prioij)

c12

c24

c13

c34

c56
δbandwidth

Figure 1. An example of hardware (left) and
software (right) architecture.

By hardware architecturewe mean a setP =
{p1, . . . , pk, . . . , pm} of m processors with fixed memory
capacitymk and identical processing speed. Each pro-
cessor schedules tasks assigned to it with a fixed priority
strategy. It is a simple rule : a static priority is given to
each task and at run-time, the ready task with the highest
priority is put in the running state, preempting eventually a
lower priority task. Those processors are fully connected
through a communication medium with a bandwidthδ. In
this paper, we look at a communication medium called
a CAN buswhich is currently used in a wide spectrum
of real-time embedded systems. However any other com-
munication network could be considered as far as its tim-
ing behaviour (including its protocol rules) is predictable.
Thus the first experiments we have conducted addressed a
token ring network.

CAN (Controller Area Network) [5] is both a protocol
and physical network. CAN works as a broadcast bus
meaning that all connected nodes will be able to read all
messages sent on the bus. Each message has a unique
identifier which is also used as the message priority. On
each node waiting messages are queued. The bus makes
sure that when a new message gets selected to transfer,
the message with the highest priority, waiting on any
connected node, will get transmitted first. When at least
one bit of a message has started to be transfered it can’t
get preempted even though higher priority messages
arrive. As a result, the CAN’s behaviour will be seen
subsequently as the one of a non preemptive fixed priority
message scheduling.

Thesoftware architectureis modeled as a valued, ori-
ented and acyclic graph(T , C). The set of nodesT =
{τ1, ..., τn} represents the tasks. A task in turn is a set
of instructions which must be executed sequentially in the
same processor. The set of edgesC ⊆ T × T refers to the
data sent between tasks.

A taskτi is defined through timing characteristics and
resource needs: its periodTi (as a task is periodically
activated ; the date of its first activation is free), its
worst-case execution time without preemptionCi and its
memory needµi. A priority prioi is given to each task.
Taskτj has priority overτi if and only if prioi < prioj .
Edgescij = (τi, τj) ∈ C are weighted with its tramission
time Cij (the time it takes to transfer the message on
the bus) together with a priority valueprioij (useful in
the CAN context). Task priorities are assumed to be
different. The same assumption is made on message
priorities. In this model, we assume that communicating
tasks have the same activation period. However, we don’t
consider any precedence constraint between them : they
are periodically activated in an independent way, and they
read input data and write output data at the beginning and
the end of their execution.

The underlying communication model is inspired from
OSEK-COM specifications [17]. OSEK-COM is an uni-
form communication environment for automotive control
unit application software. It defines common software
communication interface and behaviour for internal com-
munications (within an electronic control unit) and exter-
nal ones (between networked vehicle nodes) which is in-
dependent of the communication protocol used. It is the
following. Tasks that are located on the same processor
communicate through local memory sharing. Such a lo-
cal communication cost is assumed to be zero. On the
other hand, when two communicating tasks are assigned
to two distinct processors, the data exchange needs the
transmission of a message on the network. Here we are
interested with theperiodic transmission modeof OSEK-
COM. In this mode data production and message trans-
mission aren’t synchronised : a producer task writes its
output data into a local unqueued buffer from where a pe-



(b) tasks are allocated on 
different processors

(a) tasks are allocated on the 
same processor

τi τj

Mij

cij

τi τi τjτj

Figure 2. Depending of the task allocation,
a message exists, or not.

riodic protocol service reads it and sends it into a mes-
sage. The building of protocol data units considered here
is very simple : each data that has to be sent from a pro-
ducer taskτi to a consumer taskτj in a distant way gives
rise to its proper messageMij . Moreover in this paper,
for a sake of simplicity, theasynchronous receiving mode
is preferred. It means that the release of a consumer task
τj is strictly periodic and unrelated with theMij message
arrival : when a node receives a message from the bus, its
protocol records its data into a local unqueued buffer from
where it can be read by the taskτj . In [8] an extension of
this work to asynchronous receiving modeis proposed in
which a message reception notification activates the con-
sumer task.

As a result, depending on the task allocation, an edge
cij of the software architecture may give rise to two differ-
ent equivalent schemes as illustrated in Fig. 2. In Fig. 2(b),
Mij inherits its periodTi from τi and its priorityprioij

from cij .
Therefore from a scheduling point of view, messages

on the bus are very similar to tasks on a processor. Like for
tasks, each messageMij is ”activated” everyTi units of
time; its (bus) priority isprioij ; and it has a transmission
timeCij .

2.2 The allocation problem
An allocation is a mappingA : T → P such that:

τi 7→ A(τi) = pk (1)

The allocation problem consists in finding the mappingA
which respects the whole set of constraints described in
the immediate below.

Timing constraints. They are expressed by the means
of relative deadlines for the tasks. A timing constraint en-
forces the duration between the activation date of any in-
stance of the taskτi and its completion time to be bounded
by its relative deadlineDi. Depending on the task alloca-
tion, such timing constraints may concern the instanciated
messages too. For tasks as well as messages, their rela-
tive deadline is hereafter assumed equal to their activation
period.

