
HAL Id: hal-00483083
https://hal.science/hal-00483083v1

Submitted on 12 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-aware Quality Model Driven Approach
Adel Alti, A. Bookerram, Makhlouf Derdour, Philippe Roose

To cite this version:
Adel Alti, A. Bookerram, Makhlouf Derdour, Philippe Roose. Context-aware Quality Model Driven
Approach. Notere 2010, May 2010, Tozeur, Tunisia. pp. 1-11. �hal-00483083�

https://hal.science/hal-00483083v1
https://hal.archives-ouvertes.fr

Context-aware Quality Model Driven Approach

A. Alti
1
, A. Bookerram

1
 , M. Derdour

2
, P. Roose

2

1
 Computer Science Department, Engineering Faculty, Ferhat ABBAS University of Setif, 19000 Setif, Algeria

2
LIUPPA / IUT Bayonne, 2 Allée du Parc Montaury, 64600 Anglet - France

Abstract— The explicit separation of functional and non-

functional requirements is the main concern of the Contextual

ARCHitecture Quality Requirement MetaModel

(ContextualArchRQMM), aiming to well capturing resources-

awareness and controlling quality at architecture level. This

article defines extension of MDA called Context-aware Quality

Model Driven Architecture (CQ-MDA) which can be used for

quality control in pervasive computing environments. The

proposed CQ-MDA approach based on ContextualArchRQMM,

being an extension to the MDA, allows for considering quality

and resources-awareness while conducting the design process.

The main idea of presented extension consists in three

abstractions levels: PIM (Platform Independent Model), CPIM

(Contextual Platform Independent Model) and CPSM

(Contextual Platform Specific Model). At the PIM level, a model

is decomposed on two interrelated models: software architecture

artifacts, which reflect functional requirements and quality

model. At the CPIM level a simultaneous transformation of these

two models with contextual information details are elaborated

and then refined to a specific platform at the CPSM level. Such a

procedure ensures that the transformation decisions should be

based on the quality assessment of the created models.

Keywords-MDA; Context; Quality Model; ADL;

I. INTRODUCTION

Model Driven Approach (MDA) has been proposed by the
OMG (Object management Group). The basic models of MDA
are entities able to unify and support the development of
computer systems by providing interoperability and portability.
UML, CWM and MOF represent the core of MDA. If the
number of core models available is limited, it is not yet fixed.

The notion of transformation is an essential element for
MDA aiming at automated model transformations.
Furthermore, system development is seen as a chain of model
transformations representing different categories. There are
three basic categories, according to their abstraction level;
namely, Computation Independent Models (CIMs), Platform
Independent Models (PIMs) and Platform Specific Models
(PSMs). CIMs are focused on the model system requirements
where the designed system is to be placed. Specific business
modeling languages like BPMN [reference] and EPC
[reference] as well as UML are used to build CIM models [12].
PIMs are in turn able to model the system’s functionality
without considering any particular platform. So, PIMs include
such models as UML class diagrams or statechart diagrams.
PSMs are refined the PIM in the way which takes the features

of a given platform into account. PSM models are represented
using UML or in its specific profiles. Finally, the PSM model
is transformed into code. In the model transformation process
the functional requirements (stated by CIM model) should be
kept by PIM, and finally by PSM model. But MDA approach
does not address how to consider non-functional demands, i.e.
how to represent and transform them. Furthermore, MDA
doesn’t really take into account the quality of dynamic
architectures for very limited mobile device like PDA,
Smartphone, etc. – il faut expliquer ici pourquoi modéliser
pour PDA/Smartphone est un peu particulier à cause des
resources limitées. Although there already some works which
are somehow related both to resources-awareness, quality and
MDA [9, 10, 14], still there is a lot of acceptance. Il faut
presenter l’apport de ce papier par rapport aux autres déjà écrits
sur le domaine In this paper, we present an extended Model
Driven Architecture which includes support for software
architecture quality control and resources requirements
changes, in the framework of CQ-MDA (Context-aware
Quality Model Driven Architecture).

The main idea of the presented extension consists in three
abstractions levels: PIM (Platform Independent Model), CPIM
(Contextual Platform Independent Model) and CPSM
(Contextual Platform Specific Model). At the PIM level, a
model is made of two interrelated models: software
architecture artifacts, which reflect functional requirements and
quality model. At the CPIM level a simultaneous
transformation of these two models with contextual
information details are elaborated and then refined to a specific
platform at the CPSM level. Such a procedure ensures that the
transformation decisions should be based on the quality
assessment of the created models.

To provide a serious gap in software architecture quality
control, we have previously introduced the ArchRQMM
(ARCHitecture Requirement Quality MetaModel) [3]. It has
been proposed upon four main principals: 1) - extend the
common concepts of Architecture Description Languages
(ADLs) with the concepts of quality requirements and quality
standards [11] 2) - define the exact measurable standards at the
level of architecture for goodness of software architecture 3) -
define clear separation between application styles and quality
factors to evaluate those styles and at last, 4) - improve a
formal verification of the properties’ quality of architectures on
modelling styles using OCL [13]. However, our metamodel
does not support the definition of a context-awareness and a
resource-awareness metamodel.

We begin this paper by introducing ArchRQMM
metamodel. Section 3 proposes the main element of CQ-MDA
approach, i.e. ContextualArchRQMM metamodel which it is
an ArchRQMM extension used as support for context model
description and quality model definition. Section 4 describes
the CQ-MDA itself. Section 4 shows an example of applying
CQ-MDA for VideoConference system development. Section 5
summarizes related works. Section 6 concludes this article and
presents some future works.

II. AN OVERVIEW OF ARCHRQMM METAMODEL

ArchRQMM metamodel enables architectural styles quality
evaluation and selection at the architecture design step and
ensures formal verification of the properties’ quality of
architectures on modelling styles. The metamodel was
described in details in [3, 4]. It was developed according to
ISO/IEC 9126 standard [8]. ArchRQMM is based on a set of
metaclasses for the common concepts of architectures
descriptions languages (ADLs) and a set of quality
characteristics based on a standard ISO quality model [11]
which can be investigated and evaluated in the architecture
level. Figure 1 (elle n’est pas bien lisible, il faudrait refaire la
capture/l’exportation avec une meilleure qualité) presents a
MOF metamodel of the ArchRQMM. An instance of this
metamodel defines:

- Software architecture model (i.e. architectural

artifacts) and architectural styles.

- Quality requirements model.

