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WELL-POSEDNESS OF A DIFFUSIVE GYROKINETIC

MODEL.

MAXIME HAURAY and ANNE NOURI

LATP, Aix-Marseille University, France

Abstract. We study a finite Larmor radius model used to describe the ions distributions in the core
of a tokamak plasma, that consist in a gyro-kinetic transport equation, coupled with an electro-neutrality
equation. Since the last equation do not provide enough regularity on the electric potential, we introduce a
simple linear collision operator adapted to the finite Larmor radius approximation. Next we study the two-
dimensional dynamics in the direction perpendicular to the magnetic field and prove thanks to the smoothing
effects of the collisions and of the gyro-average the global existence of solutions, as well as short time unique-
ness and stability.

1 Introduction.

The model studied in that article describes the density of ions in the core of a tokamak plasma. In such
highly magnetized plasma, the charged particles have a very fast motion of gyration around the magnetic
lines, called the Larmor gyration. A good approximation is then to consider that the particles are uniformly
distributed on gyro-circle, parametrized by their gyro-center, and Larmor radius rL (that is proportionnal
to the speed of rotation u, and in our article, we will forget the physical constant and write rL = u). The
models obtained in that new variables are kinetic in the direction parallel to the magnetic field lines, and
fluids (precisely a superposition of fluid models) in the perpendicular direction. For rigorous derivation of
such models and more complete discussion on its validity, we refer to

FreSon
[3] and our previous work

GheHauNou09
[4], in which

the derivation is perform from a Vlasov equation in the limit of large magnetic field.
Such gyro-kinetic models are usually closed by an electro-neutrality equation, that as usual provide very

few regularity for the eletric field, so that the well-posedness of gyro-kinetic models is, at least at our knowledge
unknown. In this article, we add a ”gyro-averaged” collision operator to the model and study the dynamics
in the directions perpendicular to the field only.

Let us now describe our precise model. The ion distribution function f(t, x, u) in gyro-coordinates depends
on the time t, the gyro-center position x ∈ T

2 and the velocity of the fast Larmor rotation u ∈ R
+ (which

is also proportional to the Larmor radius). The electric potential Φ depends only on (t, x). They satisfy the
following system of equation on Ω = T

2 × R
+

∂f

∂t
+ (J0

u∇xΦ)
⊥ · ∇xf = βu∂uf + 2βf + ν

(

∆xf +
1

u
∂u(u∂uf)

)

(1.1) eq:gyroFP2D

(Φ− Φ ∗x HT )(t, x) = T (ρ(t, x)− 1) (1.2) eq:elecneutr

ρ(t, x) =

∫

(J0
wf(t, x, w)2πwdw) (1.3) eq:defrho

f(0, x, v) = fi(x, v) ∀(x, u) ∈ Ω (1.4) eq:indata

where β and ν are two positive constant, ρ is the density in physical space, T is the ion temperature,

J0
uh(xg) =

1

2π

∫ 2π

0

h(xg + ueiϕc) dϕc , (1.5) eq:J0

is the well known zero-order Bessel operator
Watson
[10] and

HT (x) =
e−

|x|2

4T

2π
3
2

√
T |x|

. (1.6) eq:dfH
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We also used the notation b⊥ = (−b2, b1), for any vector b = (b1, b2) of R
2.

That model without the Fokker-Planck operator (ν = β = 0) was studied in our previous work
GheHauNou09
[4]

- to which we refer for an heuristical derivation of the electro-neutrality equation (
eq:elecneutreq:elecneutr
1.2) - and is used by

physicists for simulation, by instance in Gysela code
Gysela06
[5]. Here we just mention that (

eq:elecneutreq:elecneutr
1.2) is obtained in a

close to equilibrium setting, with an adiabatic hypothesis on the distribution of the electrons ne = n0e− eΦ
Te

≈
n0

(

1 + eΦ
Te

)

, and an hypothesis of adiabatic response of the ions on the gyro-circle which gives rise to the

Φ ∗ HT term. As usual in quasi-neutral equation, we have no good a priori estimates on the regularity of
E = −∇Φ.

Remark that even if that equation (
eq:gyroFP2Deq:gyroFP2D
1.1) is derived from a Vlasov model (A rigourous derivation of a more

general 3D model is performed for fixed field E in section
sect:difsect:dif
2), it is of “fluid” nature. In fact there is no

transport in the remaining of the velocity variable u, and the position of the gyro-center is transported by
the eletric drift (J0

uE)⊥. So that the equation is similar to the 2D Navier-Stokes equation written in vorticity.
More precisely, we have a family of fluid model depending on a parameter u, which are coupled thanks to
diffusion in the u variable, and by the closure used for E described below.

Moreover, we will prove in the following that thanks to gyro-average J0
u, equation has the same regularity

than the NS2D equation in vorticity. In fact, the force field J0
u∇xΦ belongs naturally to H1 if f ∈ L2 with

some weight. That is why we obtain the same result that are known about the NS2D equation : global
existence and short time uniqueness and stability. However, our model present an additional difficulties
which is the lose of regularity for small u. In fact, for small value of u the H1 bound (in x only) of J0

u∇xΦ
explodes.

To state our reuslts properly, we will need the following definitions and notations :

• In the sequel, the letter C will design a numerical constant, that may change form line to line. Unless
it is mentioned, such constants are independent of everything.

• L2
u(Ω) = L2(Ω, udxdu) is the space of square integrable functions with respect to the measure udxdu.

• We shall use various norm on T
2 or on Ω. To avoid confusion, we will use the following convention. All

the norm performed on the whole Ω will have their weight with respect to u as additional indice. By
instance ‖ · ‖2πu, ‖ · ‖H1

2πu(1+u2)
. All the norms without any indices are norm on T

2 only.

• For any weight function k : R+ 7→ R
+, the norm ‖ · ‖2,m is defined for any function f on Ω by

‖f‖2,k =

(∫

‖F (·, u)‖2k(u) du
)

1
2

• The most usefull weights will be m(u) = 2πu(1 + u2) and m̃(u) = 1 + u2.

• We change a litlle bit the duality used to define distributions in the following definition

Definition 1.1. Using distributions with the weight u means that duality is performed as

〈f, g〉u =

∫

fg dxgdv||
udu .

This definition may seem a little artificial because the simple definition of derivative with respect to u,
is not valid. Instead,

〈∂uf, g〉u = −〈f, ∂ug〉u − 〈f
u
, g〉u .

However, this weight respects the underlying physics (u is in fact the 1D norm of a 2D velocity variable)
and has many advantages. For instance the operator (1/u)∂u(u∂u) is self-adjoint with this weight.

Our precise result are the following. We prove global existence under the hypothesis ‖fi‖2,m < +∞.

thm:existence Theorem 1.1. Let fi satisfy ‖fi‖2,m < +∞. Then there exists at least one weak solution f ∈ L∞(R+, L2
u(Ω))∩

L2(R+, H1
u(Ω)) to (

eq:gyroFP2Deq:gyroFP2D
1.1)-(

eq:elecneutreq:elecneutr
1.2) with initial condition fi, which also satisfies for any t > 0

‖f(t)‖22,u + ν

∫ t

0

‖(∇x, ∂u)f‖22,u ds ≤ ‖fi‖2,u ,

and all the a priori estimates of the previous section (Lemma
lem:u-momentlem:u-moment
3.5,

lem:displem:disp
3.6,

lem:grad_xflem:grad_xf
3.7) if their initial hypothesis are

satisfied.
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And we prove short time uniqueness and stability under the additional hypothesis ‖∇xf‖2,m < +∞.

thm:uniqueness Theorem 1.2. Let fi satisfy
‖fi‖2,m + ‖∇xf‖2,m < +∞ .

Then the positive time τ⋆ defined in Lemma
lem:grad_xflem:grad_xf
3.7 is such that the weak solution to (

eq:gyroFP2Deq:gyroFP2D
1.1)-(

eq:indataeq:indata
1.4) , defined in

Theorem
thm:existencethm:existence
1.1, is unique on [0, τ⋆] .

Moreover, that solution is stable on that interval of time in the following sense. Assume that (fn)n∈N is
a family of solutions given by theorem

thm:existencethm:existence
1.1 with initial conditions fn

i satisfying

lim
n→+∞

‖fn
i − fi‖2,m = 0 , and sup

n∈N

‖fn
i ‖L2

m(L4) < +∞ .

Then
lim

n→+∞
sup

t∈[0,τ∗]

‖fn(t)− f(t)‖2,m = 0 .

This local result has some more consequence when relating it to the bound on ν
∫ T

0 ‖∇xf‖22,m dt ≤
‖fi‖22,m + C(T )‖fi‖22 satisfied by any solution in the sense of

thm:existencethm:existence
1.1. The last bound implies that ‖∇xf‖2,m is

almost surely finite. The local result implies more : that the norm of gradient may blow up only on a closed
and negligeable set, of 4/5-capicity zero.....