Resource constraints. Three kinds of constraints are
considered —precise units aren’t specified but obviously

they have to be consistent with the given expressions—:

• Memory capacity: The memory use of a processor
pk cannot not exceed its capacity (mk):

∀k = 1..m,
∑

A(τi)=pk

µi ≤ mk (2)

• Utilization factor : The utilization factor of a proces-
sor cannot exceed its processing capacity. The fol-
lowing inequality is a necessary schedulability con-
dition :

∀k = 1..m,
∑

A(τi)=pk

Ci

Ti
≤ 1 (3)

• Network use: To avoid overload, the messages car-
ried along the network per unit of time cannot exceed
the network capacity:∑

cij = (τi, τj)
A(τi) 6= A(τj)

Cij

Ti
≤ 1 (4)

Allocation constraints. Allocation constraints are due
to the system architecture. We distinguish three kinds of
constraints.

• Residence: a task may need a specific hardware or
software resource which is only available on specific
processors (e.g. a task monitoring a sensor has to
run on a processor connected to the input peripheral).
This constraint is expressed as a couple(τi, α) where
τi ∈ T is a task andα ⊆ P is the set of available host
processors for the task. A given allocationA must
respect:

A(τi) ∈ α (5)

• Co-residence: This constraint enforces several tasks
to be assigned to the same processor (they share a
common resource). Such a constraint is defined by a
set of tasksβ ⊆ T and any allocationA has to fulfil:

∀(τi, τj) ∈ β2, A(τi) = A(τj) (6)

• Exclusion: Some tasks may be replicated for some
fault-tolerance objectives and therefore cannot be as-
signed to the same processor. It corresponds to a set
γ ⊆ T of tasks which cannot be placed together. An
allocationA must satisfy:

∀(τi, τj) ∈ γ2, A(τi) 6= A(τj) (7)

An allocationA is said to bevalid if it satisfies alloca-
tion and resource constraints. It isschedulableif it satis-
fies timing constraints. Finally, a solution to our problem
is a valid and schedulable allocation of the tasks.



3 Solving the problem

Constraint programming (CP) techniques have been
widely used to solve a large range of combinatorial prob-
lems. They have proved quite effective in a wide range of
applications (from planning and scheduling to finance –
portfolio optimization – through biology) thanks to main
advantages: declarativity (the variables, domains, con-
straints description), genericity (it is not a problem de-
pendent technique) and adaptability (to unexpected side
constraints).

A constraint satisfaction problem(CSP) consists of a
set V of variables defined by a corresponding setD of
possible values (the so-calleddomain) and a setC of con-
straints. A solution to the problem is an assignment of a
value inD to each variable inV such that all constraints
are satisfied. This mechanism coupled with a backtrack-
ing scheme allows the search space to be explored in a
complete way. For a deeper introduction to CP, we refer
to [2].

3.1 Solving strategy : Logic-based Benders decom-
position in CP

Due to space limitation, we only give the basic princi-
ples of this technique. Our approach is based on an exten-
sion of a Benders scheme. A Benders decomposition [3]
is a solving strategy of linear problems that uses a parti-
tion of the problem among its variables:x, y. A master
problem considers onlyx, whereas a subproblem tries to
complete the assignment ony and produces a Benders cut
added to the master. This cut is the central element of the
technique, it is usually a linear constraint onx inferred by
the dual of the subproblem. Benders decomposition can
therefore be seen as a form oflearning from mistakes.

For a discrete satisfaction problem, the resolution of
the dual consists in computing the infeasibility proof of
the subproblem (in this case, the dual is called aninference
dual) and determining under what conditions the proof re-
mains valid to infer valid cuts. The Benders cut can be
seen in this context as an explanation of failure which
is learnt by the master. We refer here to a more general
Benders scheme calledlogic Benders decomposition[9]
where any kind of subproblems can be used as long as the
inference dual of the subproblem can be solved.

We propose an approach inspired from methods used to
integrate constraint programming into a logic-based Ben-
ders decomposition [4]. The allocation and resource con-
straints are considered on one side, and schedulability on
the other (see Fig. 3). The master problem solved with
constraint programming yields a valid allocation. The
subproblem checks the schedulability of this allocation,
eventually finds out why it is unschedulable and designs a
set of constraints, namednogoodswhich rules out all the
assignments which are unschedulable for the same reason.

Master problem
(constraint programming)

Resource constraints
Allocation constraints

Subproblem
(schedulability analysis)

Timing constraints

Le
ar

ni
ng

valid allocation
unschedulable

nogoods

schedulable allocation

Figure 3. Logic-based Benders decomposi-
tion to solve an allocation problem

3.2 Master problem
As the master problem is solved using constraint pro-

gramming techniques, we need first to translate our prob-
lem into CSP. The model is based on a redundant formu-
lation using three kinds of variables:x, y, w.

