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WELL-POSEDNESS OF A DIFFUSIVE GYROKINETIC MODEL

We study a finite Larmor radius model used to describe the ions distributions in the core of a tokamak plasma, that consist in a gyro-kinetic transport equation, coupled with an electro-neutrality equation. Since the last equation do not provide enough regularity on the electric potential, we introduce a simple linear collision operator adapted to the finite Larmor radius approximation. Next we study the twodimensional dynamics in the direction perpendicular to the magnetic field and prove thanks to the smoothing effects of the collisions and of the gyro-average the global existence of solutions, as well as short time uniqueness and stability.

1 Introduction.

The model studied in that article describes the density of ions in the core of a tokamak plasma. In such highly magnetized plasma, the charged particles have a very fast motion of gyration around the magnetic lines, called the Larmor gyration. A good approximation is then to consider that the particles are uniformly distributed on gyro-circle, parametrized by their gyro-center, and Larmor radius r L (that is proportionnal to the speed of rotation u, and in our article, we will forget the physical constant and write r L = u). The models obtained in that new variables are kinetic in the direction parallel to the magnetic field lines, and fluids (precisely a superposition of fluid models) in the perpendicular direction. For rigorous derivation of such models and more complete discussion on its validity, we refer to FreSon [START_REF] Frénod | The finite Larmor radius approximation[END_REF] and our previous work GheHauNou09 [START_REF] Ghendrih | Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution[END_REF], in which the derivation is perform from a Vlasov equation in the limit of large magnetic field.

Such gyro-kinetic models are usually closed by an electro-neutrality equation, that as usual provide very few regularity for the eletric field, so that the well-posedness of gyro-kinetic models is, at least at our knowledge unknown. In this article, we add a "gyro-averaged" collision operator to the model and study the dynamics in the directions perpendicular to the field only.

Let us now describe our precise model. The ion distribution function f (t, x, u) in gyro-coordinates depends on the time t, the gyro-center position x ∈ T2 and the velocity of the fast Larmor rotation u ∈ R + (which is also proportional to the Larmor radius). The electric potential Φ depends only on (t, x). They satisfy the following system of equation on Ω = T

2 × R + ∂f ∂t + (J 0 u ∇ x Φ) ⊥ • ∇ x f = βu∂ u f + 2βf + ν ∆ x f + 1 u ∂ u (u∂ u f ) (1.1) eq:gyroFP2D (Φ -Φ * x H T )(t, x) = T (ρ(t, x) -1) (1.
2) eq:elecneut ρ(t, x) = (J 0 w f (t, x, w)2πwdw) (1.3) eq:defrho f (0, x, v) = f i (x, v) ∀(x, u) ∈ Ω (1.4) eq:indata where β and ν are two positive constant, ρ is the density in physical space, T is the ion temperature,

J 0 u h(x g ) = 1 2π 2π 0 h(x g + ue iϕc ) dϕ c , (1.5 
) eq:J0

is the well known zero-order Bessel operator Watson [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF] and That model without the Fokker-Planck operator (ν = β = 0) was studied in our previous work

H T (x) = e -|x| 2 4T 2π 3 

GheHauNou09

[4] -to which we refer for an heuristical derivation of the electro-neutrality equation ( eq:elecneutr eq:elecneutr 1.2) -and is used by physicists for simulation, by instance in Gysela code Gysela06 [START_REF] Grandgirard | GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations[END_REF]. Here we just mention that ( eq:elecneutr eq:elecneutr 1.2) is obtained in a close to equilibrium setting, with an adiabatic hypothesis on the distribution of the electrons n e = n 0 e-eΦ Te ≈ n 0 1 + eΦ Te , and an hypothesis of adiabatic response of the ions on the gyro-circle which gives rise to the Φ * H T term. As usual in quasi-neutral equation, we have no good a priori estimates on the regularity of E = -∇Φ.