- Software architecture quality model, measurements

and quality criteria’s.
The software architecture model involves classes

representing software architecture and its artifacts. Architecture
may be composed of many artifacts. Components are
potentially composite computational encapsulations that
support multiple interfaces known as ports. Attachments define
set of port/role associations. Ports are bound to ports on other
components using first-class entities called connectors, which
have the so-called roles that are attached directly to ports.
Configurations are the abstractions that represent graphs of
components and connectors. Attachments define set of port/role
associations. Bindings connect two interfaces of the same type
(two ports or two roles). In our metamodel, styles are reused
and composed using Pattern Templates [15].

Requirements package represents architect’s needs and
quality goals. The architect’s needs (Requirement class) should
fulfill particular architecture artifacts (Artifact class in the
model). Usually the necessities of a software system are
divided into two groups: Functional requirements and Non-
Functional requirements. Functional requirements derived
from the architect’s needs and non-functional requirements are
more related to the problem’s environment or context such as
the system’s operational environment and the problem’s real
word. Non-functional-requirements are associated with a
quality goal (QualityGoal class) that must be satisfied to ensure
the accomplishment of the functionality in the final software
product. The non-functional-properties (Non-Functional-Prop
class), which are related to quality requirements are specified
in the requirement model. Non-functional properties are

formalized using the standard ISO-9126 [8]. Based on final
quality aims, the developed architecture for a given software
system can be evaluated to satisfy quality goals.

The software architecture quality model defines quality of
the whole software system as well as its architectural artifacts
in terms of quality factors and associated metrics that are
formal measured attributes of the software. An instance of
QualityFactor class is the root of quality factors and sub-
factors, and represents a given quality perspective. Only the
quality factors and sub-factors that are leaves of the root are
requested to have metrics assigned. Organization of the model
is consistent to the interpretation of quality model as a set of
factors and the relationships among them provides the basis for
specifying quality requirements and evaluating quality
architecture model when using a given architectural style.
ISO/IEC 9126 standard [8] defines three quality perspectives
(quality in use, external quality and internal quality). In the
context of the paper external and internal qualities are
considered (IsInternal as Boolean filed in QualityFactor class).
Each quality factor is associated with quality criteria
(QualityCriteria class); it shows the technical concepts that
must be investigated at the level of architecture to ensure
quality. Each quality criteria is associated with quality metrics
(Metric class), which represents values of metric for a given
architectural artifact. In this case its value is used for selection
of the best artifact instead of artifact classification.

The quality of architectural styles is perceived as a
constraint which has to be checked for validity during each
design step. The focus of rigorous architecture quality analysis
is to prevent the non-required affections before the early phases
of system development. For example, the configuration
modularity is given by the following OCL constraints [13]:

Context ArchRQMM:Configuration inv:

self.qualityfactorArtifact.subfactors.qualitycriteria->

 exists->(sf|sf.name= #Modularity) implies

(self.subcomponents.qualityfactorArtifact.qualitycriteria->

 select(c|c.criterianame=CriteriaName::Cohesion

 implies c.result >=0.5) -> notEmpty() and

 select(c|c.criterianame=CriteriaName::Coupling

 implies c.result <=0.66) -> notEmpty())and

(self.subconnectors.qualityfactorArtifact.qualitycriteria->

 select(c|c.criterianame=CriteriaName:: Cohesion

 implies c.result >=0.5) -> notEmpty() and

 select(c|c.criterianame=CriteriaName::Coupling

 implies c.result <=0.66) -> notEmpty())

légende

The designer may be modified as needed a threshold of
quality associated with each criterion (je ne comprends pas
cette phrase). Constraints expressed with OCL are also used to
evaluate other concepts of ArchRQMM such as configurations,
artifacts, metrics, criteria, etc. For more details see [4].

III. CONTEXTUALARCHRQMM

An application for heterogeneous mobile embedded and
limited (low bandwidth, power consumption, etc.) device has
to firstly prevent interaction and mobility limitation. Il faut
l’expliquer + dans l’introduction en disant quelle est le support
physique cible. We decided to extend ArchRQMM with
contextual connectors in order to support improved
composability of heterogeneous components and therefore to

integrate a software architecture quality control in the
framework CQ-MDA (Context-aware Quality Model Driven
Architecture) which unifies all modeling approaches. Our
extension does not create a new concept abstraction and is
strictly based on enriching the connection semantics supported
by architectural connectors instead of introducing elements that

elevate various interactions paradigms concepts to the
architecture level. This section presents the description of
ContextualArchRQMM. We present the ArchRQMM
extension to support the definition a context-awareness and a
resource-awareness metamodel.

Connector

<<enumeration>>

 +Functionality

+Reliability
+Usability
+Efficiency
+Maintainability
+Integrability.

ISO9126Characteristic

ProvidedRole

Metric
+target

Constraints

1

Configuration

Component Interface

Binding

Port

Role

Service

Use

Attachment

RequiredRole

ProvidedPort

RequiredPort
 RequiredSvc

ProvidedScv

Artifact
name:String
weight:float

 Architecture

QualityFactor

QualityCriteria

Requirement Style

Functional-Req

Non-Functional-Req

QualityGoal

Non-Functional-Prop

0..*

+subconnectors

1..*

+details
 1..*

+subcomponents

+details

0..*

0..1

0..1

+source

+source

0..*

+in
ter
fac
es

+target

+source

+artifcat

1

+constraints

+target

+artifcats
 1..*

 1

name:String
desc:descriptiionType
NBservices:integer
language:ADLLanguage

+qualityfactorArtifact
 0..1

name:ISO9126Characteristic IsInternal:Booelan weight:float

criterianame:Criteria
result:float

name:String description:String
formula:Formula
minvalmetric:float
maxvalmetric:float
domaine:Domaine

+evaluate()

 +qualitycriteria

*

+mesuredBy

1

 *

1 +qualityfactor

+criteriametric

involves +attachtedTo required

implies +nfr
0..*

0..1

 *

+expressed
 +architectneeds

1..*

0..*

 +style
+architecture

1

+nfp 1

1

1..*

+qualityfactor

 +subFactors

*

1

1

0..* 0..* desc:String
NBfunc:integer

<<enumeration>>

 +UML 2.0

+ACME
+COSA
+xADL…..