Let us first considern integer-valued variablesx which
are decision variables and correspond to each task, repre-
senting the processor selected to process the task:∀i ∈
{1..n}, xi ∈ {1, . . . ,m}. Then, boolean variablesy
indicate the presence of a task on a processor:∀i ∈
{1..n},∀p ∈ {1..m}, yip ∈ {0, 1}. Finally, boolean
variablesw are introduced to express whether a pair of
tasks exchanging data are located on the same processor
or not: ∀cij = (τi, τj) ∈ C, wij ∈ {0, 1}. Integrity
constraints are used to enforce the consistency of the re-
dundant model.

One of the main objectives of the master problem is to
solve efficiently the assignment part. It handles two kinds
of constraints: allocation and resource.

• Residence:(cf. Eq. (5)) it consists of forbidden val-
ues forx. A constraint is added for each forbidden
processorp of τi: xi 6= p

• Co-residence:(cf. Eq. (6))∀(τi, τj) ∈ β2, xi = xj

• Exclusion: (cf. Eq. (7))AllDifferent(xi|τi ∈ γ). An
AllDifferentconstraint on a setV of variables ensures
that all variables amongV are different.

• Memory capacity: (cf. Eq. (2)) ∀p ∈
{1..m},

∑
i∈{1..n} yipµi ≤ µp

• Utilization factor: (cf. Eq. (3)) Letlcm(T ) be the
least common multiple of periods of the tasks —
utilization factor and network use are reformulated
with the lcm of task periods because our constraint
solver cannot currently handle constraints with both
real coefficients and integer variables—. The con-
straint can be written as follows:

∀p ∈ {1..m},
∑

i∈{1..n}

yip lcm(T )Ci

Ti
≤ lcm(T )



• Network use: (cf. Eq. (4)) The network capacity is
bound byδ. Therefore, the size of the set of messages
carried on the network cannot exceed this limit:∑

i∈{1..n}j∈{1..n}

wij lcm(T )Cij

Ti
≤ lcm(T )

3.3 Subproblem
The subproblem we consider here is to check whether a

valid solution produced by the master problem is schedu-
lable or not. A widely chosen approach for the schedu-
lability analysis of a task setS is based on the following
necessary and sufficient condition [15] :S is schedulable
if and only if, for each task ofS, its worst-case response
time is less or equal to its relative deadline. Thus the sub-
problem solving leads us to compute worst-case response
times for tasks on processors and for messages on the bus.
According to the features of the considered task and mes-
sage models, as well as the processor and bus scheduling
algorithms, a ”classical” computation can be used and its
main results are given in the immediate following.

Task worst-case response time. For independent and
periodic tasks with a preemptive fixed priority scheduling
algorithm, it has been proven that the worst execution sce-
nario for a taskτi happens when it is released simultane-
ously with all the tasks which have a priority higher than
prioi. WhenDi is (less or) equal toTi, the worst-case
response time forτi is given by [15]:

Ri = Ci +
∑

τj∈hpi(A)

⌈
Ri

Tj

⌉
Cj (8)

wherehpi(A) is the set of tasks with a priority higher than
prioi and located on the processorA(τi) for a given allo-
cationA, anddxe calculates the smallest integer≥ x. The
summation gives us the number of times tasks with higher
priority will execute beforeτi has completed. The worst-
case response timeRi can be easily solved by looking for
the fix-point of Eq. (8) in an iterative way.

Message worst-case response time.As mentioned ear-
lier, message scheduling on the CAN bus can be viewed as
a non-preemptive fixed priority scheduling strategy. Thus
when doing a worst-case response time equation for a
message, Eq. (8) has to be reused with some modifica-
tions. First it has to be changed so that a message only
can be preempted during its first transmitted bit instead of
its whole execution time. Second a blocking time, i.e. the
largest time the message might be blocked by a lower pri-
ority message, must be added. The resulting worst-case
response time equation for the CAN messageMij is [22]:

Rij = Cij + Lij (9)

with

Lij =
∑

M ′∈hpij(A)

⌈
Lij + τbit

T ′

⌉
C ′+ max

M ′∈lpij(A)
{C ′−τbit}

(10)

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

Deadline miss Deadline miss

Figure 4. Illustration of a schedulability
analysis. The task τ4 does not meet its
deadline. The subset {τ1, τ2, τ4} is identified
to explain the unschedulability of the sys-
tem.

wherehpij(A) (respectivelylpij(A)) is the set of mes-
sages derived from the allocationA with a priority higher
(respectively lower) thanprioij ; τbit is the transmission
time for one bit (τbit is in relation with the bus bandwidth
δ, τbit = 1/δ) ; C ′ is the worst-case transmission time for
the messageM ′.

Here as well the computation of Eq. (10) can be solved
iteratively.

3.4 Cooperation between master and subproblem(s)
We now consider a valid allocation (as the one the con-

straint programming solver may propose) in which some
tasks are not schedulable. Our purpose is to explain why
this allocation is unschedulable, and to translate this into
a new constraint for the master problem.

