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HOMOTOPY INVARIANCE OF HIGHER SIGNATURES

AND 3-MANIFOLD GROUPS

MICHEL MATTHEY, HERVÉ OYONO-OYONO AND WOLFGANG PITSCH

Abstract. For closed oriented manifolds, we establish oriented homotopy in-
variance of higher signatures that come from the fundamental group of a large
class of orientable 3-manifolds, including the “piecewise geometric” ones in the
sense of Thurston. In particular, this class, that will be carefully described, is the
class of all orientable 3-manifolds if the Thurston Geometrization Conjecture is
true. In fact, for this type of groups, we show that the Baum-Connes Conjecture
With Coefficients holds. The non-oriented case is also discussed.

Dedicated to the memory of Michel Matthey

1. Introduction and statement of the main results

We assume all manifolds to be non-empty, pointed (i.e. we fix a base-point), second
countable, Hausdorff and smooth. Given a closed connected oriented manifold Mm of
dimension m, let [M ] denote either orientation classes in Hm(M ; Q) and in Hm(M ; Z),
and let LM ∈ H4∗(M ; Q) be the Hirzebruch L-class of M , which is defined as a
suitable rational polynomial in the Pontrjagin classes of M (see [23, pp. 11–12] or [37,
Ex. III.11.15]). Denote the usual Kronecker pairing for M , with rational coefficients,
by

〈 . , . 〉 : H∗(M ; Q) × H∗(M ; Q) −→ Q .

If M is of dimension m = 4k, then the Hirzebruch Signature Theorem (see [23,
Thm. 8.2.2] or [37, p. 233]) says that the rational number 〈LM , [M ]〉 is the signature
of the cup product quadratic form

H2k(M ; Z) ⊗ H2k(M ; Z) −→ H4k(M ; Z) = Z·[M ] ∼= Z , (x, y) 7−→ x ∪ y .

As a consequence, 〈LM , [M ]〉 is an integer and an oriented homotopy invariant of
M (among closed connected oriented manifolds, hence of the same dimension 4k).
In 1965, S. P. Novikov proposed the following conjecture, now known as the Novikov
Conjecture or as the Novikov Higher Signature Conjecture : Let G be a discrete group,
let BG be its classifying space, and let α ∈ H∗(BG; Q) ∼= H∗(G; Q) be a prescribed
rational cohomology class of BG. Now, for a closed connected oriented manifold Mm

(with m arbitrary) and for a continuous map f : M −→ BG, consider the α-higher
signature (coming from G)

signG

α(M,f) :=
〈
f∗(α) ∪ LM , [M ]

〉
∈ Q ,

where f∗ : H∗(BG; Q) −→ H∗(M ; Q) is induced by f . Then, the conjecture predicts
that the rational number signG

α(M,f) is an oriented homotopy invariant of the pair
(M,f), in the precise sense that signG

α(N, g) = signG

α(M,f) whenever Nn is a second
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closed connected oriented manifold equipped with a continuous map g : N −→ BG,

and such that there exists a homotopy equivalence h : M
≃
−→ N preserving the orien-

tation, that is, h∗[M ] = [N ] in Hm(N ; Q) (automatically, m = n), and with g ◦h ≃ f ,
i.e. the diagram

M

h
��

f

++WWWWWWWWWW

	≃ BG

N
g

33gggggggggg

commutes up to homotopy, as indicated. If, for a given group G, this holds for
every rational cohomology class α ∈ H∗(BG; Q), then one says that G verifies the
Novikov Conjecture. Of particular interest are the “self higher signatures” of a closed
connected oriented manifold M , namely those corresponding to the case G := π1(M),
for some chosen cohomology class α ∈ H∗(BG; Q), with, as map f : M −→ BG, ‘the’

classifying map of the universal covering space M̃ of M (up to homotopy). Special
attention is deserved by the situation where M is aspherical, in which case one can
take M as a model for BG, and f := idM .

Now, fix a discrete group G (countable, say) and let CG be the complex group
algebra of G. Then CG is equipped with an involution

λg1
g1 + · · · + λgk

gk 7→ λ̄g1
g−1
1 + · · · + λ̄gk

g−1
k

and any unitary representation U of G on a Hilbert space HU gives rise to an involutive
representation πU of CG on HU . The maximal C∗-algebra of G, denoted by C∗G is
then the completion of CG with respect to the norm

‖ • ‖max := sup
U

‖πU (•)‖HU
,

where U runs through all unitary representations of G. On the other hand, the
reduced C∗-algebra of G, denoted by C∗

r G, is by definition the completion of CG
with respect to the norm

‖ • ‖r := ‖πλ(•)‖ℓ2(G),

where λ is the left regular representation, i.e the representation of G on ℓ2(G) given
by left translations. Notice that we have an obvious surjective map

λG : C∗G−։ C∗
r G.

Let K∗(−) and Ktop
∗ (−) denote respectively complex topological K-homology with

compact supports for spaces and analytical K-theory for complex Banach algebras.
In [41], Mǐsčenko defines a group homomorphism

ν̃G
∗ : K∗(BG) −→ Ktop

∗ (C∗G)

and shows that if ν̃G
∗ is rationally injective, i.e. injective after tensoring with Q, then

the Novikov Conjecture holds for G. The composite

νG
∗ : K∗(BG)

ν̃G

∗−→ Ktop
∗ (C∗G)

λG

∗−→ Ktop
∗ (C∗

r G)

is called the Novikov assembly map and the so-called Strong Novikov Conjecture
for G is the statement that νG

∗ is rationally injective, and this, again, implies the
usual Novikov Conjecture. Next, we explain the connection with the Baum-Connes
Conjecture. Let EG denote the universal example for proper actions of G (in other
words, up to G-homotopy, the classifying space for the family of finite subgroups
of G); by definition, this is a locally compact Hausdorff proper (left, say) G-space
such that for any locally compact Hausdorff G-space X, there exists a G-map from
X to EG, and any two G-maps from X to EG are G-homotopic. For instance, the
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universal covering space EG := B̃G of BG is a model for EG when G is torsion-free;
the point pt is a model for EG when G is finite; if G is a discrete subgroup of an almost
connected Lie group Γ with maximal compact subgroup K, then Γ/K is a model for
EG. Suppose further given a separable G-C∗-algebra A. Then, there is a suitable
G-equivariant K-homology group KG