Remark that even if that equation ( eq:gyroFP2D eq:gyroFP2D

1.1) is derived from a Vlasov model (A rigourous derivation of a more general 3D model is performed for fixed field E in section sect:dif sect:dif 2), it is of "fluid" nature. In fact there is no transport in the remaining of the velocity variable u, and the position of the gyro-center is transported by the eletric drift (J 0 u E) ⊥ . So that the equation is similar to the 2D Navier-Stokes equation written in vorticity. More precisely, we have a family of fluid model depending on a parameter u, which are coupled thanks to diffusion in the u variable, and by the closure used for E described below.

Moreover, we will prove in the following that thanks to gyro-average J 0 u , equation has the same regularity than the NS2D equation in vorticity. In fact, the force field J 0 u ∇ x Φ belongs naturally to H 1 if f ∈ L 2 with some weight. That is why we obtain the same result that are known about the NS2D equation : global existence and short time uniqueness and stability. However, our model present an additional difficulties which is the lose of regularity for small u. In fact, for small value of u the H 1 bound (in x only) of J 0 u ∇ x Φ explodes.

To state our reuslts properly, we will need the following definitions and notations :

• In the sequel, the letter C will design a numerical constant, that may change form line to line. Unless it is mentioned, such constants are independent of everything.

• L 2 u (Ω) = L 2 (Ω, udxdu)
is the space of square integrable functions with respect to the measure udxdu. • We shall use various norm on T 2 or on Ω. To avoid confusion, we will use the following convention. All the norm performed on the whole Ω will have their weight with respect to u as additional indice. By instance

• 2πu , • H 1 2πu(1+u 2 )
. All the norms without any indices are norm on T 2 only.

• For any weight function k : R + → R + , the norm • 2,m is defined for any function f on Ω by

f 2,k = F (•, u) 2 k(u) du 1 2
• The most usefull weights will be m(u) = 2πu(1 + u 2 ) and m(u) = 1 + u 2 .

• We change a litlle bit the duality used to define distributions in the following definition Definition 1.1. Using distributions with the weight u means that duality is performed as

f, g u = f g dx g dv || udu .
This definition may seem a little artificial because the simple definition of derivative with respect to u, is not valid. Instead,

∂ u f, g u = -f, ∂ u g u - f u , g u .
However, this weight respects the underlying physics (u is in fact the 1D norm of a 2D velocity variable) and has many advantages. For instance the operator (1/u)∂ u (u∂ u ) is self-adjoint with this weight.

Our precise result are the following. We prove global existence under the hypothesis f i 2,m < +∞.

:existence Theorem 1.1. Let f i satisfy f i 2,m < +∞. Then there exists at least one weak solution

f ∈ L ∞ (R + , L 2 u (Ω))∩ L 2 (R + , H 1 u (Ω)) to (
eq:gyroFP2D eq:gyroFP2D

1.1)-(

eq:elecneutr eq:elecneutr 1.2) with initial condition f i , which also satisfies for any t > 0

f (t) 2 2,u + ν t 0 (∇ x , ∂ u )f 2 2,u ds ≤ f i 2,u ,
and all the a priori estimates of the previous section (Lemma lem:u-moment lem:u-moment

3.5,

lem:disp lem:disp

3.6,

lem:grad_xf lem:grad_xf

3.7) if their initial hypothesis are satisfied.

And we prove short time uniqueness and stability under the additional hypothesis

∇ x f 2,m < +∞. uniqueness Theorem 1.2. Let f i satisfy f i 2,m + ∇ x f 2,m < +∞ .
Then the positive time τ ⋆ defined in Lemma lem:grad_xf lem:grad_xf 3.7 is such that the weak solution to ( eq:gyroFP2D eq:gyroFP2D

1.1)-(

eq:indata eq:indata 1.4) , defined in Theorem thm:existence thm:existence

1.1, is unique on [0, τ ⋆ ] .
Moreover, that solution is stable on that interval of time in the following sense. Assume that (f n ) n∈N is a family of solutions given by theorem thm:existence thm:existence

1.1 with initial conditions f n i satisfying lim n→+∞ f n i -f i 2,m = 0 , and sup n∈N f n i L 2 m (L 4 ) < +∞ . Then lim n→+∞ sup t∈[0,τ * ] f n (t) -f (t) 2,m = 0 .
This local result has some more consequence when relating it to the bound on ν