ADLLanguages

+Text
+Graphic

<<enumeration>>

 DescriptionType

<<enumeration>>

 +Layers

+Pipe and Filter
+Client-Server
+Blackboard…

ArchStyle

Style:ArchStyle

+Style_Complexity
+Style_Cohesion
+Style_Coupling
+Configuration_Mgmt

<<enumeration>>

 Criteria

ProvidedRole

 Software Architecture Model Requirement Model Quality Model

Figure 1. A MOF metamodel of ArchRQMM

A. Context-awareness MetaModel

We extend our software architecture metamodel, with a context
metamodel (see Figure 3). The goal is to context information to
measure the quality of system architecture at model level.
Context is any information that can be collected from artifact
needs, resources capacities and user preferences.
ContextualArchRQMM uses these informations to perform a
software architecture quality evaluation and selection in
software development process. In our metamodel we have
identified two types of context, i.e., required context (user
preferences, artifacts needs) and provided context that
encompasses the properties of the execution environment of an
application. Context elements are realized through Context
class, are expressed as QoS properties of the contextual
architectural artifacts (Non-Functional-Prop class).

La figure 2 n’est pas lisible, il faut refaire la capture.

En fait c’est général aux figures 1, 2, 3 et 4 de l’article. On ne
peut pas les lire, c’est très gênant.

1

 name:String

Context

ProvidedContext

1

1

0..*

RequiredContext

0..*

Ressource
ress:resKind

 Artifact (abstract)

1..*

0..*

implies

+involves

+nfr

0..1

 QualityGoal

Non-Functional-Req

Non-Functional-Prop

+ressources
 1..*

+artifactsneeds
 1..*

1..*

+preferences

1..*

+nfps

+pvdctxt

+reqprefs

Figure 2. The context metamodel of ContextualArchRQMM

B. Resource-awareness MetaModel

Figure 4 depicts a resource-awareness metamodel. The
hardware components are mobile devices (Class Device) like
PDAs or smart phone, are constrained in their resources
(memory size, CPU power, bandwidth, battery, etc) and acts as
execution environment for architectural artifact (Artifact class
in the model). Network connections (Class Node) connect
hardware components having a limited bandwith. A resource-
awareness about current usage of processing power, memory,
network bandwith, battery lifetime, etc. is a perquisite to
guarantee a minimum quality of service. Due to heterogeneous

architectural components as well as its various communications
paradigms (GSM 3G, Bluetooth, ZigBee, etc.) can be specified
more easily using a contextual architectural artifact to better
support resource-awareness.

+networkowner

+nodes

1..*

 Device
name:deviceKind

1..*

Ressource
ress:resKind

Node

name:NodeKind
type:NodeType
bandwidth:int
minbandwith:int

maxbandwith:int
 +networkk-access

+associtaeddevice

1..*

+ressources

1

1

1

1..*

+device

Network-Config

 Artifact (abstract)

 name:String

Context
1

+ressources
 1..*

+pvdctxt

+archArtifact

+ deployedArtifact
 1..*

CPU

Speed

minSpeed

maxSpeed

Battery

Ennergy

minEnergy

maxEnergy

Memory

Size, Free

minSize

maxSiz

 NodeKind <<enumeration>>

 WAN

GPRS
UMTS
GPRS/UMTS

<<enumeration

>>

PDA
Server
MOBILE
PC

deviceKind

Figure 3. The context metamodel of ContextualArchRQMM

C. Contextual Architectural Artifacts

As software architecture descriptions rely on a connector to
express interactions between components, an equivalent
abstraction must be used to express a contextual and
heterogeneous interaction (i.e. various interactions paradigms).
We extend an architectural connector with a contextual concern
in a heterogeneous interaction (see Figure 4). The traditional
connector is not enough to model (design?) a contextual
interaction because the way that a contextual component
composes with a regular component is slightly different from
the composition between regular components only. A
contextual concern is represented by provided contextual
services of a component and it can be affect both provided and
required contextual service of other components which can be,
in turn, regarded as contextual joint point at the architectural
level. Since ADL valid configurations are those that connect
provided and required services, it is impossible to represent a
connection between provided contextual services of a
contextual component and a provided service without
extensions to the traditional notion of architectural concerns.
Although ArchRQMM itself does not support a syntactic
distinction between data and context ports, this distinction can
be expressed using extra dedicated ports: The context port is
responsible for the sending and receiving of the context
information available at run-time when the service is active. It
allows the service to be notified of new resources, and to
inform other services about resource currently in use by this
service. The context control port is a standard dedicated port
for controlling a service. It allows the service to be (re)started,
updated, relocated, stopped and uninstalled. The QoS
Notification port is responsible for sending QoS information to
execution platform in order to decide if a service
reconfiguration is needed.

In order to express the dynamic interaction in different
contexts, we extend a connector with a new kind of roles. The
purpose of such a new role is twofold: to make a distinction
between the element playing different roles in a dynamic

interaction (i.e. affected base (business ?) components and
contextual components; and to capture the way both categories
of components are interconnected). The connector interface
contains: 1) – data roles 2) – contextual roles, 3) – QoS
notification roles, 4) control roles and 5) – a glue clause.

The data role may be connected to the data port of a
component (provided or required) and the contextual role may
be connected to a contextual port of a component. The
distinction between a data and context roles addresses the
constraint typically imposed by many ADLs about the clear
separation between functional and non-functional aspects. The
composition between heterogeneous components is expressed
by the glue clause. Our contribution in this level consists in
enhancing the structure of connector by defining a glue clause.
The glue clause specifies the different ways of interacting
heterogeneous components. There three types of contextual
glue: switch, conditional, and default.

The glue clause can be simply a declaration of the glue
type, or a block with multiple declarations, where each relates
a contextual role, a data role, a service control role; a QoS
notification role and a glue type (see Figure 5).