∗ (EG;A) and a specific group homomorphism,
called the Baum-Connes assembly map with coefficients in A,

µG,A
∗ : KG

∗ (EG;A) −→ Ktop
∗ (A ⋊r G) ,

where A ⋊r G is the reduced C∗-crossed product of A by G. The group G is said

to satisfy the Baum-Connes Conjecture With Coefficients if the assembly map µG,A
∗

is an isomorphism for any separable G-C∗-algebra A. If this is at least known to
be fulfilled for the C∗-algebra C with trivial G-action, then one says that G verifies
the Baum-Connes Conjecture (i.e. without mentioning coefficients). In this special
case where A = C with trivial G-action, one has A ⋊r G = C∗

r G and KG
∗ (EG;A) =

KG
∗ (EG), the G-equivariant K-homology group with G-compact supports of EG, and

the corresponding assembly map boils down to a map

µG
∗ := µG,C

∗ : KG
∗ (EG) −→ Ktop

∗ (C∗
r G) .

This is linked with the Novikov Conjecture as follows. First, since G acts properly
and freely on EG, and since BG ≃ G\EG, there is a canonical isomorphism

K∗(BG) ∼= KG
∗ (EG) .

Secondly, since tautologically any proper and free G-action is proper, there is a G-map
EG −→ EG, unique up to G-homotopy, and the induced map

KG
∗ (EG) −→ KG

∗ (EG)

is known to be rationally injective. Thirdly, the Novikov assembly map νG
∗ coincides

with the composite map

K∗(BG) ∼= KG
∗ (EG) −→ KG

∗ (EG)
µG

∗−→ Ktop
∗ (C∗

r G) .

It follows that if the group G satisfies the Baum-Connes Conjecture (in particular, if
G verifies the Baum-Connes Conjecture With Coefficients), then the Strong Novikov
Conjecture holds for G, and hence also the original Novikov Conjecture on higher
signatures. If the group G is torsion free, then as we mentionned before, we can
choose EG as a model for the universal example for proper action and thus, up to
the identification between K∗(BG) and KG

∗ (EG), the Baum-Connes and the Novikov
assembly maps coincides. At this point, we shall take the opportunity to explain why
these assembly maps have to be valued in the reduced C∗-algebra of G rather than
in the maximal one if we expect surjectivity for the assembly map.

The trivial representation of G induces a morphism π : C∗G → C and if we denote
by e the neutral element of G, the map

CG ∋ λg1
g1 + · · · + λgk

gk 7→ λe

extends to a trace tr : C∗G → C factorizing through C∗
r G. According to Atiyah’s

index theorem for coverings [3] on one side and to the naturality of the assembly
map [42] on the other side, the morphisms induced on K-theory by π and tr should

coincide on the range of Mǐsčenko morphism ν̃G
∗ : K∗(BG) −→ Ktop

∗ (C∗G). In conse-
quence, if G is torsion free and has Kazhdan property (T ), then the class in K-theory
of the projector p of C∗G corresponding to the projection on invariants can not be
in the range of Mǐsčenko morphism, since π(p) = 1 and tr(p) = 0. In contrast, we
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shall see in section 3.1 that, up to Thurston hyperbolization conjecture, the natu-

ral map Ktop
∗ (C∗G)

λG

∗−→ Ktop
∗ (C∗

r G) is an isomorphism when G is the fundamental
group of a compact orientable 3-manifold. As general references for the Baum-Connes
Conjecture and related topics, let us mention [5, 6, 42, 52].

In this paper, we observe that so much is known about the structure of 3-manifolds
and that the Baum-Connes Conjecture With Coefficients has been proved for such
a large class of groups, that this enables to establish the Baum-Connes Conjecture
With Coefficients for the fundamental group of any compact orientable 3-manifold
“with a piecewise geometric structure”, more precisely to which the famous Thurston
Geometrization Conjecture applies, namely :

Theorem 1.1. Suppose that the Thurston Hyperbolization Conjecture is true, as for
example if the Thurston Geometrization Conjecture holds. Let G be the fundamental
group of an orientable 3-manifold, compact or not, with or without boundary. Then,
the Baum-Connes Conjecture With Coefficients holds for G. In particular, the group
G satisfies the Novikov Conjecture, i.e. higher signatures coming from G are oriented
homotopy invariants for closed connected oriented manifolds of arbitrary dimension.

Remark 1.2. In Section 2, more details will be given about the Thurston Geometriza-
tion Conjecture and the Thurston Hyperbolization Conjecture (see Remark 2.1 be-
low).

Remark 1.3. By recent outstanding results of Perelman, one might expect to have,
in a near future, a complete proof of the Thurston Geometrization Conjecture, and
hence of the Thurston Hyperbolization Conjecture.

In fact, in the compact case, we have a more precise result, independently of the
Thurston Hyperbolization Conjecture :

Theorem 1.4. Let G be the fundamental group of a compact orientable 3-manifold
M (possibly with boundary), and consider a two-stage decomposition of the capped-off

manifold M̂ of M , firstly, into Kneser’s prime decomposition, secondly, for each
occurring closed irreducible piece with infinite fundamental group, a Jaco-Shalen-
Johannson torus decomposition. Now, consider only those pieces obtained after the
second stage and which are closed, non-Haken, non-Seifert, non-hyperbolizable and
whose fundamental group is infinite. Suppose that the fundamental groups of these
very pieces satisfy the Baum-Connes Conjecture with Coefficients. Then, G verifies
the Baum-Connes Conjecture with Coefficients and the Novikov Conjecture.

Remark 1.5. Let M be a compact 3-manifold. The capped-off manifold M̂ of M is
obtained from M by capping off with a compact 3-ball each boundary component

of M that is diffeomorphic to a 2-sphere, getting this way a compact 3-manifold M̂ ,

see [19, p. 25]. Note that M̂ is orientable whenever M is orientable, and that the

inclusion M →֒ M̂ induces an isomorphism on fundamental groups.

Remark 1.6. In Section 2, we will explain Kneser’s and Jaco-Shalen-Johannson’s
decompositions. We will also recall the notions of prime, of irreducible, of Haken, of
Seifert, and of hyperbolizable 3-manifolds. In particular we will see that the ”exotic
pieces” in Theorem 1.4 only appear when no further decomposition is possible after
Kneser’s.