In the next section the diffusive operator of (
eq:gyroFP2Deq:gyroFP2D
1.1) is rigourously derived from a linear Vlasov-Fokker-Planck

equation in the limit of large magnetic field. In the third section, some useful lemmas are established, proving
regularizing properties of the gyro-average, global preservation of some weighted norm of f , the short time
preservation of the u(1+u2)-moment of ∇xf by the system (

eq:gyroFP2Deq:gyroFP2D
1.1)-(

eq:elecneutreq:elecneutr
1.2)), and controlling the electric potential

by the physical density. This allows to prove the global existence (Theorem
thm:existencethm:existence
1.1) of solutions to the Cauchy

problem in the fourth section and their short time uniqueness and stability (Theorem
thm:uniquenessthm:uniqueness
1.2) in the fifth section.

Finally some useful properties of the first Bessel function J0 are proven in the appendix.

2 Derivation of the gyro-Fokker-Planck operator
sect:dif

In that section, we rigorously justify the form of the Fokker-Planck appearing in the right-hand side of (
eq:gyroFP2Deq:gyroFP2D
1.1).

The usual collision operator for plasmas is the nonlinear Landau operator originally introduced by Landau
Landau
[7]. Because of its complexity, simplified collision operators have been introduced. An important physical
litterature exists on the subject, also in the gyro-kinetic case (See

Brizard04
[2] and the references therein). In this

paper we choose the simplest possible operator possible, namely a linear Fokker-Planck operator. The reasons
of this choice are :

- Its simplicity will allow to focus on the other difficulties of the model,
- The fact that physicists studying gyro-kinetic models for the core of the plasma mainly assume that the

dynamics stays close to equilibrium, in which case a linear approximation of the collision operator is relevant.
- The aim of the paper is not a precise description of collisions. In fact, even if they exists in tokamaks,

being needed to produce energy, their effect is small compared to the turbulent transport. However, we
are interested by their regularizing effect, since the electro-neutrality equation (

eq:elecneutreq:elecneutr
1.2) do not provide enough

regularity to get a well-posed problem. This is a major difference to the Poisson equation setting.

We start from a simple model for a 3D plasma, i.e. a linear Vlasov-Fokker-Planck equation with an
external electric field, an external uniform magnetic field and linear collision and drift terms, and obtain in
the limit of large magnetic field a 3D (in position) equation analog to (

eq:gyroFP2Deq:gyroFP2D
1.1). In particular, we show that a

usual linear Fokker-Planck term on the speed variables turns into an equation with diffusion terms both in
space and Larmor radius variables in the limit.

Precisely, for any small parameter ǫ > 0 we study the distribution fǫ(t, x, v) of ions submitted to an
exterior electric field E(t, x) (independent of ǫ) and an uniform magnetic field Bǫ = (1/ǫ, 0, 0). We also
model collisions (with similar particles and the others species) by a simple linear Fokker-Planck operator.
To avoid any problem with possible boundary collisions, which are really hard to take into account in gyro-
kinetic theory, we assume that (x, v) ∈ T

3 × R
3, where T

3 is the 3D torus. When the scale length of all the
parameters are well chosen (in particular the length scale in the direction perpendicular to the magnetic field
should be chosen of order ǫ times the length scale in the parallel direction, we refer to our previous work

GheHauNou09
[4]

for more details on the scaling), the Vlasov equation fǫ satisfies is

∂f

∂t
+ v

‖
∂x

‖
f + E · ∇vf +

1

ǫ
(v⊥ · ∇x⊥

f + v⊥ · ∇v⊥f) = divv(βvfǫ) + ν∆vfǫ , (2.1) eq:vlares
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where β, ν are two positive parameters, the subscript ‖ (resp. ⊥) denotes the projection on the direction
parallel (resp. on the plane perpendicular) to B, and the superscript ⊥ denotes the projection on the plane
perpendicular to B composed with the rotation of angle π/2. In others words if v = (v1, v2, v3),

v⊥ = (v1, v2, 0), v
||
= (0, 0, v3), v⊥ = (−v2, v1, 0) .

The next results require the additional notation,

J̃0
ug(xg, ρL , v‖) =

1

2π

∫ 2π

0

g(xg + ueiϕc , ρ
L
ei(ϕc−

π
2 ) + v‖e‖) dϕc , (2.2) eq:J0tilde

which is a gyro-average performed in phase space, that will be used as an initial layer to adapt the initial
condition to the fast Larmor gyration.

thm:FPgyro Theorem 2.1. Let E ∈ L∞
t (L2) and fǫ be a family of solutions to equation (

eq:vlareseq:vlares
2.1) with initial condition

fi ∈ L2 satisfying supt ‖fǫ(t)‖2 ≤ ‖fi‖2. Then the family f̄ǫ defined by

f̄ǫ(t, xg , v) = f(t, xg + v⊥, v)

admits a subsequence that converges in the sense of distributions towards a function f̄ depending only on
(t, xg, u = |v|, v

||
) and solution to

∂tf̄ + v‖ ∂x‖
f̄ + J0

uE‖ ∂v‖ f̄+(J0
uE)⊥ · ∇xg f̄ =

β(v
||
∂v

||
f̄ + u∂uf̄ + 3f̄) + ν

(

∆xg⊥
f̄ +

1

u
∂u(u∂uf̄)

)

,
(2.3) eq:FPlim

in the sense of distributions with the weight u, with the initial condition J̃0
u(f

0).

Remark 2.1. The reason for the change of variables is that the 1/ǫ-term in equation (
eq:vlareseq:vlares
2.1) induces a very

fast rotation in the perpendicular direction both in the x and v variables,

v(t) = v0eit/ǫ , x(t) = x0 + v0⊥ + v0ei(t/ǫ−π/2) .

But in the gyro-coordinates this fast rotation is simply described by a rotation in v,

v(t) = v0eit/ǫ , xg(t) = x0
g.

Remark 2.2. The final diffusion appears in all dimensions except the xg
||
one. It does not mean that there is

no regularization in that direction. Indeed, the models have diffusion in v
||
, which after some time regularize

in the xg
||
direction. This mechanism is well known for the Fokker-Planck equation (see for instance

bouchut
[1]).

However, we are not able to prove this phenomena in the non-linear setting because the electric field of the
model lacks regularity. This is the reason why we will only study the 2D model.

Proof of Theorem
thm:FPgyrothm:FPgyro
2.1. We proved in a previous work

GheHauNou09
[4] that, provided f0 ∈ L2 and E ∈ L1

t (W
1,2
x ), a

subsequence of fǫ solutions of (
eq:vlareseq:vlares
2.1) without the collision term converges towards a solution of (

eq:FPlimeq:FPlim
2.3) without

the collision term. In order to simplify the presentation, we will neglect the electric field and the parallel
translation terms. To obtain the result in full generality, the only thing to do is to add the argument given in
our previous work to the one given below. For the same reason, we shall also not treat the problem of initial
conditions.

So consider the above Vlasov Fokker-Planck equation without electric force field and parallel translation,

∂tf +
1

ǫ
(v⊥ · ∇x⊥

f + v⊥ · ∇v⊥f) = divv(βvf) + ν∆vf . (2.4) eq:vlaFP

The first step is to use the change of variables (x, v) → (xg = x+ v⊥, v). Since

∇vf = ∇vf̄ −∇⊥
xg f̄ ,

∆vf = ∆vf̄ +∆xg⊥
f̄ − 2∇v · ∇⊥

xg f̄ ,

∇v · (vf) = v · ∇vf̄ + 3f̄ − v · ∇⊥
xg f̄ ,

equation (
eq:vlaFPeq:vlaFP
2.4) becomes

∂tf̄ǫ +
1

ǫ
v⊥ · ∇v f̄ǫ = −β

(

v · ∇vf̄ǫ + 3f̄ǫ − v · ∇⊥
xg f̄ǫ

)

+ ν
(

∆v f̄ǫ +∆xg f̄ǫ − 2∇v · ∇xg f̄ǫ

)

. (2.5)
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By hypothesis f̄ǫ is bounded in L∞
t (L2

x;v). Therefore, at least a subsequence of (f̄ǫ) converges weakly to some

f̄ ∈ L∞
t (L2). Passing to the limit in (

eq:vlaFPeq:vlaFP
2.4), it holds that

v⊥ · ∇v f̄ = 0 ,

since all the other terms are bounded. For v = (ueiϕ, v
||
) where ϕ is the gyro-phase, the previous equality

means that f̄ is independent of the gyro-phase (in the sense of distribution and thus as a L2 function).
Equation (

eq:vlaFPeq:vlaFP
2.4) tested against a smooth function g independent of the gyro-phase writes
∫

f̄ǫ

(

∂tg − β(v · ∇vg − v · ∇⊥
xgg)− ν(∆vg +∆xg⊥

g − 2∇⊥
xg · ∇vg)

)

dxgdv = 0 . (2.6) eq:FP2

We may also pass to the limit when ǫ tends to zero in this equation and obtain that the same equality holds
for f̄ǫ replaced by f̄ , considered as a function defined on T

3 × R
3.