QoSNotificationPort

1

+ta
rge
t

Artifact
name:String

(abstract)
weight:float

1..*

0..*

1

0..*
 1..*

1..*

0..*

 Configuration

 Connector

 Port

Interface

+subconnectors

+in
ter
fac
es

+source

1..*

+details

+details

1

0..1

0..1

 Service

1

+source

+source

DataPort

ReqDataPort

ProvDataPort

ContextPort

ServicetRole

ServiceControlRole

DataRole

ReqDataPort

ProvDataPort

RequiredService

ProvidedService

0..*

1

 Component

+target

+target

+subccomponents

Role
Service

ServiceControlPort

ServicePort

ContextRole

QoSNotificationRole

 Glue

+artifactnneds 1..*

1

DynamicBC

DynamicAC DynamicUse

Figure 4. The context metamodel of ContextualArchRQMM

Connector aConnector = {
 DataRole reqDataRole, provDataRole;

 ContextRole abandwithRole;

 QoSNotifcationRole aQoSNotificationRole;

 ServiceControlRole aServiceControlRole;

 Service Conversion_dataformat1_dataformat2, Conversion_dataformat1_dataformat3;

 Glue {

bw = abandwithRole.getBandWidth();

conditional (bw less-than 4000) {

DynamicUse {provDataRole, Conversion_dataformat1_dataformat3} ;
Type = RMI

Communication = distant ;

Mode = Asynchronous mode ;

setParameter new rate to aServiceControlRole ;

getQuality quality from aQoSNotificationRole ;

}

 default {

DynamicUse {provDataRole, Conversion_dataformat1_dataformat2} ;

Type = Socket

Communication = local ;

Mode = Synchronous mode ;
setParameter default rate to aServiceControlRole ;

getQuality quality from aQoSNotificationRole ;

}

}

}

Figure 5. A contextual connector in ContextualArchRQMM.

Figure 6 contains a graphical notation that we propose to
represent a dynamic connector and its contextual roles. Con1 is
a dynamic connector that defines a heterogeneous interaction
between three components C1, C2, C3.

Provided dataRole

Required dataRole

+Glu

Con1

aContextRole

aQoSNotificationRole

aServiceControlRole

p2

 C1

r1 p1
 C2

 C3

p3

Legend
Provided dataPort

Required dataPort

QoSNotifcationRole

ServiceControlRole

QoSNotifcationPort

ServiceControlPort

dynamicAC

AC

ContextRole

ContextPort

Figure 6. Graphical Notation of the Contextual Connector

This extension improves variability in architectural
configurations as well as quality of composing heterogeneous
components. Note that the different ways of interacting can
now be modularized in a single architectural connector.
Consequently heterogeneous components assembled in an easy
and coherent way.

From this new structural joint points that be affect by
contextual connector, many attachments should be defined,
where each one binds the same data role instance to a different
component port. We propose an extension of the attachments
part of ArchRQMM configuration to allow to attachment sets
of ports to the same role using Dynamic Attachment Connector
(DynamicAC Class). This description allows creating a
dynamic reconfiguration for several heterogeneous
components. To perform a better QoS for the contextual
components (composing and/or decomposing of services)
when detecting the frequent changes in the environment, a
DynamicUse connector is introduced. This connector is guided
by significant evolutions of the environment, consisting of a
collection of context informations (CPU usage, battery
lifetime, bandwith measure…).

IV. CONTEXT-AWARE QUALITY – MODEL DRIVEN

ARCHITECTURE (CQ-MDA)

The general structure of Context-aware Quality – Model
Driven Architecture (CQ-MDA) is presented in Fig. 7. We
consider the full software development cycle within MDA, i.e.
from formulation of needs up to the code generation.

The proposed structure consists in five levels representing
CIM, PIM, Contextual Platform Independent Model (CPIM),
Contextual Platform Specific Model (CPSM), and code. Each
level is decomposed into three parts: the left part represents
architectural artifacts and context concepts; the right part
represents quality model and measurements done for these
artifacts while the center part represents requirements.

In Fig. 7 External Quality Model represents an instance of
ContextualArchRQMM metamodel. This model is used for
expressing quality factors with metrics for evaluation of
software system external quality at the architecture level.
External Quality Model contains architects needs, resources
requirements and user preferences. We assume, that system

requirements reflect both functional and non-functional
architect’s demands.

Requirement represents internal requirements for software
architecture elements. The internal requirements are elaborated
on the base on external requirements (at CIM level), or internal
requirements expressed on the higher level (at the lower level
of abstraction, e.g. PIM, CPIM, CPSM, Code).

The contents of each MDA model could be perceived as a
collection of sub-models of different types. For example, PIM
model typically gathers at least two kinds of sub-models, i.e.
structural sub-model, and behavioral sub-model developed
without considering contextual details. Each sub-model can be
transformed and adding context information to several CPIMs
(i.e. several adaptations). The best selected CPIM model can
generate a CPSM. The CPSM inherits quality requirements
and context from CPIM. CPSM specifies operation system
requirements, middleware architectures and networking.
Architecture quality should be controlled at each steps of the
design. External requirements of the system are transformed
into internal ones for the architecture and its components.
Internal requirements are needed for assessing designed
architecture models. Ce paragraphe est compliqué à
comprendre – il faut être un peu plus concret je pense

Requirement

External Quality Model

CIM CIM Internal Quality Model

CPIM CPIM Internal Quality Model

CPSM CPSM Internal Quality Model

Software Architecture Model

Context Model

Automatic Evaluation &

Selection

CODE CODE Internal Quality Model

PIM PIM Internal Quality Model

- Requirements

- Software Architecture Quality Model

- Measurement

- Formal Quality Checking

Figure 7. Context-aware Quality Driven Model Architecture

So, particular internal models, being instances of
ContextualArchRQMM metamodel, are used to assess the
architecture models, for example, the requirement reflects both
functional and non-functional architects’ needs are elaborated
on the base of a particular set of criteria’s and associated
metrics and used to assesses a particular model of MDA cette
phrase est trop longue/compliquée. For example, CIM Internal
Quality Models are elaborated on the base of the External
Quality Models. Similarly, PIM/CPIM/CPSM/Code Quality
Models are elaborated on the base of the former quality models
which is represented by dependency relationships between
quality models. The elaborated Quality Model is used for
expressing quality factors with metrics for evaluation of
architecture models.

The process of the evaluation starts with designing the
architecture model conforms to the software architecture
ContextualArchRQMM metamodel, next producing the quality
model conforms to the software quality
ContextualArchRQMM metamodel by measurement done for
each architectural artifact for a given factor in the context of
associated requirement, for a given criteria with associated
metric cette phrase est trop longue/compliquée. After that, the
model is evaluated by the semantic constraints defined by the
ContextualArchRQMM metamodel. Each Quality Model
aggregates factors that are associated with metrics. The set of
factors and associated metrics from External Quality Model
should be transformed by a non-empty set of factors and
associated metrics from Internal Quality Models. Next, similar
transformation process is repeated at further levels. The set of
new factors for the target model may be extended with
additional factors to take into account assessment perspective
of software architect.

An important feature of ContextualArchRQMM is the
possibility of architecture model(s) checking. This is realized
by OCL constraints that can be checked for a given
requirement, criterion, artifact, context, and for the whole
software architecture (i.e. set of artifacts). Results of
assessment functions can influence the development process
(Context-aware Quality – Model Driven Architecture).