Remark 1.7. In particular, all “self higher signatures” are oriented homotopy invari-
ants for closed connected oriented 3-manifolds to which Theorems 1.1 and 1.4 apply.
At this point, it is worth mentioning that all irreducible compact connected orientable
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3-manifolds with infinite fundamental group are aspherical, as follows from the Sphere
Theorem, see [48, p. 483] and [19, Thm. 4.3].

In the non-orientable compact case, we have the following result.

Theorem 1.8. Let M be a compact non-orientable 3-manifold, and let G be its fun-
damental group. Let M1, . . . ,Mp be the irreducible pieces in Kneser’s (normal) prime
decomposition. Suppose, for each i = 1, . . . , p, that one of the following properties
is fulfilled : either Mi is orientable and satisfies the hypotheses of Theorem 1.4 (as
for example if the Thurston Hyperbolization Conjecture is true); or π1(Mi) is infinite
cyclic; or Mi is non-orientable and without 2-torsion in its fundamental group. Then,
the group G satisfies the Baum-Connes Conjecture With Coefficients and the Novikov
Conjecture.

Remark 1.9. In Section 2, we will explain when a Kneser prime decomposition is
called normal (a property guaranteeing its uniqueness).

Remark 1.10. The Baum-Connes Conjecture With Coefficients, hence the Novikov
Conjecture, is known for the fundamental group of any manifold of dimension ≤ 2.
So, what is done here, is extending this result up to dimension 3 in the orientable case,
modulo the Thurston Hyperbolization Conjecture. Since, for each n ≥ 4, every finitely
presentable group is isomorphic to the fundamental group of some closed connected
orientable (smooth) n-manifold (see for instance [13, 38] or [28]), a further extension
one dimension up should certainly be incomparably more difficult and seems to be,
by far, out of scope at the time of writing. At this point, we mention that by an
unpublished result of Connes, Gromov and Moscovici (see however [18]), for closed
connected oriented manifolds of arbitrary dimension, all higher signatures coming
from a discrete group G and corresponding to a cohomology class lying in the subring
of H∗(BG; Q) generated by the classes of degree ≤ 2 are oriented homotopy invariants;
a complete proof is now available in [39, Cor. 0.3].

Remark 1.11. In Theorems 1.1, 1.4 and 1.8, one does not need to suppose that the con-
sidered 3-manifolds are smooth manifolds, but merely topological manifolds. Indeed,
as is well-known, any (second countable Hausdorff) topological manifold of dimension
≤ 3 admits a smooth structure, which is furthermore unique.

Remark 1.12. If it would be known that any countable discrete group G sitting in a
short exact sequence of groups

1 −→ H −→ G −→ Z/2 −→ 1 ,

with H satisfying the Baum-Connes Conjecture With Coefficients, verifies itself the
Baum-Connes Conjecture With Coefficients, then one could drop the condition “ori-
entable” in Theorems 1.1 and 1.4 (one could also drop the first occurring assumption
of orientability in Theorem 1.13 below). Indeed, there is no restriction in assuming
connectedness of the considered 3-manifold M (which is compact for 1.4), and in case
M is non-orientable, Theorems 1.1 or 1.4 hold for the orientation covering M of M ,
which is a regular double covering of M (and is itself compact for 1.4). One has the
fibre sequence S0 → M → M and therefore a short exact sequence of groups

1 −→ π1(M) −→ π1(M) −→ Z/2 −→ 1 .

Recall that for a torsion-free discrete group G, the Kaplansky/Idempotent Con-
jecture (resp. the Kadison-Kaplansky Conjecture) states that the algebra CG (resp.
C∗

r G) contains no non-trivial idempotent, i.e. any element ε satisfying ε = ε2 is equal
to 0 or 1.
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Theorem 1.13. Suppose that the Thurston Hyperbolization Conjecture is true. Then,
Kaplansky’s Idempotent Conjecture and the Kadison-Kaplansky Conjecture hold for
any torsion-free fundamental group of an orientable 3-manifold, as for example for
the fundamental group of any compact orientable 3-manifold whose prime factors in
Kneser’s prime decomposition all have an infinite fundamental group.

Remark 1.14. Of course, there is a analogous statement to Theorem 1.13 for all
fundamental groups to which Theorem 1.4 applies, provided they are torsion-free.

Notice to the reader : Section 2 reflects the origin of this paper : K-theorists meet-
ing low-dimensional topologists and learning the ones from the others their subjects.
therefore we shall enter in some detail of the proofs in the hope that readers from one
area will find it usefull as an introdution to the other area. In contrast Section 3 is
much more K-theoretical in nature and uses more powerfull techniques proper to this
area.

During the final stage of writing of the present paper our good friend and col-
legue Michel Matthey tragically died. We dedicate this paper to his memory, to his
enthousiasm for sharing his ideas and his love for mathematics.

2. The proofs

We give here the proofs of Theorems 1.1, 1.4, 1.8 and 1.13. But first we present
a recollection of standard results from the topology and geometry of 3-manifolds. As
general references on the subject, let us cite [19, 48], and also [2, 10, 31, 50].

A 3-manifold M is called prime if it admits no non-trivial connected sum decom-
position, i.e. if M ≈ M ′#M ′′, then at least one of M ′ and M ′′ is diffeomorphic to S3.
The manifold M is said to be irreducible (in the sense of Hempel [19, p. 28]) if every
embedded 2-sphere in M bounds an embedded compact 3-ball. By [19, Lem. 3.13] a
prime 3-manifold is either an S2-bundle over S1 or irreducible. In the later case, the
homotopy exact sequence of the fiber sequence S2 → M → S1 yields that π1(M) is
infinite cyclic; if M is orientable, then it is diffeomorphic to S1 × S2.

To begin our discussion of the two-stage decomposition, we let M be a compact
connected 3-manifold (but not necessarily closed, i.e. the boundary ∂M may be non-
empty). By the Kneser Prime Decomposition Theorem (see [35, 40], or [19, Thm. 3.15]
where the closedness and the orientability of M are avoided, see pp. 24 & 32 therein),
one can decompose M as a finite connected sum of compact connected 3-manifolds,
say

M ≈ M1#M2# . . .#Mq ,

with each Mi prime; we can (and will) further suppose that the decomposition is
normal in the sense of [19, p. 34], i.e. some Mi is diffeomorphic to S1 × S2 if and
only if M is orientable. In this case, the decomposition is unique (up to reordering
and diffeomorphism), and, under the extra assumption that M is orientable, each Mi

is orientable as well, see [19, Thm. 3.21] (see also [40] for the orientable case). Of
course, by the van Kampen Theorem, the fundamental group of M decomposes as a
finite free product

π1(M) ∼= π1(M1) ∗ π1(M2) ∗ . . . ∗ π1(Mq) .