For the change of variable v = (ueiϕ, v
||
),

∇vg = (eiϕ∂ug + ieiϕ∂ϕg, ∂v
||
).

Hence, for any function g independent on the gyrophase ϕ, it holds that

∆vgg = ∂2
v
||
g +

1

u
∂u(u∂ug) ,

(∇⊥
xg · ∇vg )g = ∇⊥

xg · (e
iϕ∂ug) = eiϕ · ∇⊥

xg∂ug,

v · ∇vg = v
||
∂v

||
g + u∂ug .

The other terms appearing in (
eq:FP2eq:FP2
2.6) remain unchanged. Then,

∫

f̄
(

∂tg − β(v
||
∂v

||
g + u∂ug − ueiϕ · ∇⊥

xgg)− ν(∂2
v
||
g +

1

u
∂u(u∂ug)

+ ∆xg⊥
g − 2eiϕ · ∇⊥

xg∂ug)
)

dxgdv||
2πududϕ = 0 .

(2.7) eq:FPuphi

Since f̄ is independent of ϕ, performing the integration in ϕ first makes the term containing ϕ vanish. So
the function f̄ of the five variables (xg , u, v||

) satisfies

∫

f̄
(

∂tg − β(v
||
∂v

||
g + u∂ug)− ν(∂2

v
||
g +

1

u
∂u(u∂ug) + ∆xg⊥

g)
)

dxgdv||
udu = 0 . (2.8) eq:FPuphi2

It exactly means that f̄ satisfies the equation

∂tf̄ = β(v
||
∂v

||
f̄ + u∂uf̄ + 3f̄) + ν

(

∂2
v
||
f̄ +∆xg⊥

f̄ +
1

u
∂u(u∂uf̄)

)

, (2.9)

in the sense of distributions with weight u. It is the equation (
eq:FPlimeq:FPlim
2.3) without parallel transport nor electric

field.

If we look at solutions of this equation invariant by translation in the direction of B, we exactly get the
2D-model announced in the introduction. In fact, if f̄ is a solution of (

eq:FPlimeq:FPlim
2.3), then

f(t, x, u) =

∫

f̄(t, x, u, v
||
) dv

||

is a solution of (
eq:gyroFP2Deq:gyroFP2D
1.1). Such an assumption on f is reinforced by experiments and numerical simulations, where

it is observed that the distribution of ions is quite homogeneous in x
‖
.

3 Some useful lemmas
sect:apriori

We prove here some a priori estimates useful for the proof of our theorem. In order to simplify the proof
of some of the following Lemmas, we sometimes uses the following formulation of (

eq:gyroFP2Deq:gyroFP2D
1.1) with the genuine

two-dimensional velocity variable. Denote by f̃(t, x, ~u) = f(t, x, |~u|), ~u ∈ R
2. It is solution (in the sense of

distribution with usual duality) of the following equation with 4D in space and velocity variables

∂tf̃ −∇⊥
x (J

0
|~u|Φ) · ∇xf̃ = ν(∆xf̃ +∆~uf̃) + β(2f̃ + ~u · ∇~uf̃). (3.1) eq:VFP4D

Heuristically, radial in ~u solution of equation (
eq:VFP4Deq:VFP4D
3.1) is a solution of (

eq:gyroFP2Deq:gyroFP2D
1.1). We can state for instance a precise

Lemma in the case where φ is fixed and smooth.
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lem:3Deq4D Lemma 3.1. For a fixed smooth potential Φ, f is the unique solution of (
eq:gyroFP2Deq:gyroFP2D
1.1) with initial condition fi if and

only if f̃ is the unique solution of (
eq:VFP4Deq:VFP4D
3.1) with intial condition f̃i.

Proof of the Lemma
lem:3Deq4Dlem:3Deq4D

3.1 : The proof relies on the uniqueness of the solution to (
eq:VFP4Deq:VFP4D
3.1) (See

Ladyzen
[6] and the

conservation of the radial symmetry of the solution.

3.1 Regularizing properties of the gyro-average.

In this section, some regularizing property of the gyro-average operato are proven. They are based on the
fact that Ĵ0 ∼ k−

1
2 for large k (the precise bound are proved in

App:AApp:A
A), which implies that J0 maps Hs onto

Hs+ 1
2 . It is important since the formula (

eq:elecneutreq:elecneutr
1.2) giving the gyro-averaged potential in terms of the distribution

f involves two gyro-averages, and thus a gain of one derivative for the gyro-averaged potential w.r.t. f .
However, the regularizing properties of J0

u are bad for small u, which raises difficulties.
The first lemma of this section gives the regularity of the gyro-averaged potential in term of the potential

Φ. The second one gives the regularity of the density ρ in terms of the distribution f . We will need the two
following definitions before stating it.

Definition 3.2. Let f be a measurable function defined on Ω. Denote by

‖f‖L2
m(Hs) =

(∫

‖f(·, u)‖2Hsm(u) dw

)
1
2

the norm with the weight m(u) = 2πu(1 + u2).

For any U > 0, let F be a measurable function defined on ΩU = T
2 × [0, U ]. Denote by

‖F‖H1
U
=

(

∫

T2

∫ U

0

(

|f |2 + |∇xf |2 + |∂uf |2
)

2πu du

)
1
2

.

The lemmas stating the regularity of Φ and ρ are the following.

lem:phireg Lemma 3.2. For any s ∈ R, u > 0 and Φ with 0-mean, it holds that

i) ‖J0
uΦ‖Hs ≤ ‖Φ‖Hs ,

ii) ‖J0
uΦ‖Hs+1

2
≤ 2

1
4

√
u
‖Φ‖Hs ,

iii) ‖∂uJ0
uΦ‖Hs ≤ 1√

u
‖Φ‖

Hs+1
2
.

As a consequence, for any U > 0,

iv) ‖J0
uΦ‖H1

U
≤ 4

√
U‖Φ‖

H
1
2
.

lem:rhoreg Lemma 3.3. For any s > 0, if
∫

f 2πu dxdu = 1 and ρ is defined by (
eq:defrhoeq:defrho
1.3), then

‖ρ− 1‖
Hs+1

2
≤ 2

1
4π‖f‖L2

m(Hs). (3.2)

Proof of Lemma
lem:phireglem:phireg
3.2 and

lem:rhoreglem:rhoreg
3.3.

Denote by Φ̂(k) the k Fourier coefficient of Φ. Then

‖J0
uΦ‖2Hs =

∞
∑

k=1

|J0
u(k)|2|Φ(k)|2 ≤

∞
∑

k=1

|Φ(k)|2 = ‖Φ‖2Hs ,

using the bound ‖Ĵ0‖∞ ≤ 1 proved in Lemma
lem:boundJlem:boundJ
A.1. It is the inequality i). For the second inequality, remark

that
1 + |k|2

1 + w2|k|2 =
1

w2

1 + 1
|k|2

1 + 1
w2|k|2

≤ 2

w2
, k ∈ Z

∗, (3.3) eq:calc
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and use it together with ii) of Lemma
lem:boundJlem:boundJ
A.1 in

‖J0
uΦ‖2

Hs+1
2

=
∑

k 6=0

| ˆJ0
uΦ(k, u)|2(1 + |k|2)s+ 1

2

=
∑

k 6=0

|Φ̂(k)|2|Ĵ0(|k|u)|2(1 + |k|2)s+ 1
2

≤
∑

k 6=0

|Φ̂(k)|2(1 + |k|2)s
√

1 + |k|2
1 + |k|2u2

≤
√
2

u
‖Φ‖2Hs .

For the third estimate of Lemma
lem:phireglem:phireg
3.2, remark that

(

∂u ˆJ0
uΦ
)

(k) = ∂u

(

Ĵ0(|k|u)Φ̂(k)
)

= |k|Φ̂(k)Ĵ0
′
(|k|u)

and use the bound iii) of Lemma
lem:boundJlem:boundJ
A.1 to get

|(∂u ˆJ0
uΦ)(k)| ≤

√

|k|
u
|Φ̂(k)| .

From this, we obtain

‖∂u(J0
uΦ)‖Hs ≤ 1√

u
‖Φ‖

Hs+1
2
.

The point iv) uses the previous inequalities. First remark that the norm ‖ ‖H1
U
is also equal to

‖F‖H1
U
=

(

∫ U

0

(

‖∂uF (·, u)‖2L2 + ‖F (·, u)‖2H1

)

2πu du

)
1
2

.