Two ways of using the ContextualArchRQMM metamodel
are possible:

- The first one assumes that the software architecture

quality metamodel is used for evaluating an

architecture model. The architecture model is tested

and validated with the semantic constraints defined by

the metamodel. If the verified architecture model gets

bad marks then the design process can be stopped or

can go back to the previous stage either to change

requirements or to elaborate a different (better)

architectural model.

- The second one, using software architecture quality

metamodel considers the case when the metamodel is

used for selecting the best architectural model from

different choices. In this case the values of a metric

are used to classify the models. In this case a metric

formula gives a note for the architecture model. The

values of the metric function are used to classify the

models and to choose the suitable one. After that, the

selected architectural model is evaluated by the OCL

constraints to remove any violation de quoi ?.

V. EXAMPLE

An example given below is intended to show applicability
of CQ-MDA both for evaluation and for selection of the best
architectural model from some alternatives. The example deals
with VideoConference System [17]. VideoConference has the
following adaptable and optional artifacts:

- Audio Encoder/Decoder: (de-)compressing the audio

stream.

- Audio Filter: components for changing the frame size.

- Video Filter: reducing the video frame rate.

- Video Encoder/Decoder: (de-)compressing the video

stream.
The following architect needs and preferences are

considered:

- Recording, reviewing user’ video and creating

respective reports.

- Video should be delivered in quality and in period no

longer than one minute from their request.
These demands are processed as external quality

requirements. The first one is functional demand while second
one is non-functional. Only non-functional requirements will
be considered further. Expliquer pourquoi on ne parle que des
aspects non fonctionnels

According to ArchRQMM, all these requirements should
be associated with a respective architecture quality model with
selected quality factors. In our example, for illustration only
non-functional requirements is taken into account. It is
proposed to use the efficiency factor with time-behavior sub-
factor [4]. On the CIM level some internal requirements may
be specified additionally to external ones. We propose “an easy
maintenance of software architecture model internal
requirement” as we consider it to be important characteristic
from architect point of view. This additional requirement can
be expressed more precisely as “low complexity, high cohesion
and low coupling are the main facts to take into account for
achieving an easy maintainability architecture (subfactors of
the maintainability factor [4]).” The time behaviour sub-factor
for software architecture model artifact cannot be evaluated at
CIM level (as the software architecture is not defined yet) and
should be forwarded to the next level i.e. PIM level. Therefore
the CQ-MDA approach will be shown in details using the
transformation of the PIM model with respective internal
quality model into CPIM model with its internal quality model
and the CPIM model with respective internal quality model
into CPSM model with its internal quality model. In this
example, we describe only the two first levels.

A. PIM level

1. PIM level – MDA artifacts

PIM model is the starting point for the considered
transformation. The PIM model can consist in many sub-
models describing different perspectives (e.g. behavior,
structural) of the designed system. We are only interested in
structural perspective which relates to the conceptual software
architecture model. Several architectural models can be used to
design a given system. For the VideoConference system, the
model is designed with PipesAndFilters style as shown in
Figure 8. At PIM level we have also formally defined set of
architectural artifacts that are traced from CIM model.

audio_out

Source

Source

 PipeFilter_Style

 VideoConference_PIM: ContextualPipeFilter_Style

 :AcquisT

 video_out

InputVideo

Source

 :MuliplexT
 audio_out

: PipeT

video_out

 :VideoT
video_in

audio_in :AudioT
audio_out

OutputVideo

video_in

audio_in

Source

Target Target

Target

Target

OutputVideo

InputVideo

 AudioT

audio_in

Output_video

 MuliplexT

 audio_in

 video_in

video_out

 VideoT
video_in

 FilterT
 IN OUT

 video_out

Input_video

 AcquisT

 audio_out

PipeT

Source Target

[1] All the connectors used in Pipe and Filter
systems must conform to the PipeT connector type.

Context Configuration inv:
self.subconnectors ->forAll (c|c.oclIsKindOf(PipeT))

InstanceOf

Context FilterT inv:
self.IN ->notEmpty() or
self.OUT ->notEmpty()

 AcceptedData: Media

: PipeT

: PipeT :PipeT

InputVideo

OutputVideo

Figure 8. Examplary PIM software architecture model.

2. PIM level – Internal quality model

Internal quality model on this level is traced from the upper
quality level model. So, we have to consider the factors from
CIM level, i.e. efficiency factor with time-behaviour sub-factor
and maintainability factor with modularity, analyzability sub-
factors. The first factor is efficiency with sub-factors. Time-
behavior cannot be evaluated at this level as we have not found
accepted metrics for evaluation of the PIM model. This factor
must be still forwarded for evaluation to the next modeling
level.

The second factor is maintainability with modularity and
analyzability sub-factors [4]. The first sub-factor, modularity,
depends on the configuration, component and connector
modularity. Indeed an architecture whose configuration has a
good modularity if its components and its connectors have
good modularity. If the system has been divided correctly to
suitable modular, the software system can be analyzed more
easily. At the architecture level, this factor can be measured
with criteria, named coupling and cohesion. In [4] these two
metrics are proposed for measuring architecture modularity.
We used these metrics in our model. The second sub-factor,
analyzability, architecture complexity metric is defined in [4]
and used. The metric characterizes complexity of a structure of
the architecture model. The complexity indices for conforming
model understandability and analyzability. High complexity
architecture should have high analyzability.

The evaluation of PIM model with measurement of the
whole architecture of the basic metrics (i.e. coupling, cohesion
and complexity metrics [4]). The quality model is elaborated of
the whole software system as well as its architectural artifacts
in terms of quality factors (i.e. analyzability and modularity)
and associated metrics (i.e. coupling, cohesion and complexity)
is shown in Figure 9. The evaluation results are given in Tab. 1
using a prototype implemented in Java [4].