Tasks. The explanation for the unschedulability of a
taskτi is the presence of tasks with higher priority on the
same processor that interfere withτi. For any other allo-
cation withτi andhpi(A) on the same processor, it is sure
thatτi will still be detected unschedulable. Therefore, the
master problem must be constrained so that all solutions
whereτi andhpi(A) are together are not considered any
further. This constraint corresponds to aNotAllEqualon
x —A NotAllEqualon a setV of variables ensures that at
least two variables amongV take distinct values—:

NotAllEqual(xj |τj ∈ Si(A) = hpi(A) ∪ {τi})

It is worth noticing that this constraint could be ex-
pressed as a linear combination of variablesy. However,
NotAllEqual(x1,x3,x4) excludes the solutions that contain
the tasksτ1, τ3, τ4 gathered onanyprocessor.

It is easy to see that this constraint is not totally rele-
vant. For example, in Fig. 4,τ4 that shares a processor
with τ1,τ2 and τ3 misses its deadline. Actually the set
S4(A) = {τ1, τ2, τ3, τ4} explains the unschedulability but
it is not minimal in the sense that if we remove one task
from it, the set is still unschedulable. Here, the setS4(A)′

= {τ1, τ2, τ4} is sufficient to justify the unschedulability.
In order to derive more precise explanations (to achieve

a more relevant learning), a conflict detection algorithm,



namelyQuickXplain[10] (see algorithm 1), has been used
to determine a minimal (w.r.t. inclusion) set of involved
tasksSi(A)′. A new function is defined,Ri(X), as the
worst-case response time ofτi as if it was scheduled with
those tasks belonging to the setX that have priority over
it:

Ri(X) = Ci +
∑

τj∈hpi(A)∩X

⌈
Ri(X)

Tj

⌉
Cj (11)

Algorithm 1 Minimal task set
QUICKXPLAIN TASK(τi, A, Di)

X := ∅
σ1, ..., σ#hpi(A) {an enumeration ofhpi(A). The enu-
meration order ofhpi(A) may have an effect on the
content of the returned minimal task set}
while Ri(X) ≤ Di do

k := 0
Y := X
while Ri(Y ) ≤ Di k < #hpi(A) do

k := k + 1
Y := Y ∪ {σk} {according to the enumeration
order}

end while
X := X ∪ {σk}

end while
return X ∪ {τi}

Messages. The reasoning is quite similar. If a message
Mij is found unschedulable, it is because of the messages
in hpij(A) and the longest message inlpij(A). We denote
Mij(A) their union together with{Mij}. The translation
of this information in term of constraint yields to:∑

Mab∈Mij(A)

wab < #Mij(A)

where#X stands for the cardinality ofX.
It is equivalent to aNotAllEqualconstraint on a set of

messages since to be met it requires that at least one mes-
sage ofMij(A) ”disappear” (wab = 0).

Like for tasks, so as to reduce the set of involved
messages, QUICKXPLAIN has been implemented, using
a similar adaptation of Eq. (9) and (10). It returns a min-
imal set of messagesMij(A)′.

Integration of nogoods in constraint programming
solver. Dynamic integration of nogoods at any step of
the search performed by the MAC (Maintaining arc con-
sistency) algorithm of the constraint solver is based on the
use of explanations. Explanations consist of a set of con-
straints and record enough information to justify any de-
cision of the solver such as a reduction of domain or a
contradiction. Dynamic addition/retraction of constraints
are possible when explanations are maintained [12].

For example, the addition of a constraint at a leaf of
the tree search will not lead to a standard backtracking

from that leaf (which could be very inefficient as a wrong
choice may exist at the beginning of the search because
the constraint was not known at that time). Instead, the
solver will jump (MAC-CBJ for conflict directed back-
jumping) to a node appearing in the explanation and there-
fore responsible for the contradiction raised by the new
constraint. More complex and more efficient techniques
such as MAC-DBT (for dynamic backtracking) exist to
perform intelligent repair of the solution after the addition
or retraction of a constraint.

4 Applying the method to an example

An example to illustrate the theory is developed here-
after. It will show how the cooperation between master-
and sub-problems is performed. Table 1 shows the char-
acteristics of the considered hardware architecture (with
4 processors) and Table 2 those of the software architec-
ture (with 20 tasks). The entry ”x, y → j” for the taskτi

indicates an edgecij with Cij = x andprioij = y.

pi p0 p1 p2 p3

mi 102001 280295 360241 41617

Table 1. Processor characteristics

τi Ti Ci µi prioi Message
τ0 36000 2190 21243 1 600,1→ 13
τ1 2000 563 5855 6 500,3→ 8
τ2 3000 207 2152 15 600,7→ 7
τ3 8000 2187 21213 3
τ4 72000 17690 168055 7 300,4→ 9
τ5 4000 667 6670 8 800,5→ 19
τ6 12000 3662 36253 14
τ7 3000 269 2743 16
τ8 2000 231 2263 12 100,6→ 18
τ9 72000 6161 59761 9
τ10 12000 846 8206 4 200,2→ 15
τ11 36000 5836 60694 20
τ12 9000 2103 20399 10
τ13 36000 5535 54243 13
τ14 18000 3905 41002 18
τ15 12000 1412 14402 5
τ16 6000 1416 14301 17 700,8→ 17
τ17 6000 752 7369 19
τ18 2000 538 5487 11
τ19 4000 1281 12425 2

Table 2. Task and message characteristics

The problem is constrained by :

• residence constraints:

– CC1 : τ0 must be allocated top0 or p1 or p2.