Recall that each Mi is either an S2-bundle over S1, or irreducible.

Now, we let M be a compact connected 3-manifold. In the sequel, by a sur-
face Σ, we mean a compact connected 2-dimensional manifold (with possibly non-
empty boundary ∂Σ). Consider a surface Σ that is either properly embedded in M ,
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i.e. ∂Σ = Σ ∩ ∂M (transverse intersection), or embedded in ∂M ; in case Σ ⊆ ∂M
(so that Σ is closed), note that ‘sliding’ Σ along a small collar neighbourhood inside
M , which is a trivial half-line bundle, we get an isotopic properly embedded surface
in M . The surface Σ is called 2-sided if it is embedded in ∂M , or if it admits a
tubular neighbourhood in M which is a trivial line bundle. The surface Σ is said
to be incompressible inside M if it is 2-sided, not diffeomorphic to the 2-sphere nor
to a disk, and if it is π1-injective, in the sense that the inclusion Σ →֒ M induces
a monomorphism π1(Σ) →֒ π1(M). A 3-manifold M is called P 2-irreducible if it is
irreducible and if it contains no embedded 2-sided real projective plane.

A compact connected 3-manifold M is called Haken if it is P 2-irreducible and
contains a properly embedded 2-sided incompressible surface (M is supposed to be
orientable, this amounts to require M to be irreducible and to contain a properly
embedded incompressible orientable surface). By [19, Lem. 6.7 (i)], if the compact
connected 3-manifold M is orientable and if ∂M is non-empty and does not only
consist of a collection of 2-spheres, then the group H1(M ; Z) is infinite, and in this
case, [19, Lem. 6.6] shows that M is Haken provided it is irreducible (the surface F
constructed in the proof therein is orientable). A compact connected 3-manifold M
is called torus-irreducible (or geometrically atoroidal) if every incompressible 2-torus
in M is isotopic to a boundary component of M .

For the general definition, that we will not need, of a Seifert 3-manifold, we refer
to [48, pp. 428 &429]; what we will however need is the following characterization due
to Epstein [16] in the compact case : a compact 3-manifold M is Seifert if it admits
a foliation by circles. By [26, Thm. 9.2] (see also [31, Thm. 1.38]), a deep result, a
prime compact 3-manifold M with infinite fundamental group π1(M) is Seifert if and
only if π1(M) contains an infinite cyclic normal subgroup, in which case, there exists
a short exact sequence of groups

1 −→ Z −→ π1(M)
p

−→ Γ −→ 1 ,

with Γ standing for a discrete subgroup of the isometry group of either S2 (the
‘round’ 2-sphere), of R2 (the flat Euclidean plane), or of H2 (the hyperbolic plane).
This means that Γ is a discrete subgroup of one of the following three Lie groups
(each having exactly two connected components) :

O(3) , R2 ⋊ O(2) and SO(2, 1) .

It will be important for us to note that for any finite subgroup H of Γ, its pre-image
p−1(H) in π1(M) sits in a short exact sequence

1 −→ Z −→ p−1(H) −→ H −→ 1 ,

and is therefore virtually cyclic, in the sense that it contains a cyclic subgroup (here,
infinite) of finite index.

Next, we include a short algebraic incursion. A graph of groups G is a non-empty
graph GG = (EG , VG) (possibly with loops, i.e. with edges incident to only one ver-
tex, and simple, i.e. with at most one loop per vertex and at most one edge joining
two distinct vertices) equipped with two families of groups {G′

e}e∈EG
and {Gv}v∈VG

parameterized by the edge set EG and the vertex set VG , respectively, and a fam-
ily {ιe,v : G′

e →֒ Gv | v ∈ e}e∈EG
of injective group homomorphisms, one for each pair

(e, v) ∈ EG×VG consisting of an edge and an adjacent vertex; the groups in {G′
e}e∈EG

and in {Gv}v∈VG
are called the edge-groups and the vertex-groups of G, respectively.

If the graph of groups G is finite and connected (i.e. if GG is a finite connected graph),
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its fundamental group π1(G) is a group defined, up to isomorphism, by a finite induc-
tion process mixing the groups Gv and G′

e, using the incidence relation of GG and the
maps ιe,v, via amalgamated free products and HNN-extensions (see [49, Section 5] for
details). The group π1(G) acts simplicially on the graph GG , with, up to isomorphism,
vertex-stabilizers {Gv}v∈VG

and edge-stabilizers {G′
e}e∈EG

.

After Kneser’s decomposition (or “sphere decomposition”), there is a second de-
composition that we will need, namely the so-called JSJ-decomposition (or “torus
decomposition”), named after Jaco-Shalen [25] and Johannson [27]. So, we let M be
an irreducible closed connected orientable 3-manifold. Then, there is a minimal finite
family {Tj}j∈J (possibly empty) of embedded disjoint incompressible 2-sided closed
2-tori that separates M into a finite set {Mk}k∈K of irreducible compact connected
orientable 3-manifolds, each of which is either Seifert or torus-irreducible, possibly
both. (Such a family is, up to isotopy inside M , unique; the finite index-sets J and
K verify |K| = |J | + 1.) Let us now describe the fundamental group of M using a
graph of groups. It turns out that there is a graph of groups G = GM with EG = J
and VG = K, and, for j ∈ J and k ∈ K, G′

j = π1(Tj) ∼= Z2, Gk = π1(Mk) and

ιj,k = π1

(
incl : Tj →֒ Mk

)
, and with the incidence relation dictated by the combina-

torial configuration of the separating family of tori; moreover (and most importantly),
there is an isomorphism π1(M) ∼= π1(G). Indeed, this last property follows inductively
from the van Kampen Theorem.

We also recall that an n-manifold M , possibly with non-empty boundary, is called
hyperbolizable if its geometric interior Mr∂M admits a complete Riemannian metric
for which the sectional curvature is constant with value −1. In this case, π1(M) ∼=
π1(M r∂M) is isomorphic to a discrete subgroup of the Lie group SO(n, 1) (and not
necessarily of its identity component SO(n, 1)◦).