TABLE I. PIM EVALUATION RESULTS

PIM coupling cohesion complexity

PipesAndFilters 0.482 0.341 0.362

: Mertic

 name = “Complexity”
 domaine = #value

: QualityFactor

name = #Maintainability
 weight = 1

: QualityFactor

 name = #Modularity
 weight = 0.5

: QualityFactor

 name = #Analyzability
 weight = 0.5

: QualityCriteria

 name = #Style_Cohesion
 weight = 0.5
 result = 0.341

: QualityCriteria

 name = #Style_Complexity
 weight = 1
 result = 0.362

: QualityCriteria

 name = #Style_Coupling
 weight = 0.5
 result = 0.482

: Mertic

 name = “Cohesion”
 domaine = #value

: Mertic

 name = “Coupling”
 domaine = #value

: Architecture

name = “CapitalizePipe_Filter”
desc = #Graphic
language = #ACME

: Style

Style = #Pipe_Filter

: Requirement

 desc = “Easy Maintainability”

Figure 9. The elaborated quality model of PIM model

The architecture model should be tested and validated with
the semantic constraints defined by the metamodel. If the
verified architecture model gets bad marks then the design
process can be stopped or it returned to the previous stage (i.e.
CIM) either to change requirements or to elaborate a different
(better) architectural model.

Il faut expliquer comment sont obtenues ces valeurs, l’unité
de mesure, l’écart des valeurs (entre quoi et quoi), qu’est ce
qu’une bonne valeur et une mauvaise et pourquoi. As for the
architecture model from Table 1 the values of coupling is equal
0.482 and a threshold of coupling is equal 0.66, the value of
cohesion is equal 0.341 and a threshold of coupling is equal 0.5
and the value of complexity is equal 0.362 and a threshold of
complexity is equal 1, the architectural model provides an
acceptable maintainability (a high level of cohesion, a low
level of coupling, a low level of complexity). This architectural
model is accepted for further transformation.

This result is practically significant as well related to
maintainability effort, e.g. low level of coupling, dependencies
among all architectural artifacts are loss, high number of reused
artifacts (i.e. number of Pipe connector instances, m = 4).

B. CPIM level

1. CPIM level – MDA artifacts

PIM software architecture model may be transformed,
manually or automatically, into different CPIM models. The
software architecture model from Fig. 8 is transformed into
four exemplary CPIM models – see Fig. 11 - and the total
resource requirements are given in Table 2.

2. CPIM level – Internal quality model

At this level analyzability, time-behavior sub-factors taken
from upper level are evaluated (it is worth to mention –

PIM__ PIM__

different metrics can be used for this purpose). The evaluation
results should be helpful in choosing the best CPIM model for
further transformation.

AudioT

audio_out

audio_out

Quality

audio_out

 Contextual_PipeFilter_Style

audio_in

Output_video

 MuliplexT

 audio_in

 video_in

video_out VideoT
video_in

 FilterT
 IN OUT

 video_out

Input_video

 AcquisT

 audio_out

PipeT

Source Target

InputVideo

OutputVideo

[1] All the connectors used in Pipe and Filter
systems must conform to the PipeT connector type.

Context Configuration inv:
self.subconnectors ->forAll (c|c.oclIsKindOf(PipeT))

Context FilterT inv:

self.IN ->notEmpty() or
self.OUT ->notEmpty()

 AcceptedData: Media

LuminosityPort

VideoFilter

AudioFilter

LuminosityPort

 NetWorkControl

setbandwith

getbandwidth FrameRate

FrameRizer
 audio_in

 AudioEncoderT

Bandwith

Quality

 audio_in

 AudioDecoderT

Bandwith

Quality

video_out

Quality

 video_in

video_out

video_in

 VideoEncoderT

Bandwith

 VideoDecoderT

Bandwith

CxPipeT

CxSource CxTarget

Bandwith

Quality

Target Source

Figure 10. VideoConference with Contextual Pipe Filter Style.

TABLE II. NON-FUNCTIONAL REQUIREMENTS DETAILS.