– CC2 : τ16 must be allocated top1 or p2.

– CC3 : τ17 must be allocated top0 or p3.



• co-residence constraint:

– CC4 : τ7, τ17 andτ19 must be on the same pro-
cessor.

• exclusion constraints:

– CC5 : τ3, τ11 andτ12 must be on different pro-
cessors.

To start the resolution process, the solver for the mas-
ter problem finds a valid solution in accordance withCC1,
CC2, CC3, CC4 andCC5. How the constraint program-
ming solver finds such a solution is here out of our pur-
pose. The valid solution it returns is:

• processorp0: τ2, τ5, τ7, τ8, τ9, τ17, τ19.

• processorp1: τ4, τ6, τ12, τ13.

• processorp2: τ0, τ11, τ14, τ15, τ16.

• processorp3: τ1, τ3, τ10, τ18.

One deduces that messages areM0,13, M1,8, M4,9, M8,18,
M10,15, andM16,17.

It is easy to check it is a valid solution by considering
allocation and resource constraints:

• µ2 +µ5 +µ7 +µ8 +µ9 +µ17 +µ19 = 93383 ≤ m0;

• µ4 + µ6 + µ12 + µ13 = 278950 ≤ m1;

• µ0 + µ11 + µ14 + µ15 + µ16 = 151642 ≤ m2;

• µ1 + µ3 + µ10 + µ18 = 40761 ≤ m3;

• C2
T2

+ C5
T5

+ C7
T7

+ C8
T8

+ C9
T9

+ C17
T17

+ C19
T19

= 0.972 ≤ 1;

• C4
T4

+ C6
T6

+ C12
T12

+ C13
T13

= 0.938 ≤ 1;

• C0
T0

+ C11
T11

+ C14
T14

+ C15
T15

+ C16
T16

= 0.794 ≤ 1;

• C1
T1

+ C3
T3

+ C10
T10

+ C18
T18

= 0.894 ≤ 1.

• C0,13
T0

+ C1,8
T1

+ C4,9
T4

+ C8,18
T8

+ C10,15
T10

+ C16,17
T16

=
0.454 ≤ 1.

The subproblem checks now the schedulability of the
valid solution. The schedulability analysis proceeds in
three steps.

First step: analysing the schedulability of tasks. The
worst-case response time for each task is obtained by ap-
plication of Eq. (8) and it is compared with its relative
deadline. Hereτ5, τ12, τ16 andτ19 are found unschedula-
ble.

Second step: analysing the schedulability of messages.
The worst-case response time for each message is ob-
tained by application of Eq. (9) and Eq. (10) and it is
compared with its relative deadline. HereM1,8 is found
unschedulable.

Third step: explaining why this allocation is not
schedulable. The unschedulability ofτ5 is due to the in-
terference of higher priority tasks on the same processor:
hp5 = {τ2, τ7, τ8, τ9, τ17}. By applying QUICKXPLAIN -
TASK (see algorithm 1) withhp5 ordered by increasing
index, we findS5(A)′ = {τ5, τ9} as minimal set. Conse-
quently, the explanation of the unschedulability is trans-
lated into the new constraint:

CC6 : NotAllEqual{x5, x9}

In the same way, by applying QUICKXPLAIN TASK:

• for τ12: CC7 : NotAllEqual{x6, x12, x13},

• for τ16: CC8 : NotAllEqual{x11, x16},

• for τ19: CC9 : NotAllEqual{x9, x19}

ForM1,8, we have:

M1,8(A) = {M0,13,M1,8,M4,9,M8,18,M16,17}.

QUICKXPLAIN returns{M0,13,M1,8,M4,9,M16,17} as
M1,8(A)′ the minimal set. An other constraint is created:

CC10 : w0,13 + w1,8 + w4,9 + w16,17 < 4

These new constraintsCC6, CC7, CC8, CC9 and
CC10 are added to the master problem. They define a
new problem for which it has to search for a valid solution
and so on.

After 20 iterations between the master problem and the
subproblem, this allocation problem is proven without so-
lution. This results from 78 constraints learnt all along
the solving process. This example has been solved using
ŒDIPE (see Section 5). On a computer with a G4 proces-
sor (800MHz), its computing time was 10.3 seconds.

5 Experimental results

We have developed a dedicated tool named ŒDIPE [6]
that implements our solving approach (CPRTA). It is
based on the CHOCO [13] constraint programming system
and PALM [11], an explanation-based constraint program-
ming system.