T 0 ∇ x f 2 2,m dt ≤ f i 2 2,m + C(T ) f i 2 2
satisfied by any solution in the sense of thm:existence thm:existence 1.1. The last bound implies that ∇ x f 2,m is almost surely finite. The local result implies more : that the norm of gradient may blow up only on a closed and negligeable set, of 4/5-capicity zero..... In the next section the diffusive operator of ( eq:gyroFP2D eq:gyroFP2D

1.1) is rigourously derived from a linear Vlasov-Fokker-Planck equation in the limit of large magnetic field. In the third section, some useful lemmas are established, proving regularizing properties of the gyro-average, global preservation of some weighted norm of f , the short time preservation of the u(1 + u 2 )-moment of ∇ x f by the system ( eq:gyroFP2D eq:gyroFP2D

1.1)-(

eq:elecneutr eq:elecneutr 1.2)), and controlling the electric potential by the physical density. This allows to prove the global existence (Theorem thm:existence thm:existence 1.1) of solutions to the Cauchy problem in the fourth section and their short time uniqueness and stability (Theorem thm:uniqueness thm:uniqueness 1.2) in the fifth section. Finally some useful properties of the first Bessel function J 0 are proven in the appendix.

2 Derivation of the gyro-Fokker-Planck operator sect:dif

In that section, we rigorously justify the form of the Fokker-Planck appearing in the right-hand side of ( eq:gyroFP2D eq:gyroFP2D

1.1). The usual collision operator for plasmas is the nonlinear Landau operator originally introduced by Landau Landau [START_REF] Landau | The transport equation in the case of coulom interactions[END_REF]. Because of its complexity, simplified collision operators have been introduced. An important physical litterature exists on the subject, also in the gyro-kinetic case (See Brizard04 [START_REF] Brizard | A guiding-center fokker-planck collision operator for nonuniform magnetic fields[END_REF] and the references therein). In this paper we choose the simplest possible operator possible, namely a linear Fokker-Planck operator. The reasons of this choice are :

-Its simplicity will allow to focus on the other difficulties of the model, -The fact that physicists studying gyro-kinetic models for the core of the plasma mainly assume that the dynamics stays close to equilibrium, in which case a linear approximation of the collision operator is relevant.

-The aim of the paper is not a precise description of collisions. In fact, even if they exists in tokamaks, being needed to produce energy, their effect is small compared to the turbulent transport. However, we are interested by their regularizing effect, since the electro-neutrality equation ( eq:elecneutr eq:elecneutr 1.2) do not provide enough regularity to get a well-posed problem. This is a major difference to the Poisson equation setting.

We start from a simple model for a 3D plasma, i.e. a linear Vlasov-Fokker-Planck equation with an external electric field, an external uniform magnetic field and linear collision and drift terms, and obtain in the limit of large magnetic field a 3D (in position) equation analog to ( eq:gyroFP2D eq:gyroFP2D 1.1). In particular, we show that a usual linear Fokker-Planck term on the speed variables turns into an equation with diffusion terms both in space and Larmor radius variables in the limit.

Precisely, for any small parameter ǫ > 0 we study the distribution f ǫ (t, x, v) of ions submitted to an exterior electric field E(t, x) (independent of ǫ) and an uniform magnetic field B ǫ = (1/ǫ, 0, 0). We also model collisions (with similar particles and the others species) by a simple linear Fokker-Planck operator. To avoid any problem with possible boundary collisions, which are really hard to take into account in gyrokinetic theory, we assume that (x, v) ∈ T 3 × R 3 , where T 3 is the 3D torus. When the scale length of all the parameters are well chosen (in particular the length scale in the direction perpendicular to the magnetic field should be chosen of order ǫ times the length scale in the parallel direction, we refer to our previous work GheHauNou09 [START_REF] Ghendrih | Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution[END_REF] for more details on the scaling), the Vlasov equation f ǫ satisfies is

∂f ∂t + v ∂ x f + E • ∇ v f + 1 ǫ (v ⊥ • ∇ x ⊥ f + v ⊥ • ