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INDEX THEORY FOR QUASI-CRYSTALS
I. COMPUTATION OF THE GAP-LABEL GROUP

MOULAY-TAHAR BENAMEUR AND HERVÉ OYONO-OYONO

Abstract. In this paper, we give a complete solution to the gap labelling conjecture for quasi-crystals. The
method adopted relies on the index theory for laminations, and the main tools are the Connes-Skandalis
longitudinal K-theory index morphism together with the measured index formula.
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Introduction

The study of quasi-periodic tillings have gained ground during the last years [1, 6, 8, 11, 27, 28, 30, 40, 41,
46]. The space of (equivalence classes) of such tillings are usually pathological and the classical topological
methods cannot distinguish them from finite sets. In order to get more insight into interesting invariants of
these structures, one is naturally led to the non commutative geometry point of view, based on the study of
appropriate non commutative C∗-algebras. Much of the C∗-algebras associated with quasi-periodic tillings
turn out to be closely related with C∗-algebras of dynamical systems or laminations. The non commutative
tools developed in the study of foliated spaces [18, 19, 24, 47] thus represent a promising machinery for
producing topological and geometrical invariants of tillings.

The present work is a first of a series of papers devoted to the study of quasi-periodic tillings from the
non commutative geometry point of view. We have restricted ourselves to the case of quasi-crystals where
the corresponding lamination is equivalent to a foliated bundle, associated with an action of the abelian
free group, on a Cantor space. The famous gap-labelling conjecture is stated in this case, and involves the
simplest geometric current: an invariant measure on the Cantor space and the trivial cocycle on the free
abelian group. The main result of the present paper is a positive answer to the gap-labelling conjecture for
quasi-crystals.
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2 M. BENAMEUR AND H. OYONO

Let us now explain in more details the framework and the Bellissard conjecture. One considers a
Schrödinger operator

H = − ~
2

2m
∆ + V ,

where ∆ is the Laplacian on Rp and V is a potential. The set of observables affiliated to this Schrödinger
operator is a C∗− algebra which contains the C∗−algebra generated by the resolvent operators of H . If H
describes a particle in a homogeneous media, the physical properties of this media do not depend upon the
choice of an origin in Rp and the algebra of observables also contains the C∗-algebra C∗(H) generated by
the operators Ta(H − z Id)−1T−a, where Ta is the translation operator corresponding to a ∈ Rp .

To the Schrödinger operator H, one assigns a compact space ΩH equipped with a minimal action of Rp

such that the crossed product C∗-algebra C(ΩH) o Rp contains C∗(H) , see [6]. This space ΩH is defined
as the strong closure in B(L2(Rp)) of the space of operators Ta(H − z Id)−1T−a , where a ∈ Rp , and z is a
fixed complex number in the resolvent of H . The action of Rp on ΩH is induced by translations and up to
a Rp−equivariant homeomorphism, the space ΩH is independant on the choice of z in the resolvent of H .

A typical potential for motion of conduction electrons is given by V (x) =
∑

y∈L v(x − y) , where L is
the point set of equilibrium positions of atoms and v is the effective potential for a valence electron near
an atom (see [9]). In [9], J. Bellissard, D. Hermann and M. Zarrouati had attached to this point set L a
geometric compact space ΩL , called the hull of L and equipped with a minimal action of Rp . Let νL be the
uniform discrete measure on Rp supported by L, i.e. for every compactly supported continuous fonction f ,
νL(f) =

∑
y∈L f(y) . Then ΩL is by definition the weak-∗ closure of the family of translations of νL by the

elements of Rp . Note that V = νL ∗ v and more generally, for ν ∈ ΩL one can set

Hν = − ~
2

2m
∆ + ν ∗ v .

For every complex number z in the resolvent of the operator H , the map

ν ∈ ΩL 7−→ (Hν − z Id)−1 ∈ ΩH

is continuous, equivariant and surjective [9]. Thus, the crossed product C∗-algebra C(ΩH) o Rp imbeds
in the crossed product C∗-algebra C(ΩL) o Rp and in particular C(ΩL) o Rp contains C∗(H) . The main
advantage of dealing with ΩL rather than ΩH is that ΩL only depends on the geometry of L . For instance,
if L is given by a rank p lattice R in Rp , then the hull of L is Rp/R . Actually in this case C∗(H) can be
computed by using Bloch theory [6] and one can check that C∗(H) = C(B)⊗K , where K is the elementary
C∗-algebra of compact operators on a separable Hilbert space and B is the Brillouin zone, i.e. B = Rp/R∗
where R∗ is the reciprocal lattice of R .

On the other hand, one can also define the integrated density of states E 7→ N (E) , associated with the
Schrödinger operator H, see [6]. Recall that N (E) is the number of states (per unit of volume) corresponding
to eigenvalues less or equal to E . The remarkable result of [9] is that the values of the integrated density
of states on gaps of the spectrum, are contained in a countable subgroup of R that only depends on L . If
P is a Rp−invariant ergodic probability measure on ΩL , then P induces a trace τP on the crossed product
C∗−algebra C(ΩL)oRp, and this trace extends to the corresponding von-Neumann algebra. Let us denote
by χ]−∞,E] the characteristic function of the set ] −∞, E] . In [6], J. Bellissard stated the so-called Shubin
formula for H [55]:

N (E) = τP(χ]−∞,E](H)) .
So, if E belongs to a spectral gap of H , then χ]−∞,E](H) is an idempotent which lives in the C∗-algebra
C(ΩL) o Rp (recall that H is bounded below). In consequence and according to the Shubin formula, the
values of N on spectral gaps of H are contained in the range of the additive map

τP∗ : K0(C(ΩL)oRp) −→ R ,
where τP∗ is the morphism induced in K−theory by the trace τP.

We now focus on the case where the point set L is a quasicrystal which is obtained by the cut-and-
project method (see [27] and also [9]). With such a point set, J. Bellissard, E. Contensou and A. Legrand
have associated in [11] (see also [9]) a useful discrete minimal dynamical system (TL,Zp) which is Morita
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equivalent to the dynamical system (ΩL,Rp), and such that TL is a Cantor set. Moreover, there is a canonical
ergodic invariant probability measure µ on TL such that

τP∗ (K0(C(ΩL)oRp)) = τµ
∗ (K0(C(TL)o Zp)),

where τµ is the trace on C(TL)o Zp induced by µ . Eventually, the image under τP∗ of the K-theory group
K0(C(ΩL)oRp), and thus the gap-labelling group, is predicted by the following conjecture [6]:

Let Ω be a Cantor set equipped with an action of Zp and with a Zp-invariant measure µ . The measure
µ induces as above a trace τµ on the crossed product C∗-algebra C(Ω)o Zp . Let us denote by Z[µ] the
additive subgroup of R generated by µ-measures of compact-open subsets of Ω . We make the assumption
that Ω has no non-trivial compact-open invariant subset (this is clearly the case if the action of Zp is minimal,
which was the assumption in the original conjecture).

Conjecture 1 (The Bellissard gap-labelling conjecture) Under the above assumptions, we have:

τµ
∗ (K0(C(Ω)o Zp)) = Z[µ].

Many results in low dimensions have been obtained these last years [11, 10, 23], they all confirm the
conjecture. The goal of the present paper is to give a general and uniform proof of the Bellissard conjecture
for all dimensions. The method that we have adopted is new and is based on the index theory for laminations
[20, 47] and on the properties of cyclic homology. It opens up the way to treat more complicated cocycles
and these will be handled in forthcoming papers.

The proof goes more precisely as follows. We use the Baum-Connes isomorphism associated with the free
abelian group to reduce the problem to the computation of the image under the trace, of indices of twisted
Dirac operators along the leaves of a mapping-torus associated with the quasi-crystal. We then apply the
Connes’ measured index theorem for foliated spaces, as stated in [47]. The final argument is the integrality
of the top-dimensional component of the longitudinal Chern character. In the process, we also obtain many
spectral sequence results concerning periodic cyclic homology and longitudinal cohomology, and also the
naturality of the longitudinal Chern character. As pointed out to us by J. Bellissard, the method used in
the present paper works equally and with only minor modifications, for more complicated aperiodic solids.

The last step of the proof, namely the integrality of the top-dimensional component of the Chern character
relies on a theorem of Forrest-Hunton [30] stating that the range of this Chern character is homogeneous.
The referee of the present paper pointed out that there might be a mistake in the proof of this homogeneity
in [30]. We are currently working on a new proof of the integrality theorem based on transverse index theory.

It is worthpointing out that two different proofs of the above conjecture have been recently and inde-
pendently obtained in [36] and [7]. The first one is very similar to our method but rather uses a transfer
technique, while the second one uses branched oriented flat manifolds.

The contents of this paper are more precisely as follows. In the first section, we recall the gap-labelling
conjecture and explain how the Baum-Connes map reduces the problem to the index theorem. In the second
section, we define the longitudinal cohomology and compute its top-dimensional component. In the third
section, we compute the periodic cyclic (co)homology of the quasi-crystal and study an independently inter-
esting longitudinal periodic cyclic homology which is used in the sequel. The longitudinal Chern character
is also defined and studied at the end of this section. The last section is devoted to the proof of the conjecture.

Acknowledgements. We are indebted to J. Bellissard for explaining the gap-labelling problem to us and for
his constant encouragements. We are also indebted to A. Connes for reading a previous version and for his
helpful remarks during the preparation of this work. The results of the present paper were announced in [14]
and in a preliminary version which circulated since then and which appeared in the first author’s habilitation.
We would like to thank E. Contensou, T. Fack, J. Heitsch, J. Hunton, S. Hurder, J. Kellendonk, A. Legrand,
J.-M. Lescure, R. Nest, V. Nistor, J. Renault, C. Schochet, G. Skandalis, B. Tsygan and A. Wassermann for
several helpful discussions. Finally, we would like to thank the referee for his helpful remarks.
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1. The K-theory approach to quasi-crystals

In this section, we shall state the Bellissard conjecture for quasi-crystals. We also define the longitudinal
analytic index as a K-theory class of the C∗-algebra of the quasi-crystal and compute this class for longitu-
dinal twisted Dirac operators in Kasparov’s KK-theory. In particular, we explicitely prove that it induces
the Baum-Connes isomorphism.

1.1. Preliminaries on quasi-crystals. Let Ω be a totally disconnected compact space. Assume that the
group Zp acts on Ω by homeomorphisms and that there exists a Zp-invariant positive measure on Ω. We
fix such invariant probability measure and denote it by µ. The homeomorphism of Ω corresponding to the
integer n ∈ Zp will be denoted by n for short.

The action of Zp on Ω induces an action of Zp on the C∗-algebra C(Ω) of continuous complex valued
functions on Ω. Thus we can define the crossed product C∗-algebra C(Ω)o Zp of C(Ω) by Zp [52]. The
measure µ induces a trace τµ on the C∗-algebra C(Ω)o Zp which, for a finite sum f =

∑
n∈Zp fnUn ∈

C(Ω)o Zp, is given by the following formula:

τµ(
∑

n∈Zp

fnUn) = µ(f0).

We thus obtain a group homomorphism τµ
∗ : K0(C(Ω)o Zp) → R by setting:

τµ
∗ ([e]− [e′]) :=

∑

i

τµ(eii)−
∑

i

τµ(e′ii)

where e and e′ are self-adjoint idempotents in M∞(C(Ω)o Zp). Here K0(C(Ω)o Zp) denotes the K-theory
group of the C∗-algebra C(Ω)o Zp.

In what follows, we shall denote by C(Ω,Z) the ring of continuous integer valued functions on Ω and by
Z[µ] the additive subgroup of R generated by µ-measures of compact-open subsets of Ω. Note that we also
have:

Z[µ] =
{∫

Ω

h dµ, h ∈ C(Ω,Z)}
}
.

It is easy to see that K0(C(Ω)) ' C(Ω,Z). We shall denote by C(Ω,Z)Zp the coinvariants of the action of
Zp on C(Ω,Z), i.e. the quotient of C(Ω,Z) by the subgroup generated by elements of the form n(f) − f ,
where f ∈ C(Ω,Z) and n ∈ Zp.

For simplicity, we shall assume in the whole paper that the only Zp-invariant functions of C(Ω,Z) are
the constant functions. This is true for example when the action is minimal. By a remarkable result of
J. Bellissard and his collaborators [6, 9], the gap-labelling problem for a quasi-crystal is reduced to the
computation of the image of the K-theory group K0(C(Ω)o Zp) under the additive map τµ

∗ induced by the
trace τµ, a purely mathematical question.

In the case p = 1 , J. Bellissard proved in [6] (see also [23]), using the Pimsner-Voiculescu six term exact
sequence, that the inclusion C(Ω) ↪→ C(Ω)oZ induces an isomorphism C(Ω,Z)Z ' K0(C(Ω)oZ) and thus
that:

τµ
∗ (K0(C(Ω)o Z)) = Z[µ] .

For p = 2 , the computation of K0(C(Ω)oZ2) was carried out by A. van Elst in [58] (see also [11]) using
the Pimsner-Voiculescu exact sequence twice , The result is:

K0(C(Ω)o Z2) ' C(Ω,Z)Z2

⊕
Z.

More precisely, in this case:

• The inclusion C(Ω,Z)Z2 ↪→ K0(C(Ω)o Z2) is induced by C(Ω) ↪→ C(Ω)o Z2;
• The inclusion Z ↪→ K0(C(Ω) o Z2) maps the canonical generator of Z to the image, under the

morphism induced by the inclusion C∗r (Z2) → C(Ω)o Z2 , of the Bott generator in the K-theory of
the C∗-algebra C∗r (Z2) ' C(T2).
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Recall that the Bott generator is the unique traceless element of K0(C(T2)) with Chern character equal to
the normalized volume form of T2 . Therefore the above computation gives again:

τµ
∗ (K0(C(Ω)o Z2)) = Z[µ].

In the case p = 3, the computation of τµ
∗ (K0(C(Ω) o Z3)) was recently performed in [10] and gave the

same result. These computations lead J. Bellissard to state the following conjecture (see [10] and [9]):

Conjecture 1. For every p ≥ 1, we have:

τµ
∗ (K0(C(Ω)o Zp)) = Z[µ].

A positive answer to this conjecture provides a complete description of the gaps in the spectrum of the
Schrödinger operator associated with the quasi-crystal, see [6]. Let us point out immediately that one of the
two inclusions is quasi-trivial.

Lemma 1. Z[µ] ⊂ τµ
∗ (K0(C(Ω)o Zp)).

Proof. If Θ is any compact-open subset of Ω , we denote by χΘ the characteristic function of Θ , and
by [χΘ] the class of χΘ in K0(C(Ω)) . Then the trace of the image of the element [χΘ] under the map
K0(C(Ω)) → K0(C(Ω)oZp) is equal to the measure of Θ . Now observe simply that K0(C(Ω)) is generated
by the classes of characteristic functions of compact-open subsets of Ω . ¤

Lemma 1 shows that the Bellissard conjecture actually reduces to the inclusion τµ
∗ (K0(C(Ω)oZp)) ⊂ Z[µ].

As we have recalled above, the Bellissard conjecture has been verified for small p . Let us observe now a
simple fact that will simplify our proof.

Lemma 2. If the Bellissard conjecture is true for every p ∈ 2N∗, then it is automatically true for every
p ≥ 1.

Proof. We can embed the crossed product C∗-algebra C(Ω)oZp in the crossed product C∗-algebra C(Ω)o
Zp+1 where Zp+1 acts on Ω through the projection Zp+1 → Zp corresponding to the p first variables. Hence,
the measure µ is also invariant under the action of Zp+1 and induces a trace on C(Ω)oZp+1, we also denote
this trace by τµ. The injection C(Ω)oZp ↪→ C(Ω)oZp+1 agrees with the traces and therefore, the following
diagram is commutative:

K0(C(Ω)o Zp) K0(C(Ω)o Zp+1)

R

HHHHjτµ
∗

-

©©©©¼ τµ
∗

¤

We shall therefore assume when necessary that p is even.

1.2. The longitudinal analytic index. We gather in this subsection some basic definitions and properties
about the index theory for the foliated mapping torus VΩ associated with the quasi-crystal. Good references
of the general material used in this section are, among others, [19, 20, 21, 22, 54].

As before, the space Ω is a Cantor set, and it is equipped with an action of Zp by homeomorphisms. The
mapping torus of the action of Zp on Ω is the total space of a flat bundle. It is more precisely the quotient
space:

VΩ = Ω×Zp Rp := (Ω× Rp)/Zp,

where Zp acts diagonally on Ω×Rp and the action of Zp on Rp is the usual one by translations. Recall that
we have assumed that Ω has no non-trivial invariant compact-open subset.

Lemma 3. The mapping torus VΩ is connected.
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Proof. Let f be an integer valued continuous function on VΩ. Let us denote by π : Ω × Rp → VΩ the
projection. Then the composition g = f ◦π : Ω×Rp → Z is a Zp-invariant integer valued function on Ω×Rp.
Therefore for any ω ∈ Ω, the function gω : Rp → Z defined by gω(x) = g(ω, x) is also continuous. But since
Rp is connected this implies that gω does not depend on x and is a constant function. Hence the function g
only depends on the Ω-component and is Zp-invariant. This shows by hypothesis that g must be constant
and finally that f is constant. ¤

Denote by G̃ the groupoid Ω × Rp × Rp, which is the continuous family, indexed in Ω of the product
groupoids {ω} × Rp × Rp, ω ∈ Ω. The group Zp acts diagonally, freely by groupoid homeomorphisms on
G̃, and the quotient groupoid will be denoted by G. Notice that this groupoid has unit space VΩ and that
if x = [ω,m] ∈ VΩ then the set Gx of those elements of G which end at x is a smooth manifold and it is
diffeomorphic to Rp.

Denote by Tp the flat p-torus Tp := Rp/Zp. Any fibre of π : VΩ → Tp is a transversal to the flat
foliation which in addition cuts all the leaves. The restriction of the groupoid G to such a transversal is then
the crossed product groupoid Ω o Zp . Hence the C∗-algebra of the groupoid G can be identified with the
C∗−algebra [C(Ω)oZp]⊗K(H), where C(Ω)oZp is the reduced crossed product C∗-algebra and K(H) is
the elementary C∗-algebra of compact operators in a separable Hilbert space H [33].

To capture K-theory invariants of the transverse structure of the foliated space VΩ, one has to compute
the K-theory of the C∗-algebra C(Ω)oZp. One way to construct elements of this K-theory group is to use
longitudinal elliptic operators and longitudinal index theory on the foliated space VΩ.

Let E be a continuous longitudinally smooth vector bundle over VΩ. We shall denote by Ẽ the pull back
of E to Ω × Rp equipped with the obvious action of Zp . The restriction of Ẽ to each {ω} × Rp allows to
define the space ψ∞(Ω×Rp, Ẽ) of continuous families (Tω)ω∈Ω of classical pseudodifferential operator on Rp

with coefficients in the vector bundle Ẽ. The algebra ψ∞(Ω×Rp, Ẽ) fibers continuously over Ω with typical
fibre the space ψ∞(Rp,CN ) (where ψ∞(Ω×Rp, Ẽ) is endowed with the topology of kernels, see [4, 12, 50]).
Note that the group Zp acts by automorphisms on ψ∞(Ω× Rp, E) and we get in this way a Zp-equivariant
fibration.

Definition 1. (1) A pseudodifferential operator P of order m on the foliated bundle VΩ, with coefficients
in the longitudinally smooth continuous vector bundle E is a continuous section

P : Ω −→ ψm(Ω× Rp, Ẽ),

which is Zp-equivariant.
(2) The principal symbol of a pseudodifferential operator P is then defined as the family σ(P ) =

(σω(P ))ω∈Ω such that σω(P ) is the principal symbol of the operator Pω on Rp. Hence σ(P ) is a continuous
Zp-equivariant section

σ(P ) ∈ C∞,0
m (Ω× (T ∗Rp rRp),End(π∗Ẽ)),

where π : Ω×(T ∗RprRp) → Ω×Rp is the projection and C∞,0
m means continuous smooth in the Rp-direction

sections which are positively m-homogeneous, i.e. such that:

σ(ω, x, λξ) = λmσ(ω, x, ξ), ∀λ > 0.

A pseudodifferential operator P of order m is elliptic if for any ω ∈ Ω, σ(P )(ω, x, ξ) is an automorphism
of the vector space Eω,x. This means that for any ω ∈ Ω, Pω is elliptic. We point out that with P there is
an associated family of Schwartz kernels indexed by Ω. Since this family is invariant under the action of Zp ,
we can construct an operator P 0 on the quotient space VΩ with coefficients in the vector bundle E. Locally
the total symbol of P 0 only depends on the covectors tangent to the leaves and is what is usually called a
longitudinal pseudodifferential operator [20]. It is (longitudinally) elliptic if P is elliptic.

We shall only consider here longitudinal pseudodifferential operators on VΩ with Zp−compactly supported
distributional kernel and we denote by ψm(VΩ|Ω;E) the space of such operators. We set:

ψ∞(VΩ|Ω;E) =
⋃

m∈Z
ψm(VΩ|Ω;E) and ψ−∞(VΩ|Ω;E) =

⋂

m∈Z
ψm(VΩ|Ω;E).
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The Schwartz theorem enables to identify ψ−∞(VΩ|Ω;E) with the ideal C∞,0
c (G,End(E)) of longitudinally

smooth continuous sections of the bundle End(E) = Hom(r∗E, s∗E) over G [50]. Thus we have a short exact
sequence of algebras

(1) 0 → C∞,0
c (G,End(E)) ↪→ ψ∞(VΩ|Ω;E) −→ A(VΩ|Ω;E) → 0,

where the quotient algebra A(VΩ|Ω;E) is the algebra of longitudinal complete symbols on the foliated space
VΩ. This is a filtered algebra, the filtration being given by the order of the pseudodifferential operators. The
symbol map induces an isomorphism between the Z-graded algebra of the filtered algebra A(VΩ|Ω;E) and
the Z-graded algebra of Zp-equivariant homogeneous sections of End(Ẽ) over Ω× (T ∗RprRp). The classical
parametrix theorem is true in the foliation case and we have [47][Proposition 7.12]:

Proposition 1. If P ∈ ψ∞(VΩ|Ω;E) is elliptic then its class in A(VΩ|Ω;E) is invertible.

In other words, compactly supported elliptic pseudodifferential operators admit parametrices modulo the
smooth algebra C∞,0

c (G,End(E)). Any elliptic pseudodifferential operator as in Definition 1 thus defines an
index class obtained using the connecting map:

∂ : K1(A(VΩ|Ω;E)) −→ K0(C∞,0
c (G,End(E))),

associated with the short exact sequence (1). More precisely:

Definition 2. Let as before E be a vector bundle over VΩ. Let P be a uniformly supported elliptic
longitudinal pseudodifferential operator on VΩ with coefficients in E. Then the image of the class [σ(P )]
of the principal symbol of P under the connecting map ∂ is called the analytic index of P and denoted by
IndVΩ(P ).

The above algebraic index class can also be defined using the language of quasi-isomorphisms [19] and is
useful in view of using higher cyclic cohomology techniques [15]. In the sequel, we shall need the C∗−algebraic
index as defined in [20]. It is worthpointing out that the extension map together with Morita equivalence,
allows to get rid of the bundles and to end up with an index class in the K−theory of Connes C∗−algebra.
This latter then coincides with the index class given in [20], see also [19]. Recall that Connes C∗-algebra
of the foliation is the reduced C∗-algebra of the holonomy groupoid [20]. Again using Morita equivalence
asociated with a complete transversal, the analytic index can also be viewed as an element of K0(C(Ω)oZp),
where C(Ω)oZp is the crossed product C∗-algebra. We shall also denote this latter (when no confusion can
occur) by IndVΩ(P ). Finally, we shall also need a KK−description of the analytic index and we proceed
now to give the corresponding representative [22, 38].

Fix a continuous hermitian structure on the vector bundle E, which is longitudinally smooth. The
space C∞,0

c (G, r∗E) of compactly supported continuous longitudinally smooth sections of r∗E over G is then
endowed with a natural structure of a prehilbertian module over the regular convolution algebra C∞,0

c (G)
[22]. More precisely, given ξ, ξ′ ∈ C∞,0

c (G, r∗E) and k ∈ C∞,0
c (G), we set:

(ξk)[ω,m,m′] :=
∫

Rp

ξ[ω,m, n]k[ω, n,m′]dn and 〈ξ, ξ′〉[ω,m,m′] :=
∫

Rp

〈ξ[ω, n,m], ξ′[ω, n,m′]〉dn.

The completion of C∞,0
c (G, r∗E) with respect to the above C∗(G)-valued inner product (where C∗(G) is the

reduced C∗−algebra of the groupoid G) is then a Hilbert module over C∗(G) that we denote by εE . In terms
of continuous fields of Hilbert spaces over the space of leaves as described in [20], εE is the Hilbert module
associated with the field of Hilbert spaces H[ω,m] := L2(G[ω,m]; r∗E) where

G[ω,m] = {[ω,m,m′],m′ ∈ Rp} ' Rp.

An elliptic pseudodifferential operator P then gives rise to a well defined operator on the Hilbert module εE
that we still denote by P for simplicity, see [22]. This longitudinal operator corresponds, when the order k
of P is zero and for any [m,ω] ∈ VΩ to the operator Pω acting in a copy of Rp since G[m,ω] ∼= Rp. In general
one needs first to multiply P by a self-adjoint invertible longitudinal pseudodifferential operator of order −k,
using for instance the Zp-invariant Laplace operator on Rp [3].



8 M. BENAMEUR AND H. OYONO

Now using the trivial pointwise representation ρ of the C∗-algebra C(VΩ) of continuous complex valued
functions on VΩ, we obtain a triple (εE , ρ, P ) which turns out to be a Kasparov triple over the pair of C∗-
algebras (C(VΩ), C∗(G)). Finally, we get a class [P ] := [(εE , ρ, P )] in the Kasparov groupKK(C(VΩ), C∗(G)).
Since VΩ is compact, the projection p : VΩ → {pt} induces an element [p] ∈ KK(C, C(VΩ)). Now the analytic
index of P can be reinterpreted in Kasparov’s theory as the class in KK(C, C∗(G)) given by:

IndVΩ(P ) = [p]⊗C(VΩ) [P ],

where ⊗C(VΩ) is Kasparov product over the C∗−algebra C(VΩ) .

1.3. K-theory of the crossed product. The index map IndVΩ furnishes a complete computation of the
K-theory group of the reduced crossed product C∗-algebra C(Ω) o Zp. We prove below that the analytic
index map enables to construct an isomorphism:

µZ
p

Ω : K0(C(VΩ)) ' K0(C(Ω)o Zp) .

Recall that p = 2r is even. The map µZ
p

Ω is roughly speaking integration along the leaves in K-theory. Let
∂ : L2(Rp, S+) → L2(Rp, S−) be the Dirac operator on Rp , where S+ and S− are the two fundamental
spin (trivial) bundles over Rp . Note that as complex vector bundles, S+ and S− are isomorphic. Then ∂ is
Zp-invariant and defines by classical arguments an equivariant K-homology class [38]:

[∂] ∈ KKZp

(C0(Rp),C).

This operator yields a well defined longitudinal operator on VΩ which is elliptic along the leaves and that we
call the longitudinal Dirac operator. It does not depend on the Ω-component.

Let now e be a projection in Mn(C(VΩ)) and let E be the associated continuous hermitian vector bundle
over VΩ. Let ẽ be the Zp−invariant projection in C(Rp ×Ω,Mn(C)) defined by e. We can assume that E is
differentiable in the Rp direction, or equivalently that the projection ẽ is smooth in the Rp−variable. The
longitudinal Dirac operator ∂e

Ω with coefficients in E is a longitudinal differential operator of order 1, which
is elliptic along the leaves of the foliated space VΩ. Recall that this operator is given by the continuous
family (∂e

Ω)ω:

(∂e
Ω)ω := ẽω(∂⊗idCn)ẽω : ẽω(L2(Rp, S+ ⊗ Cn)) −→ ẽω(L2(Rp, S− ⊗ Cn)),

where ω runs over Ω and ẽω is the idempotent x → ẽ(w, x) . Notice that the two coefficient bundles are
isomorphic. According to Section 1.2, ∂e

Ω admits a K-theory index IndVΩ ∂
e
Ω,Rp which belongs to the K-

theory group K0(C∗(G)) ' K0(C(Ω)o Zp) . It is easy to check that the map e 7→ IndVΩ(∂e
Ω) induces a well

defined morphism from the K-theory of VΩ to the K-theory of the C∗-algebra C(Ω)o Zp .

Lemma 4.
The longitudinal index of the operator ∂e

Ω can be represented by the unbounded Kasparov K−cycle (ε+, ε−, Te)
given by:

• ε± is the Z2-graded C(Ω) o Zp−Hilbert module completion of ẽ[C∞,0
c (Ω × Rp, S±)n] for the inner

product:
〈σ±, σ′±〉(ω, k) = 〈σ±(ω, ·), k(σ′±)(ω, ·)〉;

• The right action of C(Ω)o Zp is given by

σ± · h(ω, t) =
∑

k∈Zp

σ±(kω, t+ k)h(kω, k)

• The operator Te : ε+ → ε− is induced by ẽ ◦ (IdC(Ω) ⊗ ∂) on ẽ[C∞,0
c (Ω× Rp, S+)n].

Proof. The space Ω can be viewed as a transversal of the groupoid G via the inclusion ω 3 Ω ↪→ (ω, 0) ∈ VΩ .
The restriction of the groupoid G to this transversal is thus {[ω, n, n′] ∈ Ω × Zp × Zp}. This restricted
groupoid is then isomorphic to the crossed product groupoid Ωo Zp via (ω, n, n′) → ((−n)(ω), n′ − n)
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The Morita equivalence between C∗(G) and the C∗-algebra C(Ω)oZp is implemented by the imprimitivity
bimodule εΩ which is the completion of the algebra C∞,0

c (Ω×Rp) of compactly supported continuous, smooth
in the Rp−variable, functions on Ω× Rp , with respect to the C(Ω)o Zp-valued inner product

〈ξ, ξ′〉(ω, k) := 〈ξ(ω, ·), k(ξ′)(ω, ·)〉, ξ, ξ′ ∈ C∞,0
c (Ω× Rp)

The left action of C∗(G) on εΩ is given for any f ∈ C∞,0
c (G) and ξ ∈ C∞,0

c (Ω× Rp) by

f · ξ(ω, t) =
∫

Rp

f(ω, t, s)ξ(ω, s)ds.

The right action of C(Ω)o Zp is given for any ξ ∈ C∞,0
c (Ω× Rp) and any h ∈ Cc(Ω× Zp) by

ξh(ω, t) =
∑

n∈Zp

ξ(nω, t+ n)h(nω, n) .

The tensor product over C∗(G) of ε±E and εΩ is then isomorphic to the Hilbert C(Ω)oZp-module completion
of ẽ(Cc(Ω×Rp, S±)n) for the inner product and right action announced, this isomorphism being induced by

σ± ⊗ ξ 7−→
[
(ω, t) 7−→ σ± · ξ(ω, t) =

∫

Rp

σ±[ω, t, s]ξ(ω, s)ds
]
,

where, if we denote by SE,Ω
± the coefficient bundles of the longitudinal differential operator ∂e

Ω :

• σ± is a section in C∞,0
c (G, r∗SE,Ω

±) smooth in the Rp × Rp−variable, and
• ξ is a function of C∞,0

c (Ω× Rp) .
In particular, elements σ± · ξ form a dense subspace of e(Cc(Ω × Rp, S±)n) . Moreover, since the operator
on ε±E ⊗C∗(G) ε

Ω is obtained by tensoring ∂e
Ω with the identity of εΩ, the image of σ± · ξ under this operator,

and through the above isomorphism, is (∂e
Ωσ+) · ξ = ∂e

Ω(σ+ · ξ) . ¤

Theorem 1. The map e 7→ IndVΩ ∂
e
Ω,Rp induces an isomorphism:

µZ
p

Ω : K0(C(VΩ)) '−→K0(C(Ω)o Zp).

Proof. The action of Zp on Ω×Rp is free and proper so that the two C∗-algebras C(VΩ) and C0(Ω×Rp)oZp

are Morita equivalent. Hence we have an isomorphism

δ : K0(C(VΩ)) −→ K0(C0(Ω× Rp)o Zp).

More precisely, the isomorphism δ is the cup product by the class of the Kasparov K−cycle (ε, φ, 0) in
KK(C(VΩ), C0(Ω× Rp)o Zp), where [51, subsection 4.3]:

• ε is the bimodule completion of Cc(Ω× Rp) for the C0(Ω× Rp)o Zp-valued inner product:

〈f, g〉(ω, t, k) := f(ω, t)k(g)(ω, t)

• The C0(Ω× Rp)o Zp-right module structure is given for f ∈ Cc(Ω× Rp) and h ∈ Cc(Ω× Rp × Zp)
by

f · h (ω, t) =
∑

k∈Zp

f(kω, kt)h(kω, kt, k).

• φ is the obvious action of C(VΩ) as bounded functions on Rp × Ω.

On the other hand, denote by 1Ω the class in KKZ
p

(C(Ω), C(Ω)) which corresponds to the identity
homomorphism IdC(Ω) : C(Ω) → C(Ω). The cup product

τΩ[∂] := 1Ω ⊗C [∂],

of 1Ω by the class of the Dirac operator on Rp, belongs to KKZ
p

(C0(Ω × Rp), C(Ω)). If JZp is now the
Kasparov transform [39]:

JZp : KKZ
p

(C0(Ω× Rp), C(Ω)) −→ KK(C0(Ω× Rp)o Zp, C(Ω)o Zp)
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then the corresponding class JZp(τΩ[∂]) in KK(C0(Ω × Rp) o Zp, C(Ω)o Zp) enables to define the Dirac
morphism β as the cup product by JZp(τΩ([∂])):

β = ⊗C0(Ω×Rp)oZpJZp(τΩ[∂]) : K0(C0(Ω× Rp)o Zp)) −→ K0(C(Ω)o Zp).

The element JZp(τΩ[∂]) is represented by the Kasparov K−cycle:

([C(Ω)⊗ L2(Rp, S+)]o Zp, [C(Ω)⊗ L2(Rp, S−)]o Zp, φ, IdC(Ω)⊗∂),

where
IdC(Ω)⊗∂ : [C(Ω)⊗ L2(Rp, S+)]o Zp −→ [C(Ω)⊗ L2(Rp, S−)]o Zp,

is defined by inflating ∂, and φ is the obvious representation of C0(Ω× Rp)o Zp.
Now, because our group Zp satisfies the Baum-Connes conjecture (the Kasparov γ-element is trivial for

Zp), the dual-Dirac construction furnishes an inverse for β. In particular we know that β is an isomorphism
(see [39]).

The composite map β ◦ δ is then an isomorphism that we now identify with the above index map µZ
p

Ω .
Given a projection e ∈Mn(C(VΩ)), the tensor product over C0(Ω×Rp)oZp of e((C0(Ω×Rp)oZp)n) by

[C(Ω) ⊗ L2(Rp, S±)] o Zp coincides with the C(Ω)o Zp-Hilbert module completion of e(Cc(Ω × Rp, S±)n)
for the inner product:

〈σ, σ′〉(ω, k) = 〈σ(ω, ·), k(σ′(ω, ·))〉,
where k(σ′) is the translated of σ′ by k . The operator being then given by

σ 7−→ e[(IdC(Ω) ⊗ ∂) · σ)].

The proof is complete thanks to the description of the index map given in Lemma 4. ¤

2. Longitudinal de Rham cohomology

The goal of the present section is to define and study the longitudinal de Rham cohomology. This
cohomology will be the receptacle for the longitudinal Chern character and allows to state the index theorem.

2.1. The longitudinal de Rham complex. In this subsection, we describe the longitudinal de Rham
cohomology of the foliated mapping torus VΩ. Since the relative case will also be needed, we also give the
corresponding definitions for relative open pairs of VΩ. Let Ωk

b (Rp) be the space of k-differential forms on
the vector space Rp with bounded derivatives of all orders.

Definition 3. A (real) longitudinal differential k-form on VΩ is a Zp-equivariant continuous map φ : Ω →
Ωk

b (Rp).

We denote by Ωk
` (VΩ,R) the space of longitudinal differential k−forms on VΩ . If φ is a longitudinal

k−form, its longitudinal differential d`(φ) is by definition the longitudinal (k + 1)-differential form which is
given by the Zp-equivariant map ω 7→ d(φ(ω, ·)) where d is the de Rham differential on Rp. It belongs to
Ωk+1

` (VΩ,R) as can be checked easily. So:

d` : Ωk
` (VΩ,R) −→ Ωk+1

` (VΩ,R)

provides a differential structure on the graded vector space Ω∗` (VΩ,R) =
⊕

Ωk
` (VΩ,R) and satisfies d`◦d` = 0.

The cohomology of the complex (Ω∗` (VΩ,R), d`) will be denoted by

H∗` (VΩ,R) =
⊕

k≥0

Hk
` (VΩ,R).

Remark 1. It is proved in [47] that H∗` (VΩ,R) is also the cohomology of the sheaf of continuous functions
which are locally constant in the leaf direction. This sheaf is, in our situation, the sheaf of continuous and
equivariant functions on an equivariant open subset of Ω× Rp , constant in the Rp−direction. If H∗(VΩ,R)
denotes the Čech cohomology groups of VΩ with real coefficients, we then have a well defined morphism:

H∗(VΩ,R) −→ H∗` (VΩ,R)

induced by the natural morphism of sheaves.
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If φ is a longitudinal differential form, the support of φ is by definition the image of the support of
(ω, t) 7→ φ(ω, t) under the projection Ω× Rp → VΩ . The support of φ is thus a compact subset of VΩ . Let
now U be an open subset of VΩ and let Ω∗`,c(U,R) =

⊕
Ωk

`,c(U,R) be the space of longitudinal differential
k−forms with support in U . The restriction of the longitudinal differential d` to Ω∗`,c(U,R) preserves it and
we get a subcomplex (Ω∗`,c(U,R), d`) of the longitudinal complex (Ω∗` (VΩ,R), d`). We denote by

H∗`,c(U,R) =
⊕

Hk
`,c(U,R)

the cohomology of this subcomplex.
We shall also use the relative longitudinal cohomology for open pairs, i.e. pairs (U0, U1) of open subsets

of VΩ such that U0 ⊂ U1 .

Definition 4. The relative longitudinal complex associated with an open pair (U0, U1), denoted Ω∗`,c(U0, U1,R),
is the quotient complex

0 → Ω∗`,c(U0,R) → Ω∗`,c(U1,R) → Ω∗`,c(U0, U1,R) → 0.

The cohomology of this complex is called the relative longitudinal cohomology for the pair (U0, U1) and is
denoted by H∗`,c(U0, U1,R) .

From classical homological algebra, we get:

Proposition 2. The following long exact sequence holds:

· · · → Hk
`,c(U0,R) → Hk

`,c(U1,R) → Hk
`,c(U0, U1,R) → Hk+1

`,c (U0,R) → · · ·
2.2. The top dimensional longitudinal cohomology. We end this section by studying the top dimension
group of longitudinal cohomology of VΩ . In particular, we indentify this group with the coinvariants of the
real valued continuous functions on Ω for the action of Zp (Theorem 2).

Proposition 3. For any φ ∈ Ωp
` (VΩ,R), we define a continuous function ΨZp(φ) on Ω by setting:

ΨZp(φ)(ω) :=
∫

]0,1[p
φ(ω, x), ω ∈ Ω.

Then ΨZp induces a map from Hp
` (VΩ,R) to the coinvariants C(Ω,R)Zp of the algebra C(Ω,R) of continuous

real valued function on Ω by the action of Zp i.e. the quotient of C(Ω,R) by the subspace generated by
elements g − n(g) , where g ∈ C(Ω,R) and n ∈ Zp .

Proof. We need to show that the image of an exact longitudinal differential form of degree p is in the
subspace generated by elements of the form n(g)− g where n ∈ Zp and g ∈ C(Ω). Actually, it is enough to
check it for longitudinal differential forms d`(φ) where

φ(ω, t1, · · · , tp) = f(ω, t1, · · · , tp)dt1 · · · d̂tj · · · dtp,
and f is a Zp-invariant function on Ω× Rp which is smooth in the Rp-direction. But then,

ΨZp(d`φ)(ω) =
∫

]0,1[p
(∂tjf)(ω, t1, · · · , tp)dt1 · · · dtp,

and with respect to tj , the integral gives:

f(ω, t1, · · · , tj−1, 1, tj+1, · · · , tp)− f(ω, t1, · · · , tj−1, 0, tj+1, · · · , tp).
Hence, if we denote by g the function on Ω defined by:

g(ω) :=
∫

]0,1[p−1
f(ω, t1, · · · , tj−1, 0, tj+1, · · · , tp)dt1 · · · d̂tj · · · dtp,

then we obtain:
ΨZp(d`φ) = ej(g)− g,

with ej being the jth vector of the canonical basis of Zp. ¤
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Theorem 2. The transform ψZp is an isomorphism, i.e. Hp
` (VΩ,R) ∼= C(Ω,R)Zp .

Proof. Let ϕ be a smooth compactly supported function on ]0, 1[ such that:∫

]0,1[

ϕ(s)ds = 1.

The space Ωp
` (VΩ,R) is composed of differential forms fdt1∧· · ·∧dtp where f is a Zp−invariant, continuous

smooth in the Rp−direction function on Ω×Rp . We define the operator K from Ωp
` (VΩ,R) to Ωp−1

` (VΩ,R)
by the following formula:

(2) K(fdt1 ∧ · · · ∧ dtp)(ω, t1, · · · , tp) :=
p∑

j=1

(−1)j−1

[∫

]0,tj [×]0,1[p−j

f(ω, t1, · · · , tj−1, sj , · · · , sp)dsj · · · dsp −
(∫

]0,1[p−j+1
f(ω, t1, · · · , tj−1, sj , · · · , sp)dsj · · · dsp

)
×

(∫

]0,tj [

ϕ(s)ds

)]

ϕ(tj+1) · · ·ϕ(tp)dt1 ∧ · · · ∧ d̂tj ∧ · · · dtp,
if (t1, · · · , tp) ∈]0, 1]p and we extend this form to Rp by requiring Zp−invariance. We claim that K(fdt1 ∧
· · · ∧ dtp) belongs to Ωp−1

` (VΩ,R). Let us fix an integer k ∈ {1, · · · , p}. As before, we denote by ek be the
kth vector of the canonical basis of Zp. Then we must show that if (t1, · · · , tk−1, tk+1 · · · , tp) ∈]0, 1[p−1 , we
have:

K(fdt1 ∧ · · · ∧ dtp)(ek(ω), t1, · · · , tk−1, 1, tk+1 · · · , tp) = K(fdt1 ∧ · · · ∧ dtp)(ω, t1, · · · , tk−1, 0, tk+1 · · · , tp).
This is achieved by direct inspection. If j > k, then the invariance of f gives immediately the equality of
the terms corresponding to j in the expression of the sum (2). If j < k, then since ϕ is compactly supported
in ]0, 1[, the terms corresponding to j in the expression of the sum (2) for (ek(ω), t1, · · · , tk−1, 1, tk+1 · · · , tp)
and for (ω, t1, · · · , tk−1, 0, tk+1 · · · , tp) are equal to zero.

Now if j = k, then
∫

]0,tj=1[×]0,1[p−j

f(ω, t1, · · · , tj−1, sj , · · · , sp)dsj · · · dsp−
(∫

]0,1[p−j+1
f(ω, t1, · · · , tj−1, sj , · · · , sp)dsj · · · dsp

)
×

(∫

]0,tj=1[

ϕ(s)ds

)
= 0

because
∫
]0,1[

ϕ(s)ds = 1. Therefore the operator K sends Ωp
` (VΩ,R) to Ωp−1

` (VΩ,R) as claimed.
Let Λ : C(Ω)Zp → Hp

` (VΩ,R) be mapping the class of g ∈ C(Ω,R) in C(Ω,R)Zp to the cohomological class
of the longitudinal p-form defined by: (t1, · · · , tp) 7→ g(ω)ϕ(t1) · · ·ϕ(tp)dt1 ∧ · · · ∧ dtp, if (t1, · · · , tp) ∈]0, 1[p

and extended to Rp by requiring Zp−invariance. Assume that g = ej(f)− f where f ∈ C(Ω,R) and ej ∈ Zp

is as above the jth vector of the canonical basis of Zp. Then Λ(g) = d`(α) with

α(ω, t1, · · · , tp) = ϕ(t1) · · ·ϕ(tj−1)

(
f((−ei)(ω))

∫

]0,tj [

ϕ(s)ds + f(ω)
∫

]tj ,1[

ϕ(s)ds

)

ϕ(tj+1) · · ·ϕ(tp)dt1 ∧ · · · ∧ dtj−1 ∧ dtj+1 ∧ · · · ∧ dtp
Therefore Λ is well defined.

Now, a straightforward computation of d` ◦K yields the relation:

d` ◦K = id− Λ ◦ ψZp .

On the other hand, ψZp ◦ Λ is equal to the identity map. So the proof of the theorem is complete and we
get, as a byproduct, that the cohomology map induced by Λ does not depend on the choice of the function
ϕ. ¤
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Remark 2. The abstract isomorphism in the above theorem is a consequence of the spectral sequence
computation carried out in the last section of this paper. However, we shall need a concrete realization of
this Poincaré map.

3. Cyclic homology for quasi-crystals

This section is devoted to the study of the periodic cyclic homology for the algebras we are interested in.
We take this opportunity to identify the periodic cyclic (co)homology of the mapping torus of the action of
Zp on the Cantor set Ω with the group (co)homology of Zp with coefficients in the Zp-module C(Ω) (or the
space of measures M(Ω), for cohomology). The Chern-Connes character is also defined and studied.

3.1. Review of cyclic homology. For the benefit of the reader, we shall briefly review some definitions and
gather some well known properties of cyclic homology. For the sake of simplicity, we shall restrict ourselves
to the algebraic context and we refer for instance to [12, 13, 17, 25, 26, 49, 37, 57, 59] for the corresponding
statements in the appropriate topological framework.

Let A be a given algebra over the field C of complex numbers. Denote by Ã the unitalization of A.
Consider the mixed complex (C∗(A), b̃, B̃) where:

Ck(A) := Ã ⊗ A⊗k ' A⊗k+1 ⊕A⊗k , b̃ =
(
b 1− λ
0 −b′

)
and B̃ =

(
0 0
N 0

)
,

and the operators b′ and b are defined by:

b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) :=
k−1∑

j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ aj+2 ⊗ · · · ⊗ ak and

b(a0 ⊗ a1 ⊗ · · · ⊗ ak) = b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) + (−1)kaka0 ⊗ a1 ⊗ · · · ⊗ ak−1.

The operators λ and N are defined by:

λ(a0 ⊗ · · · ⊗ ak) := (−1)kak ⊗ a0 ⊗ · · · ⊗ ak−1 and N := id+ λ+ · · ·+ λk−1.

The relations b2 = 0, b′2 = 0 and b(1− λ) = (1− λ)b′ then show that:

b̃2 = B̃2 = b̃B̃ + B̃b̃ = 0.

The periodic cyclic homology is defined using the Z2-graded complex:

· · · → CP 0(A) b̃+B̃−→ CP 1(A) b̃+B̃−→ CP 0(A) → · · · ,
where CP 0(A) := ΠkC2k(A) and CP 1(A) := ΠkC2k+1(A). The definitions simplify when the algebra A is
H-unital (e.g. when A is unital), see for instance [18]. In particular, one is then led to the operators b and
B.

Let us fix now the definition of the Chern-Connes character that will be used later on. Our references are
[19, 31, 44]. If e = (eij)1≤i,j≤n is an idempotent in the matrix algebra Mn(Ã), then we set for any k ≥ 1:

Chk(e) :=
(−1)k(2k)!

k!

∑

1≤i0,··· ,i2k≤n

(ei0i1 −
δi0i1

2
)⊗ ei1i2 ⊗ · · · ⊗ ei2k−1i2k

⊗ ei2ki0 ∈ C2k(A),

where δi0i1 is the Kronecker symbol, equal to 0 if i0 6= i1 and to 1 if i0 = i1. For k = 0, we set Ch0(e) :=∑n
i=1 eii. In the odd case, we can define similarly the Chern-Connes character by setting, when A is unital

for simplicity, and for any invertible matrix u = (uij)1≤i,j≤n in Mn(A):

Chk(u) := (−1)kk!
∑

1≤i0,··· ,i2k+1≤n

ui0i1 ⊗ u−1
i1i2

⊗ · · · ⊗ u−1
i2k+1i0

∈ C2k+1(A), k ≥ 0.

In the present paper, we shall be dealing with algebras with finite Hochschild dimension and it will always
be possible to see Ch∗(e) and Ch∗(u) as periodic cyclic homology classes in HP∗(A). If e and e′ are two
idempotents in Mn(Ã) such that x = [e]− [e′] ∈ K0(A), then the class [Ch∗(e)]− [Ch∗(e′)] in HP0(A) only
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depends on the K-theory class x, see for instance [31][Proposition 1.1 and Proposition 1.3]. Hence we obtain
a group homomorphism:

Ch : K0(A) −→ HP0(A),
called the Chern-Connes character. In the same way, we get a well defined Chern-Connes character from
odd K−theory to odd periodic cyclic homology, see also [19]. To sum up, we have a Z2−graded morphism:

Ch : Ki(A) −→ HPi(A), i = 0, 1.

Let 0 → I ↪→ A −→ A/I → 0 be an extension of algebras. We denote by C∗(A, I) the kernel of the
surjection C∗(A) −→ C∗(A/I). Then C∗(A, I) is preserved by the operators b̃ and B̃ on C∗(A) and we denote
by HP∗(A, I) the periodic homology of this mixed bicomplex. We get from classical homological algebra
[56], a six-term exact sequence

HP0(A, I) HP0(A) HP0(A/I)

HP1(A/I) HP1(A) HP1(A, I)

- -

?

6

¾ ¾

On the other hand, the inclusion C∗(I) ↪→ C∗(A, I) induces a well defined Z2−graded map:

i∗ : HP∗(I) −→ HP∗(A, I).
Theorem 3. [26, 49] The map i∗ is an isomorphism. Therefore, we have the following six-term exact
sequence

HP0(I) HP0(A) HP0(A/I)

HP1(A/I) HP1(A) HP1(I)

- -

?

6

¾ ¾

Remark 3. Under appropriate topological assumptions, excision also holds for topological homology, see for
instance [17, 25, 26].

In order to obtain strict compatibility of the Chern-Connes character with the above exact sequence, one
needs to multiply the boundary map HP0(A/I) → HP1(I) by a factor 2iπ.

Theorem 4. [25, 49] The Chern-Connes character is a natural transformation between K-theory and periodic
cyclic homology, which commutes with the boundaries of the six term exact sequence in K-theory and those
of the above six term exact sequence in periodic cyclic homology.

The periodic cyclic homology HP∗(C∞,0(VΩ)) of the algebra C∞,0(VΩ) of continuous longitudinally smooth
functions on the foliated space VΩ is easy to compute. It is worthpointing out (see the proof below) that
this homology is isomorphic to the periodic cyclic homology of the crossed product algebra C(Ω)o Zp.

Theorem 5. The periodic cyclic homology of the commutative Frechet algebra C∞,0(VΩ) is isomorphic to
the homology of the group Zp with coefficients in the Zp-module C(Ω). More precisely, we have:

HP0(C∞,0(VΩ)) '
⊕

j≥0

H2j(Zp, C(Ω)) and HP1(C∞,0(VΩ)) '
⊕

j≥0

H2j+1(Zp, C(Ω)).

Proof. The proof of this theorem is similar to the computation of the longitudinal cohomology carried out
in Section 4. This theorem is essentially a consequence of more general results from [43, 49]. We proceed
now to explain the details.

The periodic cyclic homology of C∞,0(VΩ) can be computed using the results of [49]. The first result that
we shall use from Nistor’s paper is that the periodic cyclic homology is concentrated at the torsion elements so
that for the algebra C∞,0

c (Rp×Ω)oZp, it is isomorphic to the homogeneous part HP∗(C∞,0
c (Rp×Ω)oZp){0}
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[49]. On the other hand, by using [43][Theorem 4], we deduce that the homogeneous part of the periodic
cyclic homology of C∞,0

c (Rp×Ω)oZp is isomorphic to the homogeneous part of the periodic cyclic homology
of the algebra C(Ω) o Zp. By [49][Theorem 2.6], there exists a spectral sequence ECr

k,h converging to the
homogeneous part HC∗(C∞,0(VΩ)){0} of the cyclic homology, with EC2-term given by:

EC2
k,h = Hk(Zp,HCh(C(Ω))).

Since Ω is totally disconnected and compact, the space HCh(C(Ω)) identifies with C(Ω) for h even and
vanishes for h odd. This enables to compute the EC2-term:

EC2
k,h = Hk(Zp, C(Ω)) if h is even, and EC2

k,h = {0} otherwise.

Now again by [43], the spectral sequence ECr actually collapses at E2. We therefore get:

HCq(C∞,0(VΩ)){0} ' ⊕k+2h=q Hk(Zp, C(Ω)).

A direct inspection of the operator S then completes the proof, see again [43]. ¤

3.2. The longitudinal Chern character. Recall that by definition, the algebra of longitudinal smooth
function C∞,0(VΩ) is Ω0

`(VΩ,R)⊗C, and that this is a dense subalgebra of C(VΩ) stable under holomorphic
calculus. In particular, we have an isomorphism K∗(C∞,0(VΩ)) ∼= K∗(C(VΩ)) induced by the inclusion. In
the same way, if U is an open subset of VΩ, we denote Ω0

`,c(U,R) ⊗ C by C∞,0
c (U) and for any open pair

(U0, U1), we denote Ω0
`,c(U0, U1,R)⊗ C by C∞,0

c (U0, U1).
We now define the longitudinal Chern character:

ch` : Ki(C∞,0(VΩ))) −→ H[i]
` (VΩ,R), i = 0, 1,

where H[i]
` stands for ⊕j∈ZHi+2j

` . In fact, we will need to define more generally a Chern character for every
open pair.

Definition 5. The longitudinal Hochschild-Kostant-Rosenberg map χ`
n : Cn(C∞,0(VΩ)) → Ω∗` (VΩ,R)⊗C is

defined by

χ`
n(f0⊗̂ · · · ⊗̂fn) :=

(
1

2iπ

)[n+1
2 ] 1

n!
f0d`f

1 ∧ · · · ∧ d`f
n,

where
[

n+1
2

]
is the integer part of (n+ 1)/2. The normalization constants are fixed by the Bott element on

Rn, see [18] for the even case and [16] for the odd case.

Proposition 4. We have

χ`
∗ ◦ b = 0, χ`

2k+1 ◦B =
1

2iπ
d` ◦ χ`

2k and χ`
2k+2 ◦B = d` ◦ χ`

2k+1.

Proof. We have:

(χ`
n−1 ◦ b)(f0⊗̂ · · · ⊗̂fn) =

(
1

2iπ

)[n
2 ] (−1)n−1

n!
[f0d`f

1 · · · d`f
n−1, fn].

But the commutator [f0d`f
1 · · · d`f

n−1, fn] is trivial, since the algebra Ω∗` (VΩ,R)⊗C is graded commutative.
Hence we deduce the first relation. On the other hand,

(χ`
n+1 ◦ B)(f0⊗̂ · · · ⊗̂fn) = (1/2iπ)[

n+2
2 ] 1

(n+ 1)!

∑

0≤j≤n

(−1)njd`(f j) · · · d`(fn)d`(f0) · · · d`(f j−1)

= (1/2iπ)[
n+2

2 ] 1
(n+ 1)!

∑

0≤j≤n

(−1)nj(−1)(n−j+1)jd`(f0) · · · d`(fn)

= (1/2iπ)[
n+2

2 ] 1
n!
d`(f0) · · · d`(fn).

The easy computation of d` ◦ χ`
n(f0⊗̂ · · · ⊗̂fn) then finishes the proof. ¤
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Corollary 1. The HKR map χ`
∗ induces morphism (that we still denote by χ`

∗)

χ`
∗ : HPi(C∞,0(VΩ))) −→ H[i]

` (VΩ,R)⊗ C,
for i ∈ {0, 1}. In the same way, for any open subset U of VΩ, the HKR map induces by restriction a chain
morphism between the periodic complexes for C∞,0

c (U) and the longitudinal de Rham complex

Ωe
`,c(U,R)⊗ C

1
2iπ d`

¿
d`

Ωo
`,c(U,R)⊗ C

and thus a morphism
χ`
∗ : HPi(C∞,0

c (U))) −→ H[i]
`,c(U,R)⊗ C,

for i ∈ {0, 1}.
We shall also need a relative version of the HKR maps in periodic homology. Let (U0, U1) be an open

pair of VΩ. Recall that we have the short exact sequence

0 → C∞,0
c (U0) −→ C∞,0

c (U1) −→ C∞,0
c (U0, U1) → 0.

Then χ`
∗ maps the subcomplex C∗(C∞,0

c (U0)) of C∗(C∞,0
c (U1)) to the subcomplex Ω∗`,c(U0,R)⊗C of Ω∗`,c(U1,R)⊗

C and thus induces a chain morphism (up to rescaling the odd differential) from C∗(C∞,0
c (U1))/C∗(C∞,0

c (U0))
to Ω∗`,c(U0, U1,R) ⊗ C = (Ω∗`,c(U1,R)/Ω∗`,c(U0,R)) ⊗ C. Algebras like C∞,0

c (U) for an open subset U of VΩ

satisfy topological excision [26, 49]. Therefore the chain morphism

C∗(C∞,0
c (U1))/C∗(C∞,0

c (U0)) −→ C∗(C∞,0
c (U0, U1))

is a quasi isomorphism and thus we get

Proposition 5. Let (U0, U1) be an open pair of VΩ. Then there is a relative HKR morphism in periodic
homology

χ`
∗ : HP∗(C∞,0

c (U0, U1)) −→ H[∗]
`,c(U0, U1,R)⊗ C,

such that the both following six-term exact sequences

HP0(C∞,0
c (U0)) HP0(C∞,0

c (U1)) HP0(C∞,0
c (U0, U1))

HP1(C∞,0
c (U0, U1)) HP1(C∞,0

c (U1)) HP1(C∞,0
c (U0))

- -

?

6

¾ ¾

and

H[0]
`,c(U0,R)⊗ C H[0]

`,c(U1,R)⊗ C H[0]
`,c(U0, U1,R)⊗ C

H[1]
`,c(U0, U1,R)⊗ C H[1]

`,c(U1,R)⊗ C H[1]
`,c(U0,R)⊗ C

- -

?

6

¾ ¾

are intertwined by the HKR maps, where again the boundary map from HP0 to HP1 is multiplied by 2iπ.

Definition 6. The longitudinal Chern character ch` : K0(C(VΩ)) ∼= K0(C∞,0(VΩ)) → H[0]
` (VΩ,R), is by

definition the composite map

K0(C∞,0(VΩ)) Ch−→ HP0(C∞,0(VΩ))
χ`
∗−→ H[0]

` (VΩ,R)⊗ C
(we will see below that the range of this composition lies in fact in H[0]

` (VΩ,R)).
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An easy consequence of this definition is that for any projection e in Mn(C∞,0(VΩ)) , ch`([e]) is the

longitudinal cohomology class of the closed longitudinal differential form Tr
[
(e− 1/2) exp

(−d`ed`e

2iπ

)]
.

Indeed, using the involution u = 2e−1 which anticommutes with d`e, one easily deduces that the longitudinal
differential form Tr

[
exp

(
d`ed`e

2iπ

) ]
is a coboundary, while Tr

[
d`e exp

(
d`ed`e

2iπ

) ]
is trivial. Thus, we can

define ch`([e]) as the longitudinal cohomology class of Tr
[
e exp

(−d`ed`e

2iπ

)]
. In particular, since e can be

choosen self-adjoint, the range of the longitudinal Chern character lies in H[0]
` (VΩ,R). In the same way, the

longitudinal Chern character ch` : K0(C0(U)) ∼= K0(C∞,0
c (U)) → H[0]

`,c(U,R), can be defined for every open
subset U of VΩ by using the following composite map

K0(C∞,0
c (U)) Ch−→ HP0(C∞,0

c (U))
χ`
∗−→ H[0]

`,c(U,R)⊗ C.

The algebra C∞,0
c (U0, U1) is a dense subalgebra of C0(U1 \U0) stable under holomorphic functional calculus

and the inclusion C∞,0
c (U0, U1) ↪→ C0(U1 \ U0) induces an isomorphism [19]:

K0(C∞,0
c (U0, U1)) ∼= K0(C0(U1 \ U0)).

This remark yields for any open pair (U0, U1) of VΩ, to a relative longitudinal Chern character

ch` : K0(C0(U1 \ U0)) ∼= K0(C∞,0
c (U0, U1)) −→ H[0]

`,c(U0, U1,R),

obtained again from the composite map

K0(C∞,0
c (U0, U1))

Ch−→ HP0(C∞,0
c (U0, U1))

χ`
∗−→ H[0]

`,c(U0, U1,R)⊗ C

In the same way, we can define an odd Chern character valued in the odd longitudinal cohomology. We
are now in a position to state the compatibity of the longitudinal Chern character with respect to the six
term exact sequences associated with a relative open pair (U0, U1) of VΩ .

Theorem 6. The longitudinal Chern character intertwines the two following exact sequences:

K0(C
∞,0
0 (U0)) K0(C

∞,0
0 (U1)) K0(C

∞,0
0 (U0, U1))

K1(C
∞,0
0 (U0, U1)) K1(C

∞,0
0 (U1)) K1(C

∞,0
0 (U0))

- -

?

6

¾ ¾

and

H[0]
`,c(U0,R) H[0]

`,c(U1,R) H[0]
`,c(U0, U1,R)

H[1]
`,c(U0, U1,R) H[1]

`,c(U1,R) H[1]
`,c(U0,R))

- -

?

6

¾ ¾

.

Proof. Recall that algebras like C∞,0
c (U) for an open subset U of VΩ satisfy topological excision [26, 49]

and that the Chern-Connes character intertwines both six term exact sequence in K-theory and in periodic
cyclic homology except that the boundary map from HP0 to HP1 must be multiplied by a factor 2iπ, see
[49]. The theorem is then a consequence of proposition 5. ¤
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4. Proof of the Bellissard conjecture

4.1. The measured index theorem. We shall assume as before that p is even. Let again π : Rp → Tp be
the covering projection. Denote as before by VΩ the suspended compact space VΩ = Rp ×Zp Ω. Recall that
the leaves of the foliation F that we consider on VΩ, are the quotients of {ω}×Rp by the isotropy subgroup
for ω, when ω runs over Ω. We shall use in this subsection the measure µ that we have fixed on Ω. This
measure is invariant under the action of the group Zp by hypothesis.

Let us recall the construction of the Ruelle-Sullivan morphism associated with the Zp-invariant measure
µ on the foliated bundle VΩ. We denote as before by Ωk

` (VΩ,R) the space of longitudinal k-forms on VΩ.
Using the morphism ΨZp : Ωp

` (VΩ,R) −→ C(Ω,R) defined in section 2.2 we define:

Cµ,Zp : Ωp
` (VΩ,R) −→ R by Cµ,Zp(φ) := µ ◦ΨZp =

〈
µ⊗

∫

Rp

, χφ

〉
.

where χ is the characteristic function of the open set U =]0, 1[p in Rp . According to proposition 3 and since
µ factorizes through the coinvariants, the map Cµ,Zp induces a well defined map [Cµ,Zp ] : Hp

` (VΩ,R) → R.
When we consider the Dirac operator along the leaves of VΩ, twisted by a vector bundle E over VΩ, the

index theorem is not a consequence of the Atiyah covering theorem [2]. Nevertheless, Connes’ measured
index theorem [20] gives, in our situation, informations on the solutions of longitudinal elliptic equations on
the non compact foliated space Ω× Rp. Let us state this index formula in our case.

Theorem 7. Under the above assumptions, the measured index of the longitudinal Dirac operator ∂e
Ω with

coefficients in the vector bundle E, associated with the indempotent e as before, is given by:

τµ
∗ (IndVΩ(∂e

Ω)) = 〈ch`([e]), [CZp,µ]〉.
Proof. We apply Connes’ measured index theorem in the foliated space VΩ according to the extended version
given in [47][page 261] for foliated spaces. This gives:

τµ
∗ (IndVΩ(∂e

Ω)) = 〈Ch`(E)Â(F ), [Cµ]〉,
where Â(F ) is the Â genus of the longitudinal bundle F of VΩ (see [47]), [Cµ] is the Ruelle-Sullivan current
associated with the invariant measure µ on VΩ [47], and Ch` is the longitudinal Chern character also defined
in [47]. Since VΩ r Ω×]0, 1[p is longitudinally negligible, the pairing of the Ruelle-Sullivan current Cµ with
longitudinal differential forms on VΩ is exactly the pairing of Cµ,Zp with the lift of these differential forms to
Ω×Rp. Now the lift of Ch`(E) is exactly our longitudinal cohomology class ch`([e]). Finally, in the present
situation we obviously have Â(F ) = 1. ¤

4.2. An induction formula for mapping tori. By using the Pimsner-Voiculescu six term exact sequence
[53], we obtain for an action of the free abelian group Zp on a Cantor set the following short exact sequence

0 −→ CoinvKi(C(Ω)o Zp−1) −→ Ki+1(C(Ω)o Zp) −→ InvKi+1(C(Ω)o Zp−1) −→ 0.

Here, the action of Zp−1 is obtained by restriction to the p− 1 first factors of Zp and the invariants and the
coinvariants are relative to the Z−action through the last factor of Zp . In this subsection, we state some
analogous formulas for the K−theory and for the longitudinal cohomology of mapping tori.

Let Zp−1 ↪→ Zp and Rp−1 ↪→ Rp be the inclusions corresponding to the p− 1 first factors. We denote by

V ′Ω the mapping torus corresponding to this action of Zp−1 , i.e. V ′Ω =
Ω× Rp−1

Zp−1
. Then V ′Ω×]0, 1[ can be

viewed as an open subset of VΩ with VΩ \V ′Ω×]0, 1[= V ′Ω . The first step is to identify H∗`,c(V ′Ω×]0, 1[, VΩ,R)
with H∗` (V

′
Ω,R) . Recall that by definition, H∗`,c(V

′
Ω×]0, 1[, VΩ,R) is the cohomology of the quotient complex

in the exact sequence

0 −→ Ω∗`,c(V
′
Ω×]0, 1[,R) −→ Ω∗` (VΩ,R) −→ Ω∗`,c(V

′
Ω×]0, 1[, VΩ,R) −→ 0.

If λ is a longitudinal form on VΩ , then it splits in a unique way into λ = λ1 + λ2 ∧ dtp where λ1 and λ2 are
valued in Ω∗b(Rp−1) ⊂ Ω∗b(Rp) . Then

Ω∗` (VΩ,R) 3 λ 7−→ λ1|Ω×Rp−1×{0} ∈ Ω∗` (V
′
Ω,R)
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induces a well defined map
Λ1 : Ω∗`,c(V

′
Ω×]0, 1[, VΩ,R) −→ Ω∗` (V

′
Ω,R) .

It is straightforward to check that Λ1 is a morphism of graded differential algebras.

Lemma 5. Λ1 is a quasi-isomorphism, i.e. it induces an isomorphism

H∗`,c(V
′
Ω×]0, 1[, VΩ,R) ∼= H∗` (V

′
Ω,R) .

Proof. We construct a quasi-inverse for Λ1 as follows. Let φ be a smooth function on R which is compactly
supported in ]− 1/2, 1/2[ and equal to 1 in a neighbourhood of 0 . Let λ be a longitudinal form on V ′Ω. We
define a longitudinal form λ̃ ∈ Ω∗` (VΩ,R) by setting

λ̃(ω, x1, x2, · · · , xp) = φ(xp)λ(ω, x1, x2, · · · , xp−1)

if (ω, x1, x2, · · · , xp) ∈ Ω×Rp−1×]− 1/2, 1/2] and by requiring Zp−invariance to extend it to Ω×Rp. Since
φ is constant in a neighbourhood of 0 , the equality d`λ̃ = d̃`λ holds modulo Ω∗`,c(V

′
Ω×]0, 1[,R), and therefore

Ω∗` (V
′
Ω,R) 3 λ 7−→ λ̃ ∈ Ω∗` (VΩ,R)

induces a morphism of complexes Λ2 : Ω∗` (V
′
Ω,R) −→ Ω∗`,c(V

′
Ω×]0, 1[, VΩ,R) . It is clearly a left inverse for

Λ1 . To prove that it is a quasi-right-inverse, we use a Poincaré lemma. By using the above splitting
λ = λ1 + λ2 ∧ dtp for λ ∈ Ωk

` (VΩ,R) , we define K(λ) ∈ Ωk−1
` (VΩ,R) by setting

K(λ)(ω, x1, x2, · · · , xp) = (−1)pφ(xp)
∫ xp

0

λ2(ω, x1, x2, · · · , xp−1, tp)dtp,

if (ω, x1, x2, · · · , xp−1, xp) ∈ Ω×Rp−1×]−1/2, 1/2]. We extend to Ω×Rp again by requiring Zp−invariance.
The subcomplex Ω∗`,c(V

′
Ω×]0, 1[,R) ⊂ Ω∗` (VΩ,R) is stable under K and hence, K induces a degre −1 endo-

morphism of the complex Ω∗`,c(V
′
Ω×]0, 1[, VΩ,R). Now, it is straightforward to check that

K ◦ d` + d` ◦K = Id−Λ2 ◦ Λ1 .

¤

The inclusion
(ω, x1, x2, · · · , xp−1) 7→ (ω, x1, x2, · · · , xp−1, 0)

induces an isomorphism K∗(C∞,0
c (V ′Ω×]0, 1[, VΩ)) ∼= K∗(C∞,0(V ′Ω)) and the longitudinal Chern character

intertwines this isomorphism with the isomorphism of Lemma 5. More precisely:

Lemma 6. The following diagram is commutative

K∗(C∞,0
c (V ′Ω×]0, 1[, VΩ)) K∗(C∞,0(V ′Ω))

H∗`,c(V
′
Ω×]0, 1[, VΩ,R) H∗` (V

′
Ω,R)

-

? ?
-Λ1

where the vertical arrows are both longitudinal Chern characters.

Proof. This is done by using naturality of the Chern character in cyclic periodic homology and by observing
that the following diagram is commutative:

C∗(C∞,0
c (V ′Ω×]0, 1[, VΩ)) C∗(C∞,0(V ′Ω))

H∗`,c(V
′
Ω×]0, 1[, VΩ,R) H∗` (V

′
Ω,R)

-

?

χ`
∗

?

χ`
∗

-Λ1
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Here the horizontal arrows are induced by the inclusion

(ω, x1, x2, · · · , xp−1) 7−→ (ω, x1, x2, · · · , xp−1, 0)

and the vertical arrows are the HKR maps defined in Section 3.2. ¤
We now investigate the behaviour of the longitudinal Chern character with respect to Bott periodicity.

To this end, we define a morphism Hi
`(V ′Ω,R) → Hi+1

`,c (V ′Ω×]0, 1[,R) in the following way. Fix a smooth

compactly supported function φ : ]0, 1[→ R+ such that
∫

]0,1[

φ = 1. For any longitudinal form λ in Ωi
`(V

′
Ω) ,

we define
λ̂(ω, x1, x2, · · · , xp) = φ(xp)λ(ω, x1, x2, · · · , xp−1) ∧ dxp,

if (ω, x1, x2, · · · , xp) ∈ Ω×Rp−1×]0, 1[ and extend it to Ω×Rp by requiring Zp−invariance. This is obviously
a morphism of complexes and induces a morphism Λ : Hi

`(V ′Ω,R) → Hi+1
`,c (V ′Ω×]0, 1[,R).

Lemma 7.
• Λ : Hi

`(V
′
Ω,R) −→ Hi+1

`,c (V ′Ω×]0, 1[,R) is a isomorphism.
• The following diagram is commutative

Ki(C∞,0(V ′Ω)) Ki+1(C∞,0
c (V ′Ω×]0, 1[))

H[i]
` (V ′Ω,R) H[i+1]

`,c (V ′Ω×]0, 1[,R)

-

? ?
-Λ

where the top horizontal arrow is the Bott periodicity isomorphism.

Proof.
Every longitudinal form λ of Ω∗`,c(V

′
Ω×]0, 1[,R) splits in a unique way into λ = λ1 +λ2 ∧dtp where λ1 and

λ2 are valued in the space of exterior forms on Rp−1 (viewed as a subspace of the space of exterior forms on
Rp). Moreover,

Ω∗`,c(V
′
Ω×]0, 1[,R) 3 λ 7−→

∫

]0,1[

λ2( · , xp)dxp ∈ Ω∗` (V
′
Ω,R)

is a morphism of complexes which induces a morphism

Λ′ : H[i+1]
`,c (V ′Ω×]0, 1[,R) −→ H[i]

` (V ′Ω,R) .

This is obviously a left inverse for Λ . If λ = λ1 + λ2 ∧ dtp is the above splitting for λ ∈ Ωk
`,c(V

′
Ω×]0, 1[,R ),

then we define the longitudinal form K(λ) of Ωk−1
`,c (V ′Ω×]0, 1[,R) by setting

K(λ)(ω, t1, · · · , tp) = (−1)p−1

(∫ tp

0

λ2(ω, t1, · · · , tp−1, xp)dxp

−
∫ tp

0

φ(xp)dxp

∫ 1

0

λ2(ω, t1, · · · , tp−1, xp)dxp

)
.

if (ω, x1, x2, · · · , xp) ∈ Ω×Rp−1×]0, 1[ and extend it to Ω×Rp by requiring Zp−invariance. One can check
that d` ◦K +K ◦ d` = Id−Λ ◦Λ′ and thus, that Λ′ is a quasi inverse for Λ . This prove the first item of the
lemma.

To prove the second item, we identify Λ with the boundary map of the extension that provides the
Bott isomorphism. Let Ωk

b,c(Rp−1×]0, 1]) be the space of k-differential forms φ on Rp−1×]0, 1], compactly
supported on the factor ]0, 1], with bounded derivatives at all orders and such that for some λ in ]0, 1[ the
restriction of φ to Rp−1×]λ, 1] does not depend on the second factor. We define the algebra of longitudinally
smooth functions on V ′Ω×]0, 1]

A = {φ : Ω −→ Ω0
b,c(Rp−1×]0, 1])⊗C continuous and Zp−1-equivariant (the Zp−1-action is on the Rp−1-factor)}.
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We also define the longitudinal k-forms on V ′Ω×]0, 1]

Ωk(A,R) = {φ : Ω −→ Ωk
b,c(Rp−1×]0, 1]) continuous and Zp−1-equivariant}.

Then, Ω∗(A,R) is equipped with a differential Ωk(A,R) → Ωk+1(A,R) such that for φ ∈ Ωk(A,R), dA(φ) is
the Zp−1-equivariant map ω 7→ dφ(ω, ·).

The boundary of the short exact sequence

0 −→ Ω∗`,c(V
′
Ω×]0, 1[,R) −→ Ω∗(A,R) −→ Ω∗` (V

′
Ω,R) −→ 0

induces an morphism Hi+1
`,c (V ′Ω×]0, 1[,R) −→ Hi

`(V
′
Ω,R) and a straightforward computation shows that it

coincides with Λ.
Recall that Bott periodicity in K-theory and in periodic cyclic homology are both given by the boundary

map of the short exact sequence

0 −→ C∞,0
c (V ′Ω×]0, 1[) −→ A −→ C∞,0

c (V ′Ω) −→ 0,

and thus according to theorem 4, it is enough to check that the following diagram is commutative

HPk+1(C∞,0
c (V ′Ω×]0, 1[)) H[k+1]

`,c (V ′Ω×]0, 1[,R)⊗ C

HPk(C∞,0(V ′Ω)) H[k]
` (V ′Ω,R)⊗ C

-χ`
k+1

6

-χ`
k

6

Λ

where the left vertical map is the Bott map and χ`
∗ are the HKR homomorphisms defined in 3.2. We have

a HKR map
χA

n : Cn(A) −→ Ωn(A,R)⊗ C
such that for every f0, · · · , fn in A,

χA
n (f0⊗̂ · · · ⊗̂fn) =

(
1

2iπ

)[n+1
2 ] 1

n!
f0dAf

1 ∧ · · · ∧ dAf
n.

By the same argument of proposition 4, this is a chain map (up to rescaling the odd differential) beetween
(C∗(A), B + b) and (Ω∗(A,R)⊗ C, dA) and the following diagram commutes

0 Cn(C∞c (V ′Ω×]0, 1[)) Cn(A) Cn(C∞(V ′Ω)) 0

0 Ω∗`,c(V
′
Ω×]0, 1[,R)⊗ C Ω∗(A,R)⊗ C Ω∗` (V

′
Ω,R)⊗ C 0

- -

?

χ`
∗

-

?

χA
∗

-

?

χ`
∗

- - - -

By naturality of the boundaries, the (HKR) maps intertwine the boundaries associated with the above two
exact sequences, and thus we get the result. ¤
Remark 4. With the notations of Section 2.2, the composite map

Hp−1
` (V ′Ω,R) Λ−→ Hp

`,c(V
′
Ω×]0, 1[,R) ↪→ Hp

` (VΩ,R) ΨZp−→ C(Ω)Zp

is equal to ΨZp−1 .

There is an action of Z on V ′Ω through the inclusion Z ↪→ Zp of the last factor. This induces an action of
Z on Ki(C(V ′Ω)) and on H[i]

` (V ′Ω,R). The longitudinal Chern character is then a Z−equivariant morphism.
We denote the invariants of this Z−action by Inv Ki(C(V ′Ω)) and Inv H[i]

` (V ′Ω,R), while the coinvariants are
denoted by Coinv Ki(C(V ′Ω)) and Coinv H[i]

` (V ′Ω,R) .
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Theorem 8. There is a commutative diagram

0 Coinv Ki(C(V ′
Ω)) Ki+1(C(VΩ)) Inv Ki+1(C(V ′

Ω)) 0

0 Coinv H
[i]
` (V ′

Ω,R) H
[i+1]
` (VΩ,R) Inv H

[i+1]
` (V ′

Ω,R) 0

- -

?
ch`

?
ch`

-

?
ch`

-

- - - -

where the bottom epimorphism preserves the degree, the bottom inclusion is induced by the map

Ωi
`(V

′
Ω,R) 3 λ 7→ λ̂ ∈ Ωi+1

`,c (V ′Ω×]0, 1[,R) ⊂ Ωi+1
` (VΩ,R)

and where the top inclusion is induced by the composite map

Ki(C(V ′Ω) ∼= Ki+1(C(V ′Ω×]0, 1[)) −→ Ki+1(C(VΩ)).

Proof. By using the six-term exact sequence associated with the relative open pair (V ′Ω×]0, 1[, VΩ), Theorem
6, and Lemmas 6 and 7, we deduce two six-term exact sequences

K1(C∞,0(V ′Ω)) K0(C∞,0(VΩ)) K0(C∞,0(V ′Ω))

K1(C∞,0(V ′Ω) K1(C∞,0(VΩ)) K0(C∞,0(V ′Ω))

- -

?

6

¾ ¾

and
Ho

`(V
′
Ω,R) He

`(VΩ,R) He
`(V

′
Ω,R)

Ho
`(V

′
Ω,R) Ho

`(VΩ,R) He
`(V

′
Ω,R)

- -

?

6

¾ ¾

intertwined by the longitudinal Chern characters. The computation of the boundary maps is standard. If
we denote by ep the pth generator of Zp, they are both given by the identity morphism minus the morphism
induced by the action of ep on VΩ

′. Therefore, the kernel and the cokernel of the first boundary map are
respectivly Inv Ki+1(C(V ′Ω)) and Coinv Ki(C(V ′Ω)), and the kernel and the cokernel of the second boundary
map are respectivly Inv H[i+1]

` (VΩ,R) and Coinv H[i]
` (V ′Ω,R). This complete the proof. ¤

4.3. Integrality of the Chern character. Recall that there exists a Chern character in Čech cohomology
ch : K∗(X) → H∗(X,R) for every topological spaceX. An analougous of theorem 8 can be stated with ch and
with the Čech cohomology. Notice that using this induction formula for the Čech cohomology (with integral
or rational coefficients) of the mapping torus, we can show that the mapping torus VΩ has cohomological
dimension p.

Proposition 6. [47] The composition K∗(VΩ) ch→ H∗(VΩ,R) → H∗` (VΩ,R), where the second arrow is the
morphism of Remark 1, coincides with ch` : K∗(VΩ) → H∗` (VΩ,R).

The range of ch has been studied in [30] and the following theorem is stated.

Theorem 9. [30]
• The morphism ch : K∗(VΩ) → H∗(VΩ,R) is injective with homogeneous image (i.e. Its image is

graded by the grading of H∗(VΩ,R) ).
• Moreover, the image of ch : K∗(VΩ) → H∗(VΩ,R) is isomorphic to ⊕j Hj(Zp, C(Ω,Z)) .

It was pointed out to us by the referee that the proof [30] possibly contains a mistake and a complement
to this computation has been recently announced in [35].
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Proposition 7. Let us denote by chk
` the k−component of the longitudinal Chern character lying in

Hk
` (VΩ,R). If i ∈ {0, 1} is equal to p modulo 2 , then ψZp(chp

` (K
i(VΩ)) belongs to C(Ω,Z)Zp .

Proof. We proceed inductively. This is clearly true in low degree. Let x be an element of K0(C(VΩ)) .
According to Theorem 9, there is an element x′ ∈ K0(C(VΩ)) such that ch(x′) = chp(x) and hence ch`(x′) =
chp

` (x) by Proposition 6. Recall from theorem 8 the commutative diagram

0 Coinv Ki−1(C(V ′
Ω)) Ki(C(VΩ)) Inv Ki(C(V ′

Ω)) 0

0 Coinv H
[i−1]
` (V ′

Ω,R) H
[i]
` (VΩ,R) Inv H

[i]
` (V ′

Ω,R) 0

- -

?
ch`

?
ch`

-

?
ch`

-

- - - -

Since ch : K∗(C(V ′Ω)) → H∗(V ′Ω,R) is injective and since Hp(V ′Ω,R) = 0, the top epimorphism maps x′ to 0
and thus x′ comes from an element of Ki−1(C(V ′Ω)) with longitudinal Chern character of degree p− 1 . The
proof is completed by using remark 4. ¤

We point out that this integrality property (Proposition 7) is also implicitely used in [7] and in [36]. Notice
that in dimension 3, since the Chern character can be valued in integral cohomology and is an isomorphism,
the proof of proposition 7 does not rely on the result of [30].

We are now in position to prove the Bellissard conjecture.

Theorem 10. Let (Ω,Zp) be a dynamical system with Ω a Cantor set and let µ be a Zp−invariant measure
on Ω . Assume that Ω has no non-trivial invariant compact-open subset. Let τµ

∗ be the additive map induced
by the trace τµ, associated with µ, on the K-theory of the C∗-algebra C(Ω)o Zp. Then we have:

τµ
∗ (K0(C(Ω)o Zp)) = Z[µ].

Proof. By Lemma 2, we can assume that p is even. From Theorem 1 we deduce that:

τµ
∗ (K0(C(Ω)o Zp)) = {τµ

∗ (IndVΩ(∂e
Ω))− τµ

∗ (IndVΩ(∂e′
Ω )), [e]− [e′] ∈ K0(C∞,0(VΩ))}.

Using Theorem 7, we obtain:

τµ
∗ (K0(C(Ω)o Zp)) = 〈chp

` (K
0(VΩ)), [Cµ,Zp ]〉.

By definition of Cµ,Zp , we have:

〈x, [Cµ,Zp ]〉 = 〈ψZp(x), µ〉, ∀x ∈ Hp
` (VΩ,R).

Therefore,

〈chp
` (e), [Cµ,Zp ]〉 = 〈ψZp(chp

` (e)), µ〉.
But according to Proposition 7, we have:

ψZp(chp
` (e)) ∈ C(Ω,Z)Zp .

Hence:

τµ
∗ (K0(C(Ω)o Zp)) ⊂ µ(C(Ω,Z)Zp) = Z[µ].

Since the opposite inclusion is checked in Lemma 1, the proof is complete. ¤

Remark 5. The homological computations carried out in the present paper actually show that the longitu-
dinal (HKR) map χ`

∗ together with the map ρ∗ defined in Section 1 are isomorphisms and are induced by
the corresponding maps at the E1 level of the corresponding spectral sequences.
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