Remark 2.1. Suppose given a closed connected orientable 3-manifold M , and apply
to it the following two-stage decomposition (without necessity of first capping M off).
First perform Kneser’s prime decomposition; this produces finitely many pieces which
are either S1 × S2 or closed irreducible manifolds. To each of the latter ones apply
the JSJ-decomposition. The Thurston Geometrization Conjecture is the statement
that the final pieces all have a (necessary unique) geometric structure among a list of
eight possible ones (in a precise and specific sense, see [48, 50]). It might well happen
that one has no decomposition to perform, for instance if one starts with S3. The
Thurston Geometrization Conjecture is known in all but two cases :

(a) for closed irreducible manifolds with finite fundamental group; this special
case is known as the Thurston Elliptization Conjecture (which is equivalent
to the combination of the Poincaré Conjecture and of the Spherical Space
Form Conjecture);

(b) for closed, irreducible, non-Haken and non-Seifert manifolds with infinite fun-
damental group; in this case the manifold should be hyperbolizable : this is
the content of the Thurston Hyperbolization Conjecture.

There is also a more general version of the Thurston Geometrization Conjecture (that
we will not need and which is more technical to state), namely for connected orientable
3-manifolds that are compact (indeed, not necessarily closed). It is now known to hold
in all cases, except for the very same two ‘closed cases’ (a) and (b).

Notice that in these cases no non-trivial decomposition is possible along a sub-
manifold of codimension 1. In case (a) because the fundamental group is too small
for the manifold to contain an incompressible sub-surface of positive genus, in case
(b) because of the ”non-Haken” assumption.
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For the proof of Theorem 1.1, we will also need the following result.

Proposition 2.2. Let M be a 3-manifold. Then, there exists a family {Mn}n∈N

of compact connected 3-manifolds and a family {fn : Mn → M}n∈N of smooth im-
mersions, such that each immersion fn induces an injective group homomorphism
π1(Mn) →֒ π1(M), and such that the fundamental group of M is the union of (the
images of) the fundamental groups of the members of the family, i.e.

π1(M) =
⋃

n∈N

π1(Mn) .

Moreover, if M is orientable, then one can further require the Mn’s to be orientable.

Proof. First, the group π1(M) being countable, we choose a sequence (gn)n∈N of
elements of π1(M) (possibly with repetitions) such that the set {gn}n∈N generates
π1(M). For each n ∈ N, let Gn := 〈g1, . . . , gn〉 be the subgroup of π1(M) generated
by g1, . . . , gn. Since Gn is finitely generated, by [19, Thm. 8.2], it is even finitely
presented. Therefore, applying [19, Thm. 8.1] (a result due to Jaco [24]), we can
find a compact connected 3-manifold Mn and an immersion fn : Mn → M such that
(fn)∗ : π1(Mn) →֒ π1(M) is injective, as indicated, with image Gn (note that one
can indeed suppose each Mn connected). The equality π1(M) =

⋃
n∈N

π1(Mn) is
now obvious. Finally, for each n, Mn being of the same dimension as M , and an
immersion being a local homeomorphism, [14, Ex. 3 of VIII.2.22] applies to fn to
show orientability of Mn in case M itself is orientable (note that [14, Prop. VIII.2.19]
allows to incorporate successfully the case where Mn and/or M have a boundary). �

Finally, we are in position to pass to the proofs of our theorems (in disorder).

Proof of Theorem 1.4. Clearly, for the proofs, we can suppose that the compact
orientable 3-manifold M we consider is connected, and that M is capped-off, i.e.

that M = M̂ . Let G be the fundamental group of M . From the Kneser Prime
Decomposition Theorem, we have deduced a finite free product decomposition

G ∼= π1(M1) ∗ π1(M2) ∗ . . . ∗ π1(Mq) .

Since the Baum-Connes Conjecture With Coefficients is stable under forming finite
free products (see [43, 44]), if each π1(Mi) verifies this conjecture, then the same holds
for G. Since π1(S

1 × S2) is infinite cyclic, and since the Baum-Connes Conjecture
With Coefficients holds for the group Z (in fact, for any countable amenable group,
including all abelian groups, see [21, 22]), we can now suppose further that M is

irreducible. As we have explained, if M = M̂ is not closed, i.e. if ∂M 6= ∅, then
M is Haken. In this case, by [44], or [8], or [51], its fundamental group satisfies the
Baum-Connes Conjecture With Coefficients (the proof is based on the fact that a
Haken manifold admits a so-called hierarchy in the sense of [19, p. 140] and on the
results on graphs of groups we have recalled earlier). So, we are reduced to the case
where M is an irreducible closed connected orientable 3-manifold.

Now, we apply to M a JSJ-decomposition. Earlier, in such a situation, π1(M)
has been expressed using a certain graph of groups. By [44] again, the Baum-Connes
Conjecture With Coefficients (and also the plain Baum-Connes Conjecture, see [42,
Thm. 5.13 in Part I]) is stable under taking finite connected graphs of groups, i.e. if a
finite connected graph of groups G has all its edge-groups {G′

e}e∈EG
and vertex-groups

{Gv}v∈VG
satisfying the Baum-Connes Conjecture (resp. With Coefficients), then so

does its fundamental group π1(G). As, in our case, the edge-groups are isomorphic
to the abelian group Z2, the Baum-Connes Conjecture With Coefficients holds for
them. So, it remains to deal with the vertex-groups. These are fundamental groups
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of compact connected 3-manifolds, each of which is either Seifert or torus-irreducible,
possibly both. We distinguish three cases for each of these pieces, that we call, say,
N .

(1) If N is Seifert, then, as we have seen, π1(N) sits in a short exact sequence

1 −→ Z −→ π1(N)
p

−→ Γ −→ 1 ,

with Γ a discrete subgroup of one of the Lie groups O(3), R2 ⋊ O(2) and SO(2, 1),
which are almost connected, i.e. they have finitely many connected components (here,
exactly 2). Now, consider the following facts concerning Γ :

(i) If Γ is a discrete subgroup of the compact group O(3), then Γ is finite and
thus satisfies the Baum-Connes Conjecture With Coefficients (see [29]).