For the allocation problem, no specific benchmarks are
available as a point of reference in the real-time commu-
nity. Experiments are usually done on didactic examples
[21, 1] or randomly generated configurations [18, 16]. We
opted for this last solution. Our generator takes several
parameters into account:

• n, m, mes: the number of tasks, processors (exper-
iments have been done on fixed sizes:n = 40 and
m = 7) and edges;

• %global: the global utilization factor of processors;

• %mem: the memory over-capacity,i.e. the amount
of additionnal memory available on processors with
respect to the memory needs of all tasks;



Mem. %mem Alloc. %res %co−res %exc Sched. %global Mes. mes/n %msize

1 60 1 0 0 0 1 40 1 0 0
2 30 2 15 15 15 2 60 2 0.5 70
3 10 3 33 33 33 3 90 3 0.875 150

Table 3. Details on difficulty classes

• %res: the percentage of tasks included in residence
constraints;

• %co−res: the percentage of tasks included in co-
residence constraints;

• %exc: the percentage of tasks included in exclusion
constraints;

• %msize : the size of a data is evaluated as a percent-
age of the period of the tasks exchanging it.

Task periods and priorities are randomly generated.
Worst-case execution times are initially randomly chosen
and evaluated again so as:

∑n
i=1 Ci/Ti = m%global.

The memory need of a task is proportional to its
worst-case execution time. Memory capacities are ran-
domly generated while satisfying:

∑m
k=1 mk = (1 +

%mem)
∑n

i=1 µi. For a sake of simplicity, only linear data
communications between tasks are considered and the pri-
ority of an edge is inherited from the task producing it.

The number of tasks involved in allocation constraints
is given by the parameters%res, %co−res, %exc. Tasks
are randomly chosen and their number (involved in co-
residence and exclusion constraints) can be set through
specific levels. Several classes of problems have been de-
fined depending on the difficulty of both allocation and
schedulability problems. The difficulty of schedulabil-
ity is evaluated using the global utilization factor%global

which varies from 40 to 90 %. Allocation difficulty
is based on the number of tasks included in residence,
co-residence and exclusion constraints (%res, %co−res,
%exc). Moreover, the memory over-capacity,%mem has
a significant impact (a very low capacity can lead to solve
a packing problem, sometimes very difficult). The pres-
ence of data exchanges impacts on both problems and the
difficulty has been characterized by the ratiosmes/n and
%msize. %msize expresses the impact of data exchanges
on schedulability analysis by linking periods and message
sizes.

Table 3 describes the parameters of each basic diffi-
culty class. By combining them, categories of problems
can be specified. For instance, a W-X-Y-Z category corre-
sponds to problems with a memory difficulty in class W,
an allocation difficulty in class X, a schedulability diffi-
culty in class Y and a network difficulty in class Z.

5.1 Results
Table 4 summarizes some of the results of experiments

with CPRTA. We do not give the results for all the inter-
mediate classes of problems (like 1-1-1-1, 2-1-1-1, etc.)

because they are easily solved and they don not exhibit
a specific behaviour. %RES gives the number of prob-
lem instances successfully solved (a schedulable solution
has been found or it has been proven that none exists)
within the time limit of 10 minutes per instance. %VAL

gives the percentage of schedulable solutions found (thus
%RES− %VAL gives the percentage of inconsistent prob-
lems). ITER is the number of iterations between the mas-
ter problem and the subproblem. CPU is the mean com-
putation time in seconds. NOG is the number of nogoods
inferred from the subproblem. The data are obtained in
average (on instances solved within the required time) on
100 instances (40 tasks, 7 processors) per class of diffi-
culty with a Pentium 4 (3 GHz).

First, by examining the CPU column, we notice that
CPRTA still remains very efficient in spite of its seeming
complexity. Moreover as measured by ITER and NOG,
the cooperation between master and sub-problems is quite
significant and the learning is of some importance.

The lines 1 to 5 in Table 4 show results for high diffi-
culty classes without communications between tasks. The
results in lines 1 to 3 are very good. They illustrate the
basic ability of constraint programming to consider mem-
ory and allocation constraints. Lines 4 and 5 display some
performances that are going down when the schedulability
difficulty increases. Indeed, the schedulability constraints
set is empty at the beginning of the search. Therefore, all
the knowledge dealing with schedulability has to be learnt
from the subproblem. Furthermore, learning is only ef-
fective when a valid solution is produced by the master
problem solver and as a consequence it is not really inte-
grated into the constraint programming algorithm. To im-
prove CPRTA performances from this point of view, a new
approach is now being developed that integrates schedula-
bility analysis into the constraint programming algorithm
so as not ”to delay” its taking into account —it is not a
Benders decompostion, it is a new constraint defined from
schedulability properties—.

The lines 6 to 8 deal with allocation problems where
tasks may communicate. Once more, one can notice
that when data exchanges increase (and thus message ex-
changes on the bus too), the CPRTA performances de-
crease. Reasons are the same as those of task schedula-
bility: the more the messages are on the bus, the more
their scheduling becomes difficult. Moreover, we have ob-
served that nogoods inferred from message unschedulabil-
ity are usually ”weaker” (the search space cut is smaller)
than the ones inferred from task unschedulability. Learn-
ing is then less efficient for this kind of problems. As for



tasks, we hope to improve CPRTA by integrating the net-
work schedulability as a global constraint into the master
problem.