Using this formulation and ii)- iii) leads to

‖J0
uΦ‖2H1

U
=

∫ U

0

(

‖∂uJ0Φ‖2L2 + ‖J0Φ‖2H1

)

2πu du

≤ 2π‖Φ‖2
H

1
2

∫ U

0

1 +
√
2

u
u du ≤ 16U‖Φ‖2

H
1
2
,

which gives the desired result and ends the proof of Lemma
lem:phireglem:phireg
3.2.

Proof of Lemma
lem:rhoreglem:rhoreg
3.3.

Denote by ρ̂(k) the k-th Fourier term of ρ with respect to the space variable, i.e.

ρ̂(k) = 2π

∫

J0(|k|w)f̂ (k, w)w dw.

By
lem:boundJlem:boundJ
A.1,

|ρ̂(k)| ≤ 2π

∫ |f̂ |(k, w)w
(1 + w2|k|2)1/4 dw.

It follows from (
eq:calceq:calc
3.3) that for k 6= 0,

(1 + |k|2) 2s+1
4 |ρ̂(k)| ≤ 2

5
4 π

∫ ∞

0

|f̂ |(k, w)(1 + |k|2) s2
√
w dw

≤ 2
5
4 π

(∫ ∞

0

|f̂ |2(k, w)(1 + |k|2)sw(1 + w2) dw

)1/2 (∫ ∞

0

dw

(1 + w2)

)1/2

= 2
1
4 π

(
∫ ∞

0

|f̂ |2(k, w)(1 + |k|2)s2πw(1 + w2) dw

)1/2

.

7



Hence, since ρ̂(0) =
∫

T2 ρ(x) dx = 1 by mass conservation,

‖ρ− 1‖
Hs+1

2
≤ 2

1
4π

√

√

√

√

∑

k 6=0

(∫ ∞

0

|f̂(k, w)|2(1 + |k|2) s2 2πw(1 + w2) dw

)

≤ 2
1
4π

(∫ ∞

0

‖f(w)‖2Hs2πw(1 + w2) dw

)1/2

,

and Lemma
lem:rhoreglem:rhoreg
3.3 is proved.

3.2 Control of the potential by the density.

Denote by LT the operator that maps any function Φ on T
2 with zero mean to 1

T (Φ − Φ ∗x HT ) and by
Hs

0(T
d) the space of Hs functions with zero mean. This section is devoted to a proof of the boundedness of

L−1 from Hs
0 (T

d) onto Hs
0(T

d). Recall that in a Fourier setting (See the Appendix of
GheHauNou09
[4] for more details),

the operator HT = I − TLT is the multiplication by

ĤT (k) =
2

T

∫ +∞

0

J0(ku)2e−u2/Tu du.

lem:boundL Lemma 3.4. The Fourier multipliers ĤT (k) satisfy,

|1− Ĥ(k)| ≥ |k|2T
4

(

1− e
− 1

|k|2T

)

, ∀ k ∈ Z
2 \ {(0, 0)}.

As a consequence, the operator L−1
T maps any Hs

0 , s ∈ R, into itself with norm

‖L−1‖Hs
0
≤ cT :=

4

1− e−
1
T

. (3.4)

Remark 3.3. Lemma
lem:boundLlem:boundL
3.4 shows that ‖L−1‖ is bounded for small T , and of order T for large T , the physical

case of interest.
The boundedness of the spatial domain is essential. When defined on the whole space R

2 rather than on the
torus, the operator L−1 is not bounded. Its norm explodes in the low frequency range.

Proof of the Lemma
lem:boundLlem:boundL
3.4 Two bounds on J0(l) are used, namely one of the bounds of Lemma

lem:boundJlem:boundJ
A.1 for l ≥ 1

and the following bound given by the Taylor expansion of J0 near 0 for l ≤ 1,

0 ≤ (J0(l))2 ≤ 1− l2

4
, if 0 ≤ l ≤ 1 .

Consequently,

|ĤT (k)| ≤ 2

T

∫ 1
|k|

0

(

1− (|k|u)2
4

)

e−u2/Tu du+

√
2

|k|T

∫ ∞

1
|k|

e−
u2

T du

≤ 2

∫ w

0

(

1− x2

4w2

)

e−x2

x dx +
√
2w

∫ ∞

w

e−x2

dx

≤ 1− 3

4
e−w2 − 1

4w2
(1− e−w2

) +
√
2w

∫ ∞

w

e−x2

dx,

where w = (|k|
√
T )−1. Now, using the bounds 2−

1
2 < 3

4 and

w

∫ ∞

w

e−x2

dx ≤
∫ ∞

w

xe−x2

dx =
e−w2

2
,

it holds that

1− |ĤT (k)| ≥
1

4w2
(1− e−w2

).
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This is the first claim of lemma
lem:boundLlem:boundL
3.4 The function of w in the right-hand side of the previous inequality on

|Ĥ(k)| is decreasing and goes from 1
4 at 0 to 0 at +∞. Consequently its minimal value are obtained for large

w i.e. for small |k|, namely |k| = 1. Precisely ,

1− sup
k 6=0

|ĤT (k)| ≥
T

4

(

1− e−
1
T

)

.

Since the Fourier representation of L−1
T is the multiplication by T (1 − Ĥ(k))−1 we obtain that in any Hs

0 ,
s ∈ R,

‖L−1
T ‖Hs

0
= sup

k 6=0

T

|1− Ĥ(k)|
≤ 4

1− e−
1
T

,

which is the desired result.

3.3 Propagation of L2
m

and L2
m
(L4) norms of f .

sec:moment
The two following lemmas will be useful in the sequel.

lem:u-moment Lemma 3.5. Assume that ‖fi‖22,u < +∞. Then, any solution of (
eq:gyroFP2Deq:gyroFP2D
1.1) and (

eq:indataeq:indata
1.4), for regular potential φ,

satisfies
∀ t > 0, ‖f(t)‖2,u ≤ eβt‖fi‖2,u .

Assume moreover that ‖fi‖2,m < +∞. Then any solution f satisfies

‖f(t)‖22,m ≤ ‖fi‖22,m + (2ν + β)
e2βt − 1

β
‖fi‖22,2πu . (3.5) eq:u-moment

with the convention that e2βt−1
β = 2t if β = 0.

lem:disp Lemma 3.6. Assume ‖fi‖L2
m(L4) < +∞ and f is a solution of (

eq:gyroFP2Deq:gyroFP2D
1.1) with initial condition fi with a regular

potential φ. Then f satisfies
‖f(t)‖L2

m(L4) ≤ e(β+2ν)t‖fi‖L2
m(L4) (3.6) eq:disp

Remark 3.4. A more careful analysis will show that

‖f(t)‖2L2
m(L4) ≤ ‖fi‖2L2

m(L4) + (2ν + β)
e2βt − 1

β
‖fi‖2L2

2πu(L
4) ,

but the simple estimate of Lemma
lem:displem:disp
3.6 will be sufficient.

Proof of Lemma
lem:u-momentlem:u-moment
3.5] Multiply equation (

eq:VFP4Deq:VFP4D
3.1) by f̃ . Using the notations

u = |~u|, g(t, u) =
1

2
‖f̃(t, ·, ~u)‖22, (3.7)

and integrating in the x variable leads to

∂tg − ν∆~ug = −‖(∇x,∇u)f̃(t, ·, u)‖22 + β(4g + ~u · ∇~ug). (3.8)

Multiply the previous equation by k(~u), where k is a smooth function on R
2 with compact support and

integrate in the velocity variable ~u leads to

∂t

(∫

g(t, u)k(~u) d~u

)

+

∫

‖(∇x,∇~u)f̃(t, ·, u)‖22k(~u) d~u =

∫

(ν∆~uk(~u) + 4βk(u)− β div(k(~u)~u))g(t, u) d~u.

By approximation, this is still true for functions k with unbounded supports. For k(~u) = 1,

∂t

(

e−2βt

∫

g(t, u) d~u

)

= −e−2βt

∫

‖(∇x,∇u)f̃(t, ·, u)‖22 d~u ≤ 0.

Coming back to the 1D original quantities, it means that

‖f(t)‖2,u ≤ eβt‖fi‖2,u. (3.9) eq:calc2
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For k(~u) = m̃(u), then ∆k = 4 and

4m̃(u)− div(m̃(u)~u) = 2m̃(u)− m̃′(u)u = 2 .

Therefore,
∫

g(t, u)m̃(u) d~u ≤
∫

g(0, u)m̃(u) d~u+ 2(2ν + β)

∫ t

0

∫

g(s, u) d~u ds

Or in other words

‖f(t)‖22,m ≤ ‖fi‖22,m + 2(2ν + β)

∫ t

0

‖f(s)‖22,u ds .

Using the bound of equation (
eq:calc2eq:calc2
3.9), we get

‖f(t)‖22,m ≤ ‖fi‖22,m + (2ν + β)
e2βt − 1

β
‖fi‖22,u .

with the convention that e2βt−1
β = 2t if β = 0.