(ii) The so-called Kasparov γ-element is equal to one for both Lie groups SO(2, 1)
and R2 ⋊O(2). Since any discrete subgroup of an almost connected Lie group
with γ = 1 satisfies the Baum-Connes Conjecture With Coefficients, so does
Γ. Given n ≥ 2, for SO(n, 1), the equality γ = 1 is established in [32], and for
Rn ⋊ O(n), the γ-element, being invariant under group retractions (see [32]),
is the image of the γ-element of O(n), which, by a computation carried out
in [4], is equal to one as well. It could also be said that if Γ is a discrete
subgroup of SO(2, 1) or of R2 ⋊ O(2), then Γ has the Haagerup property (see
[11, Thm. 4.0.1 & Prop. 6.1.5] for Γ ⊂ SO(2, 1), and [9] for Γ ⊂ R2 ⋊ O(2), in
which case Γ is amenable) and then conclude by [21, 22].

We have also seen that for any finite subgroup H of Γ, the pre-image p−1(H) inside
π1(N) is virtually cyclic and therefore amenable (since the class of discrete amenable
groups contains abelian groups and finite groups, and is stable under taking group
extensions). By [21, 22] again, each p−1(H) satisfies the Baum-Connes Conjecture
With Coefficients; by [45], this is enough to guarantee that π1(N) itself satisfies this
conjecture. This is it for case (1).

(2) If N has finite fundamental group (hence N is non-Seifert and, in fact, torus-
irreducible), then the Baum-Connes Conjecture With Coefficients is known for the
finite group π1(N), as we have already said (see [29]).

(3) If N is non-Seifert with infinite fundamental group (and N is then torus-
irreducible), then, we distinguish four non mutually excluding sub-cases.

(i) If N is Haken, then, by [44], or [8], or [51], its fundamental group satisfies the
Baum-Connes Conjecture With Coefficients.

(ii) If N is hyperbolizable, then, as recalled earlier, π1(N) is a discrete subgroup
of SO(3, 1). As seen in (1) (ii) above, such a discrete subgroup satisfies the
Baum-Connes Conjecture With Coefficients.

(iii) If N (which is non-Seifert and has infinite fundamental group) is neither
Haken, nor hyperbolizable, then our technical hypothesis in the statement of
the theorem precisely guarantees that π1(N) also satisfies this conjecture.

This completes our discussion of case (3).

We conclude, for each considered piece N obtained after the JSJ-decomposition,
that, in any of these three events (1)–(3), the group π1(N) satisfies the Baum-Connes
Conjecture With Coefficients, and consequently that so does π1(M). �

Proof of Theorem 1.1. By [7, Thm. 1.1], if a countable discrete group G is the
union G =

⋃
n∈N

Gn of a collection of subgroups all satisfying the Baum-Connes
Conjecture With Coefficients, then so does G. Since the fundamental group of a
compact manifold is countable (at most), combining this with Proposition 2.2, the
result follows directly from Theorem 1.4; indeed, as we have recalled, the Thurston
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Geometrization Conjecture implies the Thurston Hyperbolization Conjecture, which
precisely predicts that each piece obtained exactly after the second stage of the two-
stage decomposition of the statement and which is non-Seifert, non-Haken and has
infinite fundamental group is hyperbolizable. �

Proof of Theorem 1.8. We may suppose that M is connected and capped-off, so that

M = M̂ . Using Kneser’s (normal) prime decomposition, we can write M as

M ≈ M1# . . .#Mp#Mp+1# . . .#Mq

with M1, . . . ,Mq denoting prime compact connected 3-manifolds (possibly non-orien-
table), where M1, . . . ,Mp are irreducible and Mp+1, . . . ,Mq are prime but not irre-
ducible. Therefore, Mp+1, . . . ,Mq are S2-bundles over S1 and have consequently an
infinite cyclic fundamental group, and hence verifying the Baum-Connes Conjecture
With Coefficients. Now, fix i ∈ {1, . . . , p}. By assumption, either Mi is orientable
and Theorem 1.4 applies to it to show that it satisfies the Baum-Connes Conjecture
With Coefficients, or N := Mi is an irreducible, non-orientable, compact, connected
and capped-off 3-manifold having either infinite cyclic fundamental group, or having
no 2-torsion in its fundamental group and with each component of ∂M incompress-
ible in M (possibly with ∂M = ∅). Let us now deal with N . If π1(N) ∼= Z then,
once again, N satisfies the Baum-Connes Conjecture. So, we suppose that π1(N)
is 2-torsion-free, but not infinite cyclic. By Kneser’s Conjecture on free products,
proved for instance in [19, Thm. 7.1], since N is irreducible, its fundamental group
π1(N) is indecomposable with respect to free products. This property, together with
the fact that π1(N) is not infinite cyclic and does not contain 2-torsion, implies that
[19, Lem. 10.1] applies to N , which is capped-off. The conclusion of this result is
that N is P 2-irreducible (in the notation of [19, Lem. 10.1], since N is irreducible
and non-orientable, we can take N as P(N) and the occurring homotopy sphere is
diffeomorphic to S3). Combining [19, Lem. 6.7 (ii) &Lem. 6.6] for the P 2-irreducible
manifold N , we obtain, inside N , a properly embedded, 2-sided incompressible sur-
face Σ, which is non-separating. (In particular, N is Haken.) Therefore, cutting N
along Σ, we get a compact connected P 2-irreducible manifold N ′ with non-empty
boundary. Invoking [19, Thm. 13.3], we obtain a hierarchy for N ′ (see details in [19,
p. 140]). Consequently, the argument given in [44] proves that the group π1(N

′)
satisfies the Baum-Connes Conjecture With Coefficients. Now, there is an isomor-
phism π1(N) ∼= π1(N

′)∗π1(Σ), i.e. π1(N) is an HNN-extension with base π1(N
′) and

over the surface group π1(Σ). Fundamental groups of closed surfaces (orientable or
not) are one-relator groups, so that, by [44], they verify the Baum-Connes Conjec-
ture With Coefficients. By [44] once again, this conjecture is stable under forming
HNN-extensions, so that the conjecture holds for π1(N) too. In total, we see that
each “free factor” in the initial decomposition

π1(M) ∼= π1(M1) ∗ . . . ∗ π1(Mp) ∗ π1(Mp+1) ∗ . . . ∗ π1(Mq)

satisfies the conjecture, hence also their finite free product π1(M), still by [44]. �

Proof of Theorem 1.13. It is standard that surjectivity of the Baum-Connes assembly
map (in degree 0) for a torsion-free discrete group G implies the Kadison-Kaplansky
Conjecture for G, and hence Kaplansky’s Idempotent Conjecture for G since CG is a
sub-algebra of C∗

r G (see for instance [42, Lem. 7.2 in Part I] or [47, Section 5] for a
proof). So, the first part of Theorem 1.13 follows directly from Theorem 1.1. For the
second part, suppose that G = π1(M), where M is a connected orientable 3-manifold
decomposed as

M ≈ M1#M2# . . .#Mq ,



12 MICHEL MATTHEY, HERVÉ OYONO-OYONO AND WOLFGANG PITSCH

with each Mi a compact connected orientable prime 3-manifold with, by assump-
tion, infinite fundamental group. By [19, Thm. 9.8] (see also p. 170 therein), each
fundamental group π1(Mi) is torsion-free, hence also the finite free product G ∼=
π1(M1) ∗ π1(M2) ∗ . . . ∗ π1(Mq). Consequently, the first part of the theorem applies
to G. �

3. The class C3

As we have seen in the proof of Theorem 1.4, the JSJ decomposition of a manifold
presents its fundamental group naturally as a (finite) graph of groups. The key point
of the proof was then to show that the Baum-Connes conjecture for the fundamental
group is inherited from the vertex and edge groups. This leads naturally to consider
a class of groups that is ”hereditary with respect to actions on oriented trees with
finite fundamental domain”, i.e. whenever a group, say G, has such an action and
moreover the stabilizers of the vertices and of the edges belong to the class then so
does the group G.

Definition 3.1. The class C3 is the smallest class of groups that is

i) stable by isomorphism;
ii) contains all finite groups;
iii) contains all fundamental groups of compact Seifert manifolds;
iv) contains all cocompact torsion free subgroups of isometries of the hyperbolic

3-space H3;
v) is hereditary with respect to actions on oriented trees with finite fundamental

domain.

According to the results of the previous section, if the Thurston hyperbolization
conjecture holds, then the class C3 contains all fundamental groups of compact ori-
ented 3-manifolds. Moreover by the proof of Theorem 1.1, the elements of C3 satisfy
the Baum-Connes conjecture. We prove in this section some further properties for
groups in this class, namely property (BC’) and exactness.

In section 1, when we defined the Baum-Connes assembly map, we pointed out
the fact that this morphism should be valued in the K-theory of the reduced C∗-
algebra (or more generally in the reduced crossed product algebra), and that Kazhdan
property (T) is an obstruction for surjectivity of Mǐsčenko morphism. We shall see
that this obstruction do not occure for a group in the class C3 since these groups are
K-amenable [12] i.e the morphism λG : C∗(G) → C∗

r (G) induced an equivalence in
KK(C∗(G), C∗

r (G)). This K-amenability property in particular implies for a discrete
group G that

λG
∗ : Ktop

∗ (C∗
r (G)) → Ktop

∗ (C∗(G))

is an isomorphism and more generally that the K-theory of reduced and maximal
crossed products algebras should be isomorphic. In consequence, since the only K-
amenable groups having Kazhdan property (T) are finite group, we recover in this
way the following result of [17]: if the Thurston hyperbolization conjecture holds, then
the fundamental groups of a compact oriented 3-manifolds has Kazhdan property (T)
if and only if it is finite.

3.1. Property (BC’). Let G be a discrete group and let X be a locally compact
space equipped with a proper G-action. Recall that a G ⋉ X-algebra is a C∗-algebra
equipped with an action of G by automorphisms and with an G-equivariant morphism
Φ : C0(X) −→ Z(M(A)) (Z(M(A)) being the center of the multipliers algebra of A)
such that Φ(C0(X)) · A is dense in A. A G-C∗-algebra is call proper if there exists a
G-proper action on a locally compact space X such that A is a G ⋉ X-algebra.
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Definition 3.2. [51] A group G verifies property (BC’) if it is contained in a discrete
group G′ such that there exists a proper G′-compact space X, a G′ ⋉ X-algebra A
and elements α ∈ KKG′

(C ,A) and β ∈ KKG′

(A , C) such that α ⊗A β = 1 in

KKG′

(C , C).

Theorem 3.3. [51] If a group G satifies property (BC’), then

(1) G satisfies the Baum-Connes conjecture;
(2) G is K-amenable.
(3) G satisfies the Künneth formula and the Universal Coefficients Theorem.

Theorem 3.4. [51] Property (BC’) is hereditary under finite fundamental domain
action on trees.

Since the isometry group of H3 has a γ-element in the sense of Kasparov equal
to 1 [32], every torsion free cocompact discrete subgroup of isometries of H3 satisfies
property (BC). Moreover, as we shall see later in subsection 3.3, fundamental groups
of prime compact Seifert manifolds have property (BC’). Thus we obtain:

Theorem 3.5. Every group in the class C3 satisfies the property (BC’) and in par-
ticular, if the Thurston hyperbolization conjecture holds, then fundamental groups of
compact oriented manifolds have property (BC’).

It is a well known that property (BC’) for discrete groups implies the so-called
Bost Conjecture: Let G be a discrete group, then the inclusion i : ℓ1(G) →֒ C∗

r G

induces an isomorphism i∗ : Ktop
∗ (ℓ1(G))

∼=
−→ Ktop

∗ (C∗
r G). We give for the benefit of

the reader a proof of this fact. If A is a G-C∗-algebra, we define

ℓ1(G,A) := {f : G → A ;
∑

g∈G

‖f(g)‖ < +∞} ,

equipped with the convolution product f ∗h (g) =
∑

g′∈G f(g′)g′(h(g′−1g)) and with

the norm ‖f‖ =
∑

g∈G ‖f(g)‖. Then ℓ1(G,A) is a dense subalgebra of the reduced

crossed product A ⋊red G. The following lemma is proved in [36, Section 1. 7]

Lemma 3.6. If A is a proper G- C∗-algebra, the inclusion i : ℓ1(G,A)→֒A ⋊red G

induces an isomorphism i∗ : Ktop
∗ (ℓ1(G,A))

∼=
−→ Ktop

∗ (A ⋊red G).