cat. %RES %VAL ITER CPU NOG
1 2-2-2-1 100.0 56.0 13.5 1.6 95.2
2 3-2-2-1 98.0 57.0 31.0 10.4 133.2
3 2-3-2-1 99.0 19.0 6.6 1.4 43.5
4 1-1-3-1 74.0 74.0 95.7 115.7 471.6
5 2-2-3-1 67.0 12.0 8.3 33.2 59.7
6 2-2-2-2 98.0 69.0 21.1 7.5 69.9
7 1-2-2-3 66.0 43.0 188.3 70.5 110.7
8 2-2-2-3 47.0 30.0 137.7 66.8 117.2

Table 4. Average results on 100 instances
randomly generated into classes of prob-
lems

5.2 Comparison with simulated annealing
As to get comparative performances for CPRTA, a sim-

ulated annealing (SA) algorithm, inspired from [21], has
been implemented. In [21] the energy function takes into
account residence, exclusion and memory constraints as
well as task deadline constraints. To be consistent with
the CPRTA model, the schedulability of messages on the
CAN bus and co-residence constraints have been inte-
grated too. The implementation has been optimized so
as to reduce computation times of this energy function.

SA is a heuristic method. As a consequence, in our
case, it can only conclude on problems with a solution.
Therefore, in Table 5 only CPRTA results for such prob-
lems are compared to SA. As seen on Table 5, except
for problems for which CPRTA must be improved (see
Section 5.1), CPRTA produces as satisfactory results as
SA does, but with better computation times. Introduction
of schedulability as a constraint into the master problem
should improve CPRTA, and certainly increases its effi-
ciency in a significant manner. Moreover, it should be
pointed out that even if CPRTA is sometimes less efficient
than SA, CPRTA solves on average more problems than
SA does if we take into account problems without solu-
tion.

SA CPRTA
cat. %VAL CPU %VAL CPU

2-2-2-1 56.0 4.7 56.0 2.4
3-2-2-1 53.0 50.8 57.0 17.4
2-3-2-1 16.0 35.5 19.0 4.1
1-1-3-1 99.0 3.2 74.0 115.7
2-2-3-1 20.0 113.9 12.0 60.82
2-2-2-2 68.0 18.1 69.0 10.0
1-2-2-3 64.0 52.0 43.0 27.4
2-2-2-3 62.0 59.1 30.0 58.6

Table 5. Comparison between CPRTA and
SA

6 Explanations

In comparison with other search methods, using a con-
straint solver may help ”intrinsically” to answer some
classical queries when a problem is proven without so-
lution such as: why does my problem have no solution
? Usually, when the domain of a variable of a CSP be-
comes empty (no value exists that will respect all the con-
straints on that variable), basic constraint programming
systems notify the user that there is no solution. Neverthe-
less, thanks to the versatility of the explanation-based con-
straint approach we use, those relevant constraints, which
explain the failure, are made available in addition [11].

Thus in the case of an allocation problem for which
no solution has been found, we analyse the set of con-
straints that is returned to explain the problem inconsis-
tency. There can be many reasons to explain inconsis-
tency. At the design level, we would like to be able to
incriminate high level characteristics of the system such
as : allocation constraints, schedulability requirements of
tasks, processors or network limitation. However, two
points of view, based on the software or hardware archi-
tecture, can be adopted. We will first focus on the char-
acteristics of the software architecture by analysing how
each task is ”responsible” for the failure. We will give
there some insight on the way a critical task from the
schedulability point of view can be identified. Each fail-
ure of the search process due to schedulability is analysed
and transformed into a constraint criterion that encapsul-
tates an accurate reason for this failure. The study of those
criteria may lead to the guilty tasks. The rationale of this
evaluation is based on the following remarks:

• The more a task appears within a nogood, the more
this task has an impact on the schedulability incon-
sistency.

• The level of propagation performed by a nogood (ei-
therNotAllEqual(xi) or

∑
wij < B), i.e its impact

within the proof is strongly related to its size (the
number of tasks it involves). ”Small”NotAllEqual
have stronger impact.

In its general form, a constraint (learnt from a nogood)
is defined byNotAllEqual(xi) or

∑
wij < B (see Sec-

tion 3.4). We denoteNAE the set of constraints in the
NotAllEqual form andSUMthe set of constraints in the
second form. For a taskτi a constraint criterionCi is eval-
uated:

Ci =
∑

c ∈ NAE
xi ∈ c

1
#c

+
∑

c ∈ SUM
∃j, wij ∈ c ∨ wji ∈ c

1
#c

This criterion considers the presence of a task in each con-
straint and its impact. BiggerCi is, bigger the impact of
τi is on the inconsistency. By studying tasks with highCi

and understanding why they have such an impact on the



inconsistency (e.g. low priority allocation, too large pro-
cessor utilization), it is possible to change some require-
ments (e.g. by adapting priorities, or choosing a different
version for a task with an other period) and so to obtain a
solution for the problem.

Table 6 givesCi obtained on the example of the Sec-
tion 4 with ŒDIPE [6]. Taskτ19 has the biggestCi. This
task has a low priority together with a high processor uti-
lization (C19/T19 = 0.32). By just changing its priority to
the highest one, and reusing CPRTA, we found a solution
for this problem.

Notice that this process consists in analysing the final
set of constraints with a heuristic based on the information
gathered during the search. This process can be general-
ized to memory and allocation constraints by the use of a
specific search technique [19] even if explicit reasons for
failure on memory or allocation are not kept in memory in
our current approach (contrary to schedulability one).

τi Ci τi Ci τi Ci τi Ci

τ19 6.33 τ13 4.78 τ2 3.22 τ3 2.53
τ14 5.98 τ9 3.95 τ1 2.85 τ16 2.25
τ11 5.98 τ6 3.83 τ10 2.77 τ18 1.97
τ5 5.42 τ7 3.45 τ4 2.65 τ8 1.73
τ12 5.42 τ15 3.32 τ17 2.55 τ0 1.15

Table 6. Constraint criterions computed on
example

7 Conclusion and future work

In this paper, we present an original and complete ap-
proach (CPRTA) to solve a hard real-time allocation prob-
lem. We use a decomposition method which is built
on a logic Benders decomposition scheme. The whole
problem is split into a master problem handling alloca-
tion and resource constraints and a subproblem for timing
constraints. A rich interaction between master and sub-
problems is performed with the computation of minimal
sets of unschedulable tasks and messages. It implements
a kind of learning technique in an effort to combine the
various issues into a solution that satisfies all constraints.

One important specificity of CPRTA is its complete-
ness,i.e., if a problem has no solution, the search algo-
rithm is able to prove it. Moreover it offers good potential
means for building an analysis able to give an aid to the
user in case of failure.

The results produced by our experiments encourage us
to go a step further. Further works concern the inclu-
sion of (task and message) schedulability analysis into the
search process of the CP algorithms in the form of a global
constraint. This should improve efficiency of CPRTA for
hard-schedulability-constrained problems. Another inter-
esting work deals with the explanation of failure. Our aim
is to integrate into the design process an intelligent tool
based on CPRTA ables to return pertinent explanations

justifying the failure. We need to go deeper in that way
and to try it out on some concrete cases.

References

[1] P. Altenbernd and H. Hansson. The slack method: A new
method for static allocation of hard real-time tasks.Real-
Time Systems, 15(2):103–130, 1998.

[2] R. Bart́ak. Constraint programming: In pursuit of the holy
grail. In Proc. of the Week of Doctoral Students (WDS99),
1999.

[3] J. F. Benders. Partitioning procedures for solving mixed-
variables programming problems.Numerische Mathe-
matik, 4:238–252, 1962.

[4] T. Benoist, E. Gaudin, and B. Rottembourg. Constraint
programming contribution to benders decomposition: a
case study.Lecture notes in Computer Science, 2470:603–
617, 2002.

[5] Bosch.CAN Specification version 2.0, 1991.
[6] H. Cambazard and P. Hladik. ŒDIPE. http://oedipe.rts-

software.org/.
[7] C. Ekelin. An Optimization Framework for Scheduling of

Embedded Real-Time Systems. PhD thesis, Chalmers Uni-
versity of Technology, 2004.

[8] P.-E. Hladik and A.-M. D́eplanche. Extension au réseau
can des problèmes de placement. Technical Report 4, IR-
CCyN, 2005.

[9] J. N. Hooker and G. Ottoson. Logic-based benders decom-
position.Mathematical Programming, 96:33–60, 2003.

[10] U. Junker. Quickxplain: Conflict detection for arbitrary
constraint propagation algorithms. InProc. of IJCAI 01,
2001.

[11] N. Jussien. The versatility of using explanations within
constraint programming. Technical Report RR 03-04-
INFO, École des Mines de Nantes, 2003.

[12] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining
arc-consistency within dynamic backtracking. InCP 2000,
number 1894 in Lecture Notes in Computer Science, pages
249–261, Singapore, Sept. 2000. Springer-Verlag.

[13] CHOCO. http://choco.sourceforge.net/.
[14] E. Lawler. Recent results in the theory of machine schedul-

ing. Mathematical Programming: The State of the Art,
1983.

[15] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. Inproceedings of the 11th
IEEE Real-Time Systems Symposium (RTSS 1990), pages
201–209, 1990.

[16] Y. Monnier, J.-P. Beauvais, and A.-M. Déplanche. A ge-
netic algorithm for scheduling tasks in a real-time dis-
tributed system. InECRTS’98, 1998.

[17] OSEK Group.OSEK/VDX Communication version 3.0.2.
[18] K. Ramamritham. Allocation and scheduling of complex

periodic tasks. InProc. of ICDCS 1990, 1990.
[19] P. Refalo. Impact-based search strategies for constraint

programming. InProc. of CP 2004, 2004.
[20] R. Szymanek, F. Gruian, and K. Kuchcinski. Digital sys-

tems design using constraint logic programming. InProc.
of PACLP 2000, 2000.

[21] K. W. Tindell, A. Burns, and A. Wellings. Allocating hard
real-time tasks: An np-hard problem made easy.Real-
Time Systems, 4(2):145–165, 1992.

[22] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysis
real-time communications: controller area network (can).
In Proc. of RTSS 1994, pages 259–265, 1994.