Component User preferences CPU speed Bandwith

AudioT - ≈ 100 MIPS 4:1 Reduction

VideoT - ≈ 50 MIPS 2:1 Reduction

AudioEncoderT

AudioDecoderT

High Quality

Medium Quality
Low Quality

≈ 200 MIPS 64 kbps

32 kbps
8 kbps

VideoEncoderT
VideoDecoderT

High Quality

Medium Quality

Low Quality

≈ 800 MIPS 10:1 Reduction

20:1 Reduction

30:1 Reduction

LuminosityPort

video_in

 video_out

Source

Source

 VideoConference_CPIM1: Contextual_PipeFilter_Style

 :AcquisT

InputVideo

Source

 :MuliplexT
 audio_out

: PipeT

video_out

 :VideoT

video_in

FrameResizer

 :AudioT
audio_out

OutputVideo

 audio_in

Source

Target

Target

Target

Target : PipeT

: PipeT :PipeT

InputVideo

 OutputVideo

LuminosityPort

FrameRate

VideoFilter

AudioFilter

Target

getBW

bandwidth
Source

 : NetWorkControl

setBW

bandwidth

audio_in

:CxPipeT

(a) Model I

 Target

bandwidth

:CxPipeT Source

 : NetWorkControl

setBW

bandwidth

bandwidth

: PipeT

 video_out

Source

Source

 VideoConference_CPIM2: Contextual_PipeFilter_Style

 :AcquisT

IN

Source

 :MuliplexT
 audio_out

: PipeT

video_out

 :VideoT

video_in

FrameResizer

 :AudioT
audio_out

video_in

 image_in

Source

Target Target

Target

: PipeT

:PipeT

InputVideo

 OutputVideo

LuminosityPort

LuminosityPort

FrameRate

VideoFilter

AudioFilter

Source

video_out

 :EncoderT

video_in

Target : PipeT : PipeT Source

video_out

 :DecoderT

video_in

Target : PipeT

bandwith

getQuality

getQuality

bandwith

bandwith

getQuality

getQuality

 Target

OutputVideo

getBW

audio_in

(b) Model II

bandwith

Target

bandwidth
Source

 : NetWorkControl

setBW
: PipeT

 video_out

Source

Source

 VideoConference_CPIM3: Contextual_PipeFilter_Style

 :AcquisT

IN

Source

 :MuliplexT
 audio_out

: PipeT

video_out

 :VideoT

video_in

FrameResizer

 :AudioT
auio_out

video_in

 audio_in

Source

Target Target

Target

: PipeT

:PipeT

InputVideo

 LuminosityPort

LuminosityPort

FrameRate

VideoFilter

AudioFilter

Source

 :EncoderT
Target : PipeT Source

audio_out

 :DecoderT

audio_in

Target : PipeT

OutputVideo

OutputVideo

 image_in

bandwith

getQuality

getQuality

bandwith

bandwith

getQuality

getQuality

audio_in

:CxPipeT

(c) Model III

video_in

bandwith

Target

bandwidth
Source

 : NetWorkControl

setBW

bandwidth
 video_out

Source

Source

 VideoConference_CPIM4: Contextual_PipeFilter_Style

 :AcquisT

IN

Source

 :MuliplexT
 audio_out

: PipeT

video_out

 :VideoT

video_in

FrameResizer

 :ImageT
audio_out

 image_in

Source

Target

Target :PipeT

InputVideo

 LuminosityPort

LuminosityPort

FrameRate

VideoFilter

AudioFilter

Source

 :EncoderT
Target : PipeT Source

audio_out

 :DecoderT

audio_in

Target

: PipeT

OutputVideo

OutputVideo

 audio_in

bandwith

getQuality

getQuality

bandwith

bandwith

getQuality

getQuality

bandwidth

Target Source

video_out

 :EncoderT
video_in

Target : PipeT Source

video_out

 :DecoderT

video_in

: PipeT

bandwith

getQuality

getQuality

bandwith

bandwith

getQuality

getQuality

:CxPipeT

 :CxPipeT

 :CxPipeT

CxSource

CxSource

(d) Model IV

Figure 11. Alternative versions of CPIM model

For time-behavior, two metrics proposed in [8], one of
them is selected and adapted in our case. The estimated time
behavior metric for a set A of artifacts of a given configuration
performed with a given time in a certain context calculated as
the weighted sum of TBa metric counted for every artifact
instance “a”:

Aa

aaNetworkCPUMemory
TBwconfigTBM

Benefit

bwspeedsize

*)(
,,

where wa - normalized coefficient of the number of artifact
instances within a configuration

TBa
context

 – the estimated response time of artifact instance
within a given data size in a certain context (CPU speed,
Memory size…etc). et que représente TMB ?

Apart from the evaluation of time behavior sub-factor we
evaluate the analyzability sub-factor to select the best CPIM
model.

In [18] the analyzability sub-factor was investigated and the
dynamic adaptivity as its indicator was validated. This
adaptivity was considered at the architectural level. Two
metrics were proposed in [18], but only one, MaAC (Minimum
architectural Adaptive Cost) was validated for analysability
assessment in our example. This metric related to the
architectural growth indicates the minimum number of artifacts
which should be added to make a system adaptive
independently of the number of functionalities that it provides.

Essentially, this metric expresses the fixed cost of adaptivity at
the architectural level.

It may be necessary to perform a careful balancing between
user preferences, limited device capacity and architectural
model features. According to the choice made of the sub-
factors of quality and their measurement, we define the
function Utility which measures the utility of a given
configuration as follows:

)(

)(
),,(

,,

,,

configMaAC

configTBM
ArchEnvUserUtility

Cost

bwspeedsize

Benefit

bwspeedsize

NetworkCPUMemory

NetworkCPUMemory

Our selection strategy for a given mobile device is to assign
qualities and allocate resources to result in the best
configuration such that the system utility is maximized subject
to device resource constraints, user preferences constraints, and
architectural model features respectively. Given complete
knowledge and centralized control of the system, the objective
of mobile is to maximize the system utility function.

The primary use of such function is to provide feedback to
an architect about the costs and quality of a given configuration
in a certain context, allowing the architect to use a best
configuration earlier before deployment phase by economizing
major changes to reach the target architecture with acceptable
time response. We have simulated the four CPIMs models
using our Java VM simulator and have varied the user (and
respectively, the mobile devices) from 1 to 30. The users use

the system as modeled as Poisson-process ????, and each
mobile device’s CPU speed is initialized with a random value
in the range of [100, 800], and reduced automatically by a
random value in the range of [0, 5] in each iteration (pourquoi
?). The simulation took not more than approximately 10
seconds on a 3.5 GHz Pentium PC using Mpeg 4 video format.

The table 3 shows the evaluation results, meaning that
CPIM4 model turns out to be the best. Differences can be seen
in the adaptation cost of CPIM4 and other CPIMs, which is due
to the low adaptation cost compared to other CPIMs. This
result is practically significant as well related to adaptation
effort e.g. number of artifacts which should be added to make a
system adaptive are very loss as consequence of self-
reconfiguration for environment evolution (i.e. CPU usage)
guided by the adaptation policies. While considering the
transformation from CPIM to CPSM model, CPIM4 model
should be chosen for it, trusting that all evaluated metrics are
adequate indicators of efficiency and maintainability
characteristic respectively.

TABLE III. CPIM Models Evaluation Results

CPIM TBMBenefit(ms) MaACCost

CPIM 1 200 ~ 400 0 ~ 16

CPIM 2 350 ~ 500 0 ~ 8

CPIM 3 470 ~ 800 0 ~ 8

CPIM 4 200 ~ 930 0

VI. RELATED WORKS

The first related area of research are ADLs that have been
proposed for representing dynamic architectures including:
ACME [16], π-ADL [6], C3 [2, 7] and AADL [1]. However,
except for ACME, most ADLs do not support the concept of
evaluation function. In addition, most of them are not
contextual defined. AADL [1] allows definition of non-
functional requirements and their validation at model level.
However, AADL does not support evaluation metrics to
achieve a quality analysis. C3 [2] is concerned with the static
structure of software components as well as their interactions.
The authors do not mention in their proposal the need for
supporting evaluation function and context information
measure. In [7], Amirat and al. used UML profiles to describe
the software architecture of systems. They use UML
component diagrams to show the static configuration. But this
work supports neither quality style evaluation nor
transformation. π-ADL [6] is a formal architecture description
language based on the π-calculus. It supports dynamic software
architecture and evolving software systems. However, contrary
to our work, π-ADL does not support contextual connectors
and not integrate quality metrics. Recently, Garlan and al. [16]
extended ACME ADL in order to support evaluation function
in evolution styles and their multiple decision forms. However,
this work does not consider exploiting contextual connectors in
heterogeneous environment where entities of different nature
collaborate: software and hardware components.

The second related area of research are some works
involving quality in MDA approach, like QADA (Quality-
driven Architecture Design and Quality Analysis) [9] – a

methodology targeted at the development of service
architectures. Other works involving Context in MDA
approach, e.g. Context-aware Model Driven Architecture
Model Transformation [14] – a methodology targeted at the
development of context-aware applications and other
networked systems. These works concentrate only on quality
system architecture or context-aware system architecture, while
CQ-MDA insisted on the separation of the two concerns:
software architecture model and context model. These models
based on the quality assessment that enables us to reuse them
independently, to achieve a comfortable architectural quality
analysis framework.