The proof of the Bost conjecture for groups with property (BC’) is now a standard
argument using the γ-element trick. Let X be a proper G-space, let A be a G ⋉ X-
algebra and let α ∈ KKG(C,A) and β ∈ KKG(A, C) be elements such that α⊗Aβ =
1 in KKG(C, C). By [36, Section 1. 7], the following diagram is commutative

Ktop
∗ (ℓ1(G)) −−−−→ Ktop

∗ (ℓ1(G,A)) −−−−→ Ktop
∗ (ℓ1(G))

y
y

y

Ktop
∗ (C∗

r G) −−−−→ Ktop
∗ (A ⋊red G) −−−−→ Ktop

∗ (C∗
r G),

where

• the vertical arrows are induced by the inclusions

ℓ1(G)
�

�

//C∗
r G

and

ℓ1(G,A)
�

�

//A ⋊red G;

• the bottom arrows are the right Kasparov products by elements induced by
α and β [33];
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• the top arrows are induced by elements of Lafforgue bivariant K-theory for
Banach algebras coresponding to α and β [36].

Since α ⊗A β = 1, the horizontal compositions are the identity [33, 36] and there-

fore the morphism Ktop
∗ (ℓ1(G))−→Ktop

∗ (C∗
r G) is a direct factor of the morphism

Ktop
∗ (ℓ1(G,A))−→Ktop

∗ (A⋊red G) which is an isomorphism by lemma 3.6. This guar-

antees that Ktop
∗ (ℓ1(G))−→Ktop

∗ (C∗
r G) is an isomorphism.

3.2. Exactness. In this subsection, all C∗-algebras are assumed to be separable.

Definition 3.7. A discrete group G is called exact if every short exact sequence
0 −→ J −→ A −→ A/J −→ 0 of G- C∗-algebras induces a short exact sequence for
reduced crossed-products 0 −→ J ⋊r G −→ A ⋊r G −→ (A/J ) ⋊r G −→ 0.

Let us check that C3-class groups are exact. Exactness enjoys the following stability
properties:

Theorem 3.8. [15] Exactness is stable by amalgamated product for discrete groups.

HNN extensions are made out of amalgamated products and semi-direct products
by Z. Since exactness is stable under extensions [34], HNN extensions of exact groups
are exact. Hence we obtain :

Corollary 3.9. Exactness is hereditary under finite fundamental domain action on
trees.

All discrete subgroups of Lie groups with finitely many components are exact [34],
thus discrete subgroups of H3 are exact. We shall see in subsection 3.3 that funda-
mental group of prime compact Seifert manifolds are exact. Hence we have

Theorem 3.10. Every element in the class C3 is exact and in particular, if the
Thurston hyperbolization conjecture holds, then the fundamental group of a compact
oriented manifold is exact.

We end this section by quoting the characterization of exactness in terms of
amenability at infinity [1, 46].

Definition 3.11. Let G be a discrete group and let us denote by Prob(G) the set of
Borel probility on G, equipped with the weak*-topology. The group G is said to be
amenable at infinity if there is a second countable compact G-space X and a sequence
(µn)n∈N of continuous functions µn : X −→ Prob(G) such that lim

n→∞
gµn − µn = 0

for every g ∈ G.

Theorem 3.12. A discret group G is exact if and only if it is amenable at infinity

Finally, let us recall that the Baum-Connes assembly map for a group that is
amenable at infinity is split injective [20].

3.3. Fundamental groups of prime compact Seifert manifolds. As we have
seen before, if M is a prime compact Seifert manifold, then there exists a short exact
sequence of groups

1 −→ Z −→ π1(M)
p

−→ Γ −→ 1 ,

with Γ standing for a discrete subgroup of one of the following three Lie groups:

O(3) , R2 ⋊ O(2) and SO(2, 1) .

Since discrete subgroups of Lie groups with finitely many connected components are
exact and exactness is stable under extensions [34], we get that π1(M) is exact. Let us
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check now that fundamental groups of irreducible Seifert manifolds satisfies property
(BC’).

Assume first that M has no boundary. Then the universal covering space M̃ of M
admits one of these three possible geometries

(1) R3 ;
(2) H2 × R, where H2 is the hyperbolic half-space ;

(3) S̃L2(R) the universal covering space of SL2(R).

Lemma 3.13. If M is a prime compact Seifert manifold without boundary, then
π1(M) has the property (BC’).

Proof. The isometry group of any of this three geometries as γ-element in the sense

of Kasparov equal to 1 [32] (notice that S̃L2(R) is locally isomorphic to SO(3, 1)).
Since π1(M) is cocompact in the suitable isometry group, it satisfies property (BC’).

�

If M has boundary, then Γ is a (finite) free product of a finitely generated free group
and of some cyclic finite groups. Let T be the tree associated to this free product.
The action of Γ on T has finite fundamental domain and the vertices stabilizer are
either free groups or finite cyclic groups. So the group π1(M) acts through Γ on the
tree associated to this free product T with finite fundamental domain and the vertices
stabilizers are extensions of Z either by a finitely generated free group or by a finite
cyclic group. Since property (BC’) is heriditary under finite fundamental domain
action on trees, the two following lemmas show that π1(M) satisfies property (BC’).

Lemma 3.14. Let Γ be a discrete group fitting in a short exact sequence 1 −→ Z −→
Γ −→ Fn −→ 1 , where Fn denotes the free group on n generators. Then Γ satisfies
property (BC’).

Proof. The group Γ acts via Fn on its associated tree (its Cayley diagram). The
stabilizer of vertices are isomorphic to Z which satisfies property (BC’) and thus Γ
satisfies also property (BC’). �

Lemma 3.15. Let Γ be a discrete group fitting in a short exact sequence 1 −→ Z −→
Γ −→ Zn −→ 1 , where Zn is the cyclic group of order n. Then Γ satisfies property
(BC’).

Proof. The Z-valued cocycle associated to the short exact sequence 1 −→ Z −→
Γ −→ Zn −→ 1 extends to an R-valued cocycle and thefore the short exact sequence
lies in a short sequence 1 −→ R −→ G −→ Zn −→ 1 . The group G is an amenable
Lie group with finitely many connected components and thus, its γ-element in the
sense of Kasparov is equal to 1 [33]. The group Γ being cocompact in G, it satisfies
property (BC’). �
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