
HAL Id: hal-00483090
https://hal.science/hal-00483090v1

Submitted on 12 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Choco: an Open Source Java Constraint Programming
Library

Narendra Jussien, Guillaume Rochart, Xavier Lorca

To cite this version:
Narendra Jussien, Guillaume Rochart, Xavier Lorca. Choco: an Open Source Java Constraint Pro-
gramming Library. CPAIOR’08 Workshop on Open-Source Software for Integer and Contraint Pro-
gramming (OSSICP’08), 2008, Paris, France, France. pp.1-10. �hal-00483090�

https://hal.science/hal-00483090v1
https://hal.archives-ouvertes.fr

choco: an Open Source Java Constraint

Programming Library

The choco team⋆

website: choco.emn.fr
contact: choco@emn.fr

École des Mines de Nantes
LINA CNRS

4 rue Alfred Kastler – BP 20722
F-44307 Nantes Cedex 3, France

Abstract. choco is a java library for constraint satisfaction problems
(CSP) and constraint programming (CP). It is built on a event-based
propagation mechanism with backtrackable structures. choco is an open-
source software, distributed under a BSD licence and hosted by source-
forge.net. choco is mainly developped by people at École des Mines
de Nantes (France) and is financially supported by Bouygues SA and
Amadeus SA.

1 Introduction

choco originated in 1999 within the OCRE project, a French national initiative
for an open constraint solver for both teaching and research involving researchers
and practitionners from Nantes (École des Mines), Montpellier (LIRMM), Tou-
louse (INRA and ONERA) and Bouygues SA. Its first implementation was in
CLAIRE [CJL02], Yves Caseau’s language that compiled into C++. It has been
used since then as a teaching tool and the main constraint programming devel-
opping tool in the Constraint Programming research group in Nantes.

In 2003, choco went through its premiere major modification when it has
been implemented into the Java programming language. The objective was to
ensure a greater portability and to ensure an easier takeover for newcomers. As
for this time, choco really started its worldwide expansion.

In 2008, choco is being taken a step further. Thanks to the hiring of a full-
time engineer on the solver (financed by École des Mines de Nantes, Bouygues
SA and Amadeus SA), choco enters a new period of its development. As the v2
version is shipped on Sep. 10th, 2008, it offers a clear separation between the
model and the solving machinery (providing both modelling tools and innovative

⋆ The choco team is composed of people from École des Mines de Nantes (including
Narendra Jussien and Charles Prud’homme), Cork Constraint Computation Center
(including Hadrien Cambazard), Bouygues e-lab (including Guillaume Rochart) and
Amadeus SA (including François Laburthe).

solving tools), a complete refactoring improving its general performance, and a
more user-friendly API for both newcomers and experienced CP practionners.

choco v2 is an open system distributed as a sourceforge project under a
BSD license authorizing all possible usages. It is a glass box (all the sources
are provided) for teaching (illustrating and implementing all major concepts of
Constraint Programming), research (its open API allows an easy integration of
personal state-of-the-art algorithms and concepts within the solver) and problem
solving (it is now used in real-life contexts in several companies).

In a few words, choco is an efficient yet readable constraint system for re-
search and development ; choco is a readable yet efficient constraint system for
teaching.

2 choco’s general features

choco is a problem modeler and a constraint programming solver available as
a Java library. Moreover, its architecture allows the plugin of other (non CP
based) solvers.

2.1 A Problem Modeler

choco is a problem modeler able to manipulate a wide variety of variable types
(all considered here as first-class citizens):

– integer variables;
– set variables representing sets of integer values;
– real variables representing variables taking their value in an interval of floats;
– expressions representing a integer- or real-based expression using operators

such as plus, mult, minus, scalar, sum, etc.

choco ’s modeler accepts over 70 constraints (provided that the called solver
will be a CP-based solver):

– all classical arithmetical constraints (or integers or reals): equal, not equal,
less or equal, greater or equal, etc.;

– reified constraints i.e. boolean operations between (possibly reified) con-
straints;

– table constraints defining the sets of tuples that (do not) verify the intended
relation for a set of variables;

– a large set of useful classical global constraints including the alldifferent

[Rég94] constraint, the global cardinality [Rég96] constraint, the nvalue
[BHH+05] constraint, the element [BC94] constraint, the cumulative [AB93]
constraint, etc.

Moreover, choco provides access to the most recent state-of-the-art imple-
mentations of global constraints produced in Nantes, France including the tree

[BLF08] constraint and the geost [BCP+07] constraint.

Finally, the implementation of the regular [Pes04] and cost-regular [DPR06]
constraints provide an automatic1 access to all global constraints whose checker
is either a deterministic finite automaton or a DFA with (array of) counters as
described in the Global Constraint Catalog [BCDP07].

2.2 A Constraint Programming solver

choco is (as expected) a constraint programming solver. It provides:

– several implementations of the various domain types (eg. enumerated, bounded,
list-based, ... integer variables);

– several algorithms for constraint propagation (state-of-the-art AC algorithms
for table constraints, full and bound alldifferent, parameterized cumulative,
etc.).

choco can either be used in satisfaction mode (computing one solution, all
solutions or iterating them) or in optimization mode (maximisation and min-
imisation). Search can be parameterized using a set of predefined variable and
value selection heuristics (including impact-based search [Ref04] and domain over
weighted degree [BHLS04]). User’s parameterization includes designing her own
variable and/or value selectors, as well as precising which should be the decision
variables and even designing cascading variable/value selectors for different sets
of variables.

Finally, when converting the model into a solver-specific problem, choco can
enter into a pre-processor mode that will perform some automatic improvements2

in the model. choco is initially a solver working with intensional constraints and
therefore the pre-processor attempts to use the intensional constraints available
in choco whenever this is possible. It does the following operations:

– choose a level of consistency e.g : alldifferent or boundAlldifferent; arc-
consistency or forward-checking for extensionnal constraints; arc-consistency
on complex expressions or a weaker form of consistency resulting from the
decomposition of the expression by introducing intermediate variables;

– compute maximal cliques in the constraint graph of binary differences or
disjunctions to state the alldifferent global constraint or the disjunctive
global constraint;

– recognize intentional constraints stated as expressions (or predicates) to state
the appropriate intentional constraint : distances (|x − y| < z), linear equa-
tions, min/max constraints. Some constraints stated extensionnaly such as
differences or equalities are also recognized;

– simple value symmetry breaking in case of pure coloring problems.

1 This automatization will be available on the January 2009 release of choco .
2 Those improvements were investigated during the solver competition.

3 choco’s design

choco is a Java library that chose to provide a clear separation between modeling
and solving. Figure 1 represents the overall architecture of the choco library.
There are two separate parts:

– the first part (from the user’s point of view) is devoted to expressing the
problem. The idea is to manipulate variables and relations to be verified
for these variables (constraints) disregarding their potential implementation
(either from the variable point of view or the constraint point of view). A
complete API is provided to be able to state a problem in a way as user-
friendly as possible.

– the second part is devoted to actually solve the problem. In Figure 1, only
CP related information is provided. Solving includes specific memory man-
agement for tree-based search (as in CP).

Choco
Solver API

Model
(1) generic model of a constraint

(2) generic model of a variable

(3) API for creating variables
and constraints

CP-Model

Solver CP-Solver
Memory

How to make a problem?

How to solve a problem?

(1) trailing

(2) recomputation

(3) copying

(1) constraints data structures

(2) variables data structures

(3) data structures related to
the search algorithm

(1) data structure implementation

(2) parser from CP-Model to
CP-Solver

implementation of a Model in
the CP paradigm

Fig. 1. choco ’s general architecture. The separate parts are clearly identified: a mod-
elling part for stating the problem and a solving part (here only the CP related infor-
mation is described) for actually solving the modelled problem.

This clear separation between model and solver has been introduced to ease
the usage of constraint programming to newcommers. This architecture is meant
to let newcommers focus on the modeling part of their problem and rely on the
pre-processor of choco that will take over the user to translate its model into a
more CP-like model to be automatically solved by the solver. However, any CP
practitionner or CP specialists is left the right to:

– make annotations within the model to force the pre-processor to use specific
implentations and ways of handling constraints (for example when consider-
ing expressions) ;

– use the solver’s API to directly program or modify the default behavior of
the solver.

choco in its new version has been designed for allowing tree search related
solvers to be integrated within the platform. For example, we are currently port-
ing PaLM [JB00], an explanation-based constraint solver which does not rely
on a tree-based exploration of the search space. The idea is to provide to the
end user of choco a natural and effortless way to use a given constraint model
in different contexte (explanation-based constraint programming, local search,
etc.)

4 choco in practice

Here is a few lines of code to get the essence of using choco in practice. Notice the
use of annotations when building variables (cp:enum) and the explicit separation
between Model and Solver.

//1- Create the model

Model m = new CPModel();

int n = 6;

//2- declaration of variables

IntegerVariable[] vars = makeIntVarArray("v", n, 0, 5, "cp:enum");

IntegerVariable obj = makeIntVar("obj",0,100,"cp:bound");

//3- add some constraints

String regexp = "(1|2)(3*)(1|4|5)";

m.addConstraint(regular(regexp, vars));

m.addConstraint(neq(vars[0], vars[5]));

m.addConstraint(eq(scalar(new int[]{2,3,1,-2,8,10}, vars), obj));

//4- Create the solver

Solver s = new CPSolver();

//5- read the model and solve it

s.read(m);

s.solve();

if (s.isFeasible()) {

do {

for (int i = 0; i < n; i++) {

System.out.print(s.getVar(vars[i]).getVal());

}

System.out.println("");

} while (s.nextSolution());

}

//6- Print the number of solutions found

System.out.println("Nb_sol : " + s.getNbSolutions());

Which gives the following output :

133334 72

133335 82

233331 44

233334 74

233335 84

Nb_sol : 5

5 choco as a teaching and research tool

choco is used in many different places for teaching. For example, in France, the
universities of Nantes, Montpellier, Rennes, Toulouse, Clermont-Ferrand; the
engineering schools of École des Mines de Nancy, École des Mines de Nantes,
École Nationale Supérieure des Sciences et Techniques Appliquées, etc. all use
choco for teaching constraint programming. choco is not necessarily the only
solver that is presented but one of its asset is that it is an open solver whose
source code can be browsed and understood easily.

choco is also used in R&D divisions in several companies including Bouygues
SA, Amadeus SA but also Dassault Aviation; research agencies such as ON-
ERA and even NASA. It is worth noticing that a company has been created
in France which exclusively uses choco as its optimization tool: KLS optim
(http://klsoptim.com/).

6 Conclusion

choco is an open, user-oriented constraint solver which provides a clear separa-
tion between model and solver. It paves the way to provide a general problem
solving library not necessarily dedicated to constraint programming. It is im-
proving every day and eager to integrate user improvements, new constraints,
new solvers, propositions, etc.

Visit choco.emn.fr for the latest news, the current version,

teaching material, documentation, etc. about choco

Acknowledgments

choco would not exist without its founding fathers: François Laburthe (Amadeus,
SA) and Narendra Jussien (École des Mines de Nantes), its core team: Hadrien
Cambazard (4C, Cork) and Guillaume Rochart (Bouygues SA), its new gen-
eration of developers and contributors: Charles Prud’homme (EMN – project

management), Xavier Lorca (EMN – teaching, training), Guillaume Richaud
(EMN – development), Julien Menana (EMN – development), Arnaud Malapert
(EMN and University of Montreal – development) and its funding fathers: École
des Mines de Nantes which hosts the choco web site, servers, project manager,
Bouygues SA and Amadeus SA.

References

[AB93] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57–
73, 1993.

[BC94] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP.
Math. Comput. Modelling, 20(12):97–123, 1994.

[BCDP07] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit.
Global constraint catalogue: Past, present and future. Constraints, 12(1):21–
62, 2007.

[BCP+07] Nicolas Beldiceanu, Mats Carlsson, Emmanuel Poder, R. Sadek, and Char-
lotte Truchet. A generic geometrical constraint kernel in space and time for
handling polymorphic k-dimensional objects. In CP, pages 180–194, 2007.

[BHH+05] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan,
and Toby Walsh. Filtering algorithms for the nvalue constraint. In Interna-
tional Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CP-AI-OR?05),
volume 3524 of LNCS, pages 79–93. Springer-Verlag, 2005.

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In European Conference on Artificial Intel-
ligence (ECAI’04), pages 146–150, 2004.

[BLF08] N. Beldiceanu, X. Lorca, and P. Flener. Combining tree partitioning, prece-
dence, and incomparability constraints. Constraints, 13(4), 2008.

[CJL02] Yves Caseau, François-Xavier Josset, and François Laburthe. Claire: com-
bining sets, search and rules to better express algorithms. Theory Pract.
Log. Program., 2(6):769–805, 2002.

[DPR06] Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-regular
based hybrid column generation approach. Constraints, 11(4):315–333, 2006.

[JB00] Narendra Jussien and Vincent Barichard. The PaLM system: explanation-
based constraint programming. In Proceedings of TRICS: Techniques foR
Implementing Constraint programming Systems, a post-conference workshop
of CP 2000, pages 118–133, Singapore, September 2000.

[Pes04] Gilles Pesant. A regular language membership constraint for finite sequences
of variables. In Mark Wallace, editor, CP, volume 3258 of Lecture Notes in
Computer Science, pages 482–495. Springer, 2004.

[Ref04] P. Refalo. Impact-based search strategies for constraint programming. In
Principles and Practice of Constraint Programming (CP’04, pages 556–571,
2004.

[Rég94] J.-C. Régin. A filtering algorithm for constraints of difference in CSP. In
AAAI’94, pages 362–367, 1994.

[Rég96] J.-C. Régin. Generalized arc consistency for global cardinality constraint.
In AAAI’96, pages 209–215, 1996.