Proof of Lemma
lem:displem:disp
3.6 In order to simplify the presentation, we will first performed calculation without

justifying every integration by parts and division. But once we obtain an a-priori result, we will explain the
small adaptation needed to make it rigorous. First, we denote

α(t, ~u) =

∫

|f̃(t, x, ~u)|4dx = ‖f‖44 , γ(t, ~u) =

∫

|f̃ |2|∇~uf̃ |2 dx

Multiply equation (
eq:gyroFP2Deq:gyroFP2D
1.1) by 3 sign(f)|f |3 and integrating with respect to x leads to

∂tα = −12ν

∫

f2|(∇x,∇~u)f |2 dx+ ν∆~uα+ 8βα+ β~u · ∇~uα . (3.10) eq:alpha

Hence, dividing by
√
α

∂t
√
α =

∂tα

2
√
α

≤ −6ν
γ√
α
+

ν∆~uα

2
√
α

+ 4β
√
α+ β

~u · ∇~uα

2
√
α

Now, we multiply by m̃(u), integrate with respect to ~u

∂t

(∫ √
α m̃(u)d~u

)

≤ −6ν

∫

γ√
α
m̃(u) d~u+

ν

2

∫

∆~uα√
α

m̃(u)d~u+ 4β

∫ √
α m̃(u) d~u+ β

∫

~u · ∇~uα

2
√
α

m̃(u) d~u

With the help of some integration by parts, we get that
∫

~u · ∇~uα

2
√
α

m̃(u) d~u = −2

∫ √
α(m̃(u) + u2) d~u

∫

∆~uα√
α

m̃(u)d~u = −2

∫

~u · ∇~uα√
α

d~u+

∫ |∇~uα|2
2α

3
2

m̃(u) d~u

= 8

∫ √
αd~u+

∫ |∇~uα|2
2α

3
2

m̃(u) d~u .

Thanks to that, the previous inequality simplify in

∂t

(∫ √
α m̃(u)d~u

)

≤ −6ν

∫

γ√
α
m̃(u) d~u+

ν

4

∫ |∇~uα|2
α

3
2

m̃(u) d~u+ 2(β + 2ν)

∫ √
αd~u

Next we can estimate |∇~uα| in terms of γ. In fact by Hölder inequality

∇~uα = ∇~u

(∫

f4 dx

)

= 4

∫

f3∇~uf dx

|∇~uα|2 ≤ 16

(∫

f4 dx

)(∫

f2|∇~uf |2 dx
)

= 16αγ

So that the second term in the right hand side of the previous inequality is controlled up to a constant to
the first one. We precisely get

∂t

(∫ √
α m̃(u)d~u

)

≤ −2ν

∫

γ√
α
m̃(u) d~u+ 2(β + 2ν)

∫ √
α d~u (3.11) eq:ineqdiff
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From which we conclude easily.
In the previous calculation, we have not justified all the integrations by part. To make the argument

rigorous, a possibility is to choose a smooth function ξ1 from R
+ into [0, ] such that ξ(u) = 1 if u ∈ [0, 1]

and ξ(u) = 0 if u ∈ [1,+∞), and define for all U > 0 ξU (u) = ξ
(

u
U

)

. Remark that |Uξ′U |∞ ≤ |ξ′|∞ and
|U2ξ′′U |∞ ≤ |ξ′′|∞. Then, we performed the previous calculation with the weight m̃U = m̃ξU , we obtain an
inequality very similar to (

eq:ineqdiffeq:ineqdiff
3.11)

∂t

(∫ √
α m̃U (u)d~u

)

≤ −2ν

∫

γ√
α
m̃U (u) d~u+

[

2(β + 2ν) +
C

U2

] ∫ √
αd~u (3.12) eq:diffapprox

from which we get ‖f(t)‖L2
m̃U

(L4) ≤ e(β+2ν+ C

U2 )t‖fi‖L2
m̃U

(L4), which give the desired result letting U going

to infinity.
The other point not rigorously justified is the division by

√
α that may be zero. However, since we have

a diffusion equation, it may be proved that for t > 0, α > 0 everywhere. Or we can use a family of smooth
approximation of

√·. Or we can say that α+ǫ satisfy (
eq:alphaeq:alpha
3.10) with a additional term that has the good sign, so

that it will satisfy (
eq:diffapproxeq:diffapprox
3.12), and we will obtain the desired inequality letting ǫ going to zero and then U going to

infinity. It is well justified since the maximum principle applies there so that any solution with non-negative
initial condition remains non-negative.

3.4 Short time estimate of the m-moment of ∇
x
f .

sec:moment-grad_xf

The following lemma provide is central in the proof of the stability and uniqueness of the solution for short
time.

lem:grad_xf Lemma 3.7. Assume that f is a solution of the system (
eq:gyroFP2Deq:gyroFP2D
1.1)-(

eq:indataeq:indata
1.4) satisfying initially ‖∇xfi‖2,m < +∞.

Then there exists a constant C∗ and a time τ∗ depending on (T, ν, ‖∇xfi‖2,m), such that

‖∇xfi‖22,m +
ν

2

∫ τ∗

0

‖(∇x, ∂u)∇xf‖22,m dt ≤ C∗

We also mention that the result is true if the definition of Φ in (
eq:elecneutreq:elecneutr
1.2) is replaced by another definition

which still satisfies the bound given in Lemma
lem:rhoreglem:rhoreg
3.3 and

lem:phireglem:phireg
3.2. Precise bounds by below for τ∗ are given at the

end of the proof (only in the case β = 0).

Proof of Lemma
lem:grad_xflem:grad_xf
3.7 : We take the x-gradient of equation (

eq:VFP4Deq:VFP4D
3.1), written in 2D in ~u (with u = |~u|), and

obtain
∂t∇xf̃ −∇⊥

x (J
0
uΦ)∇2

x,xf̃ = β(2∇xf̃ + ~u · ∇~u(f̃)) + ν∆x,~u(∇xf̃)−∇x(∇⊥
x (J

0
uΦ)∇xf̃ .

If we now multiply by t∇xf̃ on the left and integrate in x, the function h defined by h(t, u) = 1
2

∫

|∇xf̃ |2 dx
satisfies,

∂tg(u) = β(4g(u) + ~u · ∇~ug(u))ν∆~ug(u)− ν‖∇x,~u∇xf̃‖22 −
∫

t∇xf̃ ∇x(∇⊥
x J

0
uΦ)∇xf̃ dx. (3.13) eq:gevol

We may also multiply this equation by m̃(u) = (1 + u2) and integrate it in ~u. We obtain after that

1

2
∂t‖∇xf̃‖22,m̃+ ν‖∇x,~u∇xf̃‖22,m̃ = (4ν+2β)‖∇xf̃‖22,u0 −

∫ ∫

t∇xf̃
(

∇x(∇⊥
x J

0
uΦ)

)

∇xf̃ m̃(u) dx d~u. (3.14) eq:gevol2

To go on, we need to understand a little better the matrix M(t, x, u) = ∇x(∇⊥
x J

0
uΦ). First remember

that Φ = L−1
T (ρ − 1), and then remark that from there definition, J0 and L−1 commute with derivation in

x. So that our term may be rewritten M = J0
uL

−1(∇x(∇⊥
x ρ)). Using the bound of the Lemma

lem:rhoreglem:rhoreg
3.3 and

lem:boundLlem:boundL
3.4

we obtain that

∀u > 0 , ‖M(t, u)‖H1 = ‖J0
uL

−1(∇x(∇⊥
x ρ))‖H1 ≤ 2

1
4 cT√
u

‖ρ− 1‖
H

5
2
≤ CcT√

u
‖f‖L2(H2

m) .

Moreover, the H2
m-norm of f appears in the right-hand side of (

eq:gevoleq:gevol
3.13). So that we may use it to control M .

With a control on the H1 norm of M , we do not get an infinite bound on M , like ‖M‖∞ ≤ C‖f‖H2 .
In that case, we will be able to use a classical tool to conclude. But this is almost true, we are in a critical
case (d = 2 and p = 2) for the Sobolev imbeddings, but we still know that the square of M is exponentially
integrable. Precisely, since M is of average 0, we have for all u > 0 the following Trüdinger inequality

∫

x

e
M2

6‖M‖2
H1 dx ≤ 2
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We refer to
Moser
[9] for a proof of that result. To estimate

∫ ∫

t∇f̃M∇f̃(1+u2) dxdu, we first perform the integral
in x. For this, we apply the inequality

ab ≤ ea − b+ b ln b , ∀ a, b > 0,

to (a, b) =

(

(

|M|
6‖M‖2

H1

)2

, |∇f̃ |2
‖∇f̃‖2

2

)

. The previous inequality comes from the Legendre transform of ea, as the

Young inequality, so that our application will be a log-exp analog of the Hölder inequalities. We obtain

‖M∇f̃‖2 = 6‖M‖H1‖∇f̃‖2





∫ ( |M |
6‖M‖2H1

)2
(

|∇f̃ |2
‖∇f̃‖22

)2

dx





1
2

≤ CcT√
u
‖f̃‖L2

m̃(H2)‖∇f̃‖2
(

2− 1 +

∫ |∇f̃ |2
‖∇f̃‖22

ln

(

|∇f̃ |2
‖∇f̃‖22

)

dx

)
1
2

,

≤ CcT√
u
‖f̃‖L2

m̃(H2)‖∇f̃‖2
(

1 + ln

(

‖∇xf̃‖44
‖∇xf̃‖42

))1/2

,

≤ CcT√
u
‖f̃‖L2

m̃(H2)‖∇f̃‖2
(

1 + ln

(

cs‖∇2
x,xf̃‖22

‖∇xf̃‖22

))
1
2

,

where we have used the Jensen inequality - precisely, for a function g of integral 1,
∫

g ln g ≤ ln(
∫

g2) - in the
last but one line, and the Sobolev imbedding from H1 into L4 with constant cs in the last one. The constant
C may change from line to line. Using this and Jensen inequality in the previous equation, we get

∫ ∫

| t∇f̃M∇f̃ | m̃(u) dxdu ≤
∫

‖M∇f̃‖2‖∇f̃‖2m̃(u) du ,

≤ CcT |f̃‖L2
m̃(H2)

∫

‖∇f̃‖22
(

1 + ln

(

cs‖∇2
x,x f̃‖2

2

‖∇x f̃‖2
2

))
1
2 m̃(u)√

u
du ,

≤ CcT ‖f̃‖L2
m̃(H2)‖∇f‖2, m̃

u
‖∇f̃‖2,m̃

(

1 +

∫

m̃(u)‖∇f̃‖22
‖∇f̃‖22,m̃

ln

(

cs‖∇2
x,xf̃‖22

‖∇xf̃‖22

)

du

)
1
2

,

≤ CcT ‖f̃‖L2
m̃(H2)‖∇f‖2, m̃

u
‖∇f̃‖2,m̃

(

1 + ln

(

cs‖∇2
x,x f̃‖2

2,m̃

‖∇xf̃‖2
2,m̃

))
1
2

Remark that the fraction inside the logarithm is always greater than 1 so that the square root is well defined.
In order to get a bound on ‖∇xf̃‖2, m̃

u
, we use that

‖∇xf̃‖22, 1
u

= 2

∫

h(u)
d~u

|u| = 2

∫

h(u) div~u

(

~u

|u|

)

d~u

= −
∫

∇~u(|∇xf̃ |2) ·
~u

|u| dxd~u ≤ 2‖∇2
~uf̃‖2‖∇xf̃‖2 , (3.15)

so that
‖∇xf̃‖22, m̃

u

= ‖∇xf̃‖22,u + ‖∇xf̃‖22, 1
u

≤ 2
(

‖∇xf̃‖2,m̃ + ‖∇~u∇xf̃‖2,m̃
)

‖∇xf‖2,m̃

Therefore,

1

2
∂t‖∇xf̃‖2,m̃ + ν‖∇x,~u∇xf̃‖22,m̃ ≤ (4ν + 2β)‖∇xf̃‖22,u0+

CcT ‖∇2
x,xf̃‖2,m̃‖∇f̃‖

3
2

2,m̃

(

‖∇xf̃‖
1
2

2,m̃ + ‖∇~u∇xf̃‖
1
2

2,m̃

)

(

1 + ln

(

cs‖∇2
x,xf̃‖22,m̃

‖∇xf̃‖22,m̃

))
1
2

.

(3.16) eq:gevol3

We next use the inequality 1 + ln(x) ≤ xǫ

ǫ , valid for any ǫ ∈ (0, 1), x > 0, and get

∂t‖∇xf̃‖2,m̃ + ν‖∇x,~u∇xf̃‖22,m̃ ≤ (4ν + 2β)‖∇xf̃‖22,u0 + . . .

C(ǫ)‖∇x,~u∇xf̃‖1+ǫ
2,m̃‖∇xf̃‖

3
2−ǫ

2,m̃

(

‖∇xf̃‖
1
2

2,m̃ + ‖∇x,~u∇xf̃‖
1
2

2,m̃

)

.
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with C(ǫ) = CcT
ǫ

√
cs. Now, with the temporary notations a = ‖∇xf̃‖2,m̃ and b = ‖∇x,~u∇xf̃‖2,m̃, what we

need is to eliminate all the b in the right hand side, with the help of the b of the left hand side. Precisely, in
the right hand side, we have the two terms

b1+ǫa2−ǫ , and b
3
2+ǫa

3
2−ǫ .

We will use the Young inequalities xy ≤ xp

p + yq

q , where 1
p +

1
q = 1. For the first term, with p = 2

1+ǫ and then

q = 2
1−ǫ , and for the second with p = 4

3+2ǫ and then q = 4
1−2ǫ . We obtain the following bounds

b1+ǫa2−ǫ ≤ 1 + ǫ

2
b2 +

1− ǫ

2
a4+

2ǫ
1−ǫ , and b

3
2+ǫa

3
2−ǫ ≤ 3 + 2ǫ

4
b2 +

1− 2ǫ

4
a6+

8ǫ
1−2ǫ ,

valid for ǫ < 1
2 . Taking into account the two constants ν and C(ǫ) we get for ǫ < 1

2

1

2
∂t‖∇xf̃‖22,m̃ +

ν

2
‖∇x,~u∇xf̃‖22,m̃ ≤ (4ν + 2β)‖∇xf̃‖22,m + . . .

C(ǫ)
2

1−ǫ ν−
1+ǫ
1−ǫ ‖∇xf̃‖

4+ 2ǫ
1−ǫ

2,m̃ + C(ǫ)
4

1−2ǫ ν−
3+2ǫ
1−2ǫ ‖∇xf̃‖

6+ 8ǫ
1−2ǫ

2,m̃ .

where C(ǫ) has only change from a numerical constant. With the notation h = ‖∇xf̃‖22,m̃, it gives

1

2
∂th ≤ (4ν + 2β)h+ C(ǫ)

2
1−ǫ ν−

1+ǫ
1−ǫ h2+ ǫ

1−ǫ + C(ǫ)
4

1−2ǫ ν−
3+2ǫ
1−2ǫ h3+ 4ǫ

1−2ǫ .

That is a differential inequality with a growth faster than linear, that give a solution that may explode in a
finite time. The time of explosion τ∗ may be bounded below by something depending only on ν, ǫ, T and
h(0) = ‖∇xf̃i‖2,m. Since ǫ may be choosen arbitrairy between 0 and 1

2 , τ
∗ depends only on ν,β, T and the

initial value h0.
Using that in the inequality (

eq:gevol3eq:gevol3
3.16), and turning back to the original u variable, we obtain the existence

of a constant C3(T, ν, ‖∇xfi‖m) such that

‖∇xfi‖22,m +
ν

2

∫ τ∗

0

‖(∇x, ∂u)∇xf‖22,m dt ≤ C3(T, ν, ‖∇xfi‖2,m)

A bound by below for τ∗. In order to simplify the next two paragraphs, we assume that β ≤ ν. A
careful analysis of the term in the right hand side of the previous equation shows that if ǫ is choosen small

enough so that ν ≤ C(ǫ), then for h ≤ h̄ :=
(

ν
C(ǫ)

)2

the dominant term is 4νh and for h ≥ h̄ the dominant

term is h6+ 8ǫ
1−2ǫ .

Then, if h(0) ≥ h̄, the explosion time is given by the equation

∂th ≤ C(ǫ)
2

1−2ǫ ν−
3+2ǫ
1−2ǫ h3+ 8ǫ

1−2ǫ .

For that equation, we get that the explosion time is larger than

τ∗ = C(ǫ)−
4

1−2ǫ ν
3+2ǫ
1−2ǫ h(0)−

2
1−2ǫ

In the case h(0) ≤ h̄, then for the early time, the equation may be rewritten

∂th ≤ 12νh ,

till h(0) = h̄. It take a time greater than T 1 = 1
12ν ln

(

h̄
h(0)

)

. And after that time, the explosion time is given

by the later calculation, and due to simplification it comes C
ν . Finally, we get an explosion time

τ∗ =
1

12ν
ln

(

h̄

h(0)

)

+
C

ν

Best choice for ǫ. It is quite difficult to optimize that quantity in ǫ. But, as the condition on ǫ are
0 < ǫ < 1

2 and ν ≤ C(ǫ) = C cT
ǫ , we can choose

ǫ = min

(

1

8
, C

cT
ν

)

With that choice, we get
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i) If ν ≤ 8CcT , τ
∗ =







Cν
13
3 h

− 8
3

0 if h0 ≥ C
(

ν
cT

)2

C
ν

(

1 + ln
(

Cν2

c2
T
h0

))

else

ii) If ν ≥ 8CcT , τ
∗ =

{

Cν
13
3 h

− 8
3

0 if h0 ≥ 1
C
ν (1− lnh0) else

It is then clear that the value of τ∗ depends only on ν, h0 and the temperature T .
The case of physical interest is the first one. Since in core of tokamaks, we have a large temperature T

which implies a constant cT large, and a small colisionnality, in other words a small ν.

4 Existence of solutions.
sect:existence

In this section, we prove the existence theorem
thm:existencethm:existence
1.1. The proof will use the following notation and a preliminary

lemma. A priori estimates of the Lemma
lem:u-momentlem:u-moment
3.5 on the solution (f,Φ) to

eq:gyroFP2Deq:gyroFP2D
1.1-

eq:elecneutreq:elecneutr
1.2 on [0, T ] lead to the definition

of the set K of functions f such that

‖f(t)‖2,m ≤
√
M, a.a.t ∈ 0, T,

where

M = ‖fi‖22,m + (2ν + β)
e2βt − 1

β
‖fi‖22,2πu

For each n > 0, we also introduce an approximation of the potential Φn defined for any f ∈ L2
m by

Φn(t, x) :=
∑

|k|≤n;k 6=0

eik·x
1

1− Ĥ(k)

(

∫

2πJ0
wf̂n(t, k, w)wdw − 1

)

, (4.1)

lem:approx Lemma 4.1. For any n ∈ N
∗ and any T > 0, there is a unique fn in K ∩ L2(0, T ;H1

u(Ω)) solution to (
eq:gyroFP2Deq:gyroFP2D
1.1)

with the potential Φ replaced by Φn = Φn(fn) and initial condition fi. That solution satisfy all the a priori
estimate of the previous section.

Proof of Lemma
lem:approxlem:approx
4.1 Let S be the map defined on K by S(f) = g, where g is the solution in K ∩

L2(0, T ;H1
u(Ω)) to (

eq:gyroFP2Deq:gyroFP2D
1.1) with the potential Φn(f) and initial condition f . The existence and uniqueness of

S(F ) follows from
Lions-Magenes
[8] Thm 4.1 p 257, since ∇Φn is bounded in L∞(0, T ;H3(T2)) by cnM for some constant

cn. Then S maps K into K. Moreover, S is a contraction in L∞(0, T ;L2
u(Ω)) for T small enough. Indeed, let

g1 = S(f1) (resp. g2 = S(f2)). By estimates very similar to the one performed in Lemma
lem:rhoreglem:rhoreg
3.3 it holds that

∀t ≥ 0, ‖(Φn(f1)− Φn(f2))(t, ·)‖L∞(T2) ≤ c̄n‖(f1 − f2)(t, ·)‖2,m,

for some constant c̄n. Substracting the equation satisfied by g2 from the equation satisfied by g1 and inte-
grating over Ω leads to

e2(2ν+β)t

2

d

dt

(

e−2(2ν+β)t‖g1 − g2‖22,m
)

≤ −ν‖(∇x, ∂u)(g1 − g2)‖22,m −
∫

g2∇⊥(J0
u(Φn(f2)− Φn(f1))) · ∇(g1 − g2)m(u) dxdu

≤ −ν‖(∇x, ∂u)(g1 − g2)‖22,m + c̄n‖(f1 − f2)‖2,m‖∇x(g1 − g2)‖2,m‖g2‖2,m

≤ c̄n
2

4ν2
‖(f1 − f2)‖22,m‖g2‖22,m ≤ c̄n

2M

4ν2
‖(f1 − f2)‖22,m

And so

‖g1 − g2‖L∞(0,T ;L2
m) ≤ cT e2(ν+β)T‖f1 − f2‖L∞(0,T ;L2

m).

Hence there is a unique fixed point of the map S on [0, T1] for T1 small enough. The bounds used for defining
T1 being independent of T1, a unique solution of the problem can be determined globally in time by itera-
tion. The fact that this unique solution satisfy the a-priori estimates of the next section is clear since these
estimates only depends on the bound satisfied by Φ and not on its precise form.
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Proof of Theorem
thm:existencethm:existence
1.1

The sequence (fn) is compact in L2
loc,u((0, T )× Ω). Indeed, it is bounded in

L∞(0, T ;L2
u(ΩU )) ∩ L2(0, T ;H1

u(ΩU )) for any bounded subset U > 0 (Recall of ΩU = T
2 × R

+). It follows

from the interpolation theory that (fn) is bounded in L
10
3
u ((0, T )×T

2 ×U). Together with the boundedness

of (∇xΦn(fn)) in L2
loc,u((0, T )×Ω), this implies that (∂fn∂t ) is bounded in W

−1, 54
loc,u ((0, T )×ΩU). By the Aubin

lemma
Lions-Magenes
[8], it holds that (fn) is compact in L2

u((0, T )×ΩU ), so converges up to a subsequence to some function
f in L2

u.
It remains to pass to the limit when n → +∞ in the weak formulation satisfied by fn. A weak form of
(
eq:gyroFP2Deq:gyroFP2D
1.1)-(

eq:indataeq:indata
1.4) is that for every smooth test function α with compact support in [0, T [×Ω,

∫

fi(x, u)α(0, x, u)u dxdu+

∫ t

0

∫

fn

(∂α

∂t
+∇⊥

x (J
0
uΦn(fn)) · ∇xα

)

u dxduds

=

∫ t

0

∫

(

uν∇xfn · ∇xα+ ∂ufn∂uα+ βu2fn∂uα
)

dxduds . (4.2) eq:weakform

The passage to the limit in (
eq:weakformeq:weakform
4.2) when n → +∞ can be performed if

lim
n→∞

∫ t

0

∫

ufn∇⊥
x (J

0
u(Φn(fn)) · ∇xαdxduds =

∫ t

0

∫

uf∇⊥
x (J

0
u(Φ(f)) · ∇xαdxduds.

This holds since (fn) (resp. (∇x(J
0
u(Φn)(fn))) strongly (resp. weakly) converges to f (resp. ∇x(J

0
u(Φ(f)))

in L2
loc,u((0, T )× Ω). And since the fn satisfy all the a priori bound, the limit f also satisfies them.

5 Short time uniqueness and stability of the solution.
sect:uniqueness

In this section we prove the shot time uniqueness and stability theorem
thm:uniquenessthm:uniqueness
1.2

Proof of Theorem
thm:uniquenessthm:uniqueness
1.2. Denote by f1 (resp. f2) a solution to

eq:gyroFP2Deq:gyroFP2D
1.1 for the field Φ1 (resp. Φ2), by δf = f1−f2

and by δΦ = J0
u(Φ1 − Φ2). Multiplying the equation satisfied by (1 + u2)δf by δf and integrating w.r.t.

(x, u) with the weight u leads to

1

2

d

dt
‖δf‖22,m ≤ −ν‖(∇x, ∂u)δf‖22,m + (4ν + 2β)‖δf‖22,u +

∫

δf∇⊥
x (δΦ) · ∇xf2m(u) dxdu

≤ −ν‖(∇x, ∂u)δf‖22,m + 4ν‖δf‖22,m + ‖δf∇x(δΦ)‖2,um‖∇xf2‖2,m
u
.

To estimate ‖δf∇(δΦ)‖2,um, apply the inequality

ab ≤ ea − b+ b ln b , a, b > 0,

to (a, b) =

(

(

∇xδΦ
6‖∇2

xδΦ‖2

)2

,
(

δf
‖δf‖2

)2
)

for every nonnegative u and apply the Trüdinger inequality (See
Moser
[9])

∫

T2

e

(

∇xδΦ

6‖∇2
xψ‖2

)2

dz ≤ 2 . (5.1) eq:exp-int

Therefore, using ‖∇2
xδΦ‖2 ≤ CcT√

u
‖∇δf‖2,m (Lemmas

lem:rhoreglem:rhoreg
3.3 and

lem:phireglem:phireg
3.2 and

lem:boundLlem:boundL
3.4) and the Jensen inequality

‖δf∇x(δΦ)‖22 = C‖∇2δΦ‖22‖δf‖22
∫ (

δf

‖δf‖2

)2( |∇xδΦ|
6‖∇2δΦ‖2

)2

dx

≤ C‖∇2δΦ‖22‖δf‖22
(

1 +

∫

(δf)2

‖δf‖2
ln

(

(δf)2

‖δf‖22

)

dx

)

.

≤ Cc2T
u

‖∇xδf‖22,m‖δf‖22
(

1 + ln

(‖δf‖4
‖δf‖42

))
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Integrating in u with the weight um, it holds using again Jensen inequality that

‖δf∇(δΦ)‖22,um ≤ 2Cc2T ‖∇xδf‖22,m‖δf‖22,m
∫ ‖δf‖22

‖δf‖22,m

(

1 + ln

(‖δf‖24
‖δf‖22

))

m(u) du

≤ Cc2T ‖∇xδf‖22,m‖δf‖22,m

(

1 + ln

(

‖δf‖2L2
m(L4)

‖δf‖22,m

))

.

Consequently,

1

2

d

dt
‖δf‖22,m ≤ CcT ‖∇xδf‖2,m‖δf‖2,m

√

√

√

√1 + ln

(

‖δf‖2L2
m(L4)

‖δf‖22,m

)

‖∇f2‖2,m
u

− ν‖(∇x, ∂u)δf‖22,m + (4ν + 2β)‖δf‖22,m ,

and finally using the inequality ‖f(t)‖L2
m(L4) ≤ e(β−2ν)t‖fi‖L2

m(L4) from lemma
lem:displem:disp
3.6

1

2

d

dt
‖δf‖22,m ≤ Cc2T

4ν
‖δf‖22,m ln

(

2e‖δf‖2L2
m(L4)

‖δf‖2,m

)

‖∇f2‖22,m
u
+ (4ν + 2β)‖δf‖22,m ,

≤ Cc2T
4ν

‖δf‖22,m ln

(

r2e2(β+2ν)t+1

‖δf‖22,m

)

‖∇f2‖22,m
u
+ (4ν + 2β)‖δf‖22,m ,

where

r = e
1
2

(

‖f1,i‖L2
m(L4) + ‖f2,i‖L2

m(L4)

)

.

Defining s(t) = 1
r2 ‖δf‖22,me−2(β+2ν)t, we get

ṡ(t) ≤ Cc2T
4ν

‖∇f2‖22,m
u
s(t) ln

1

s(t)
.

It follows from the Osgood lemma that

s(t) ≤ s(0)e
−H(t)

(5.2) eq:osg

with H(t) =
Cc2T
4ν

∫ t

0
‖∇f2(s)‖22,m

u
ds. We will show below that H is well defined on [0, τ∗], the time defined

in Lemma
lem:grad_xflem:grad_xf
3.7. It implies

‖δf(t)‖2,m ≤ e(β+2ν)t r1−e−H(t) ‖δf(t)‖e−H(t)

2,m

and from that inequality we get the short time uniqueness and stability. Remark that the previous calculation
do not use ∇xf1 and this is why we do not need an assumption on this quantity in the stability result.

It remains to prove that H is bounded on [0, τ∗]. In fact,

∫ τ∗

0

‖∇f2‖2
2,(1+u2)

7
2
dt ≤ 2

5
2

∫ τ∗

0

‖∇f2‖22,(1+u7) dt,

since (1+u2)
7
2 ≤ 2

5
2 (1+u7). Moreover,

∫ τ∗

0 ‖∇f2‖22,u0 dt may be bounded using Lemma
lem:grad_xflem:grad_xf
3.7 and the inequality

(
eq:trickeq:trick
3.15) (we emphasize that the form used here is slighty different because we are in here in the 1D setting for
the variable u)

∫ τ∗

0

‖∇f(t)‖22,u0 dt ≤ 2

∫ τ∗

0

‖∇2
x,~uf(t)‖2,u‖∇xf(t)‖2,u

≤ sup
t≤τ∗

‖∇xf(t)‖2,u
√
τ∗

(

∫ τ∗

0

‖∇2
x,~uf(t)‖2,u dt

)
1
2

≤ C∗
√

τ∗

ν
.

And
∫ τ∗

0
‖∇f2‖22,u7 dt is bounded by Lemma

lem:u-momentlem:u-moment
3.5, with n = 3.
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A Appendix: Some controls on the Bessel function of zero-th or-

der.
App:A

The first Bessel function J0 is much used in this paper. Indeed, in Fourier space, J0
1 that appears in the

definition of the gyroaverage of the electric field, is the multiplication by J0. Some properties of the function
J0 are given in

Watson
[10]. In this appendix, some bounds on J0 and its derivative are proven.

lem:boundJ Lemma A.1. J0 satisfies the following estimates for all k ∈ R

i) |J0(k)| ≤ min

(

1,
1

21/4
√
k

)

,

ii) |J0(k)| ≤ (1 + k2)
− 1

4 ,

iii) |(J0)′(k)| ≤ min

(

1,

√

2

πk

)

,

iv) |(J0)′(k)| ≤ (1 + k2)
− 1

4 .

Proof of Lemma
lem:boundJlem:boundJ
A.1

First Inequality : The bound |J0(k)| ≤ 1 is clear from the definition of J0,

J0(k) =
1

2π

∫ 2π

0

eik cos θ dθ =
1

π

∫ π

0

cos(k cos θ) dθ . (A.3) eq:J0bis

The bound by (
√
2k)−

1
2 is obtained as follows. J0 is solution of the ordinary differential equation

k2(J0)′′ + k(J0)′ + k2J0 = 0 , J0(0) = 1 , (J0)′(0) = 0 . (A.4)

The new unknown u =
√
kJ0 is solution to

u′′ +

(

1 +
1

4k2

)

u = 0 .

There are no exact initial conditions for u. However,

u(k) =
k→0+

√
k[1 +O(k2)] , u′(k) =

k→0+

1

2
√
k
[1 +O(k2)].

The second equation admits the k-dependent energy,

H(k) = H(k, u, u′) =
u′2

2
+

u2

2

(

1 +
1

4k2

)

,

that satisfies

H(k)−H(k0) = −
∫ k

k0

u2(l)

4l3
dl.

It follows from the behaviour of u near 0 that

H(k) =
k→0+

1

4k
+O(k) .

Moreover the series expansion of J0 near k = 0,

J0(k) =

∞
∑

j=0

(−1)j
k2j

22j(j!)2

and its alternate character if k ≤ 2 imply that u2(k) ≥ k − k3

2 (valid for k ≤
√
2). Using, the inequality and

the behavior of H near 0, we get if 0 < k0 ≤ k ≤
√
2

H(k) ≤ 1

4k0
+O(k0)−

∫ k

k0

(

1

4l2
− 1

8

)

dl,

H(k) ≤ 1

4k
+

k

8
, (A.5)
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since the first line is satisfied for any k0 > 0. Therefore,

u2(k) ≤ k
k2 + 2

4k2 + 1
, k ≤

√
2 .

A simple calculation shows that the function appearing in the right hand side is increasing in k, so that

u2(k) ≤ 1√
2
, k ∈ [0,

√
2] .

For k ≥
√
2, simply remark that H is decreasing and that from (

eq:Hkeq:Hk
A.5)

u2(k) ≤ 2H(k) ≤ 2H(
√
2) ≤ 1√

2

In any case we get u2(k) ≤ 2−
1
2 which gives the desired inequality.

Second inequality : It is a consequence of the first, for k ≥ 1. For k ≤ 1, it may be obtain from a
comparison of the entire development of J0 and (1 + k)−1/4 around the origin. We get

J0(k) ≤ 1− k2

4
+

k4

64
≤ 1− k2

4
+

5k4

32
− 15k6

128
≤ (1 + k2)−1/4

Third inequality : Taking the derivative of J0 in the definition (
eq:J0eq:J0
1.5),

(J0)′(k) =
i

2π

∫ 2π

0

cos θeik cos θ dθ = − 1

π

∫ π

0

cos θ sin(k cos θ) dθ ,

from which it is clear that |(J0)′(k)| ≤ 1 for all k. Next we transform the previous integral in

(J0)′(k) = − 2

π

∫ 1

0

α sin(kα)√
1− α2

dα ,

=

j−1
∑

i=0

(−1)j
∫ hi+1

hi

| sin(kα)|√
1− α2

α dα :=

j−1
∑

i=0

(−1)jsj ,

where (hi)1≤i≤j are the points where sin(kθ) vanishes and 1,

h0 = 0 < h1 =
π

k
< h2 =

2π

k
< . . . < hj−1 =

(j − 1)π

k
< hj = 1.

The previous sum has alterned sign, the larger terms occuring for large i. Its terms are with increasing
absolute values, except for the last one which is incomplete and may be smaller than the next to last term.
However,

−s1 ≤ s0 − s1 ≤
j
∑

i=0

(−1)jsj ≤ s0 − s1 + s2 ≤ s0,

so that

|(J0)′(k)| ≤ max(s0, s1) ≤
2

π

∫ 1

1−π/k

αdα√
1− α2

≤ 1

π

√

2π

k
− π2

k2
≤
√

2

πk
, k ≥ π.

This ends the proof of the third inequality.

The proof of iv) is similar to the proof of ii), since
√

2
π < 2−

1
4 .
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