VII. CONCLUSION AND PERSPECTIVES

The process of software systems design, according to the
MDA approach, is based on the transformation of models at
various levels of abstraction. As on any level the outcome of
the transformation may comprise several models, the problem
of choosing the best of them appears. It seems that the
decisions concerning that choice should be based on the quality
criteria. MDA approach is focused on transformations of
models that maintain mainly functional requirements – the non-
functional requirements are rather not taken into account.

This paper proposed ContextualArchRQMM metamodel
centered on the concept of contextual connector, which take
advantage of traditional architectural connectors and provides a
lightweight support for the definition of some composition
facilities such as heterogeneous interfaces at the connector
level. In this way, ContextualArchRQMM encompasses a
reduced set of minor changes. Our goal is a complete
ArchRQMM software architecture metamodel that supports
structural and contextual description of software systems.
Representing components, connectors as first class entities
allows us to define the context concerns of each of concept
independently and explicitly and to improve composability of
heterogeneous components and lowering adaptation cost
through self-adaptation policies under resources constraints.

The paper proposed also CQ-MDA approach based on
ContextualArchRQMM, being an extension to the MDA,
allows for considering quality and resources-awareness while
conducting the design process. The main idea of presented
extension consists of three abstractions levels: PIM, CPIM and
CPSM. At the PIM level, a model is decomposed on two
interrelated models: software architecture artifacts, which
reflect functional requirements and quality model. At the CPIM
level a simultaneous transformation of these two models with
contextual information details are elaborated and then refined
to a specific platform at the CPSM level. Such a procedure
ensures that the transformation decisions should be based on
the quality assessment of the created models.

The short period of experimentation of the system has
shown the interest of the application of such strategy when
considering the increasing use of UML. We presented an
illustrative example to show the applicability of the proposed
CQ-MDA approach. The results of the experiments (based on
the example of VideoConference with four CPIMs) are
encouraging. The experiment shows that our approach
outperforms two abstractions level in terms of some quality

metrics such as adaptation ratio and time response. In the
future, we will consider moving our approach to a real
execution platform to validate its feasibility.

ACKNOWLEDGMENT

Our thanks give to reviewers for their helpful suggestion
and reviews.

REFERENCES

[1] B. Berthomieu1, J.P. Bodeveix, C. Chaudet, F. Vernadat, “Formal
Verification of AADL Specifications in the Topcased Environment,”
14th Ada-Europe International Conference, 2009, pp. 207 – 221.

[2] A. Amirat and M. Oussalah, “First-Class Connectors to Support
Systematic Construction of Hierarchical Software Architecture,” Journal
of Object Technology, Vol. 8. N°.7, 2009,pp. 107-130.

[3] A. Alti, A. Boukerram and A. Smeda, “Architectural Styles Quality
Evaluation and Selection,” Proceedings de 9éme Conférence
Internationale sur Les NOuvelles TEchnologies de la Repartition
Software and Technologies (NOTERE’09), Montréal (Canada), 2009.

[4] A. Alti, A. Smeda, “Architectural Styles Quality Evaluation and
Selection,” Proceeding of 4th International Conference on Software and
Technologies (ICSOFT’2009), Barcelona (Spain), 2009, pp. 74 - 82.

[5] J. Miller, J. Mujerki, editors. “MDA Guide, Version 1.0. OMG
Technical Report,”, http://www.omg.org/docs/ptc/03-05-01.pdf, 2003.

[6] F. Oquendo, “π-ADL: an architecture description language based en the
higher order typed π-calculus for specifying dynamic and mobile
software architecture,” ACM Software Engineering Notes, vol. 29, n°. 4,
2004, pp. 1 - 13.

[7] A. Amirat and M. Oussalah, “Towards an UML Profile for the
Description of Software Architecture,” Proceedings of International

Conference on Applied Informatics (ICAI’09), 2009, pp. 226 - 232.

[8] ISO/IEC 9126-1. In Software Engineering – Product quality – Part 1:
Quality model, ISO-IEC, 2001.

[9] QADA, http://virtual.vtt.fi/qada , 2007.

[10] P. Tarvainen, “Adaptability Evaluation at Software Architecture Level, ”
The Open Software Engineering Journal, vol. 2, Bentham Science
Publishers Ltd., 2008, pp. 1-30.

[11] F. Losavio, L. Chirinos, N. Lévy, and A. RamdaneCherif, “Quality
characteristics for software architecture,” Journal of Object Technology,
vol. 2. n°.2, 2003, pp. 133-150.

[12] OMG, Business Process Modeling Notation (BPMN)
http://www.bpmn.org/Documents/ , 2006.

[13] OMG. UML OCL 2.0 Specification: Revised Final Adopted
Specification. http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

[14] S. Vale, S. Hammoudi, Context-aware Model Driven Development by
Parameterized Transformation. Proceedings of 3rd Workshop of Model
Driven Interoperability for Sustainable Information Systems
(MDISIS’2008), 2008, pp. 167–180.

[15] R. Bashroush, I. Spence, P. Kilpatrick, J. Brown, “Towards More
Flexible Architecture Description Languages for Industrial
Applications,” Proceedings of 3rd European Workshop on Software
Architecture (EWSA’2006), pp. 212- 219, Springer-Verlag, LNCS
4344, Nantes, France, September 4-5, 2006.

[16] D. Garlan, J.M. Barnes, B. Schmerl, O. Celiku., “Evolution Styles:
Foundations and Tool Support for Software Architecture Evolution,”
WICSA’09, 2009.

[17] S. Laplace, M. Dalmau, P. Roose, Prise en compte de la qualité de
service dans la conception et l’exploitation d’applications réparties, In
the Workshop GEDSIP@Inforsid 2009, Toulouse, 26 mai 2009.

[18] C. Raibulet, L. Masciadri, “Evaluation of Dynamic Adaptivity through
Metrics: an Achievable Target?,” WICSA’09, 2009.

http://www.aadl.info/aadl/documents/FIACRE-AADL-AADLWorkshop-6-2009.pdf
http://www.aadl.info/aadl/documents/FIACRE-AADL-AADLWorkshop-6-2009.pdf
http://www.aadl.info/aadl/documents/FIACRE-AADL-AADLWorkshop-6-2009.pdf
http://www.omg.org/docs/ptc/03-05-01.pdf
http://virtual.vtt.fi/qada
http://www.bpmn.org/Documents/
http://www.omg.org/docs/ptc/05-06-06.pdf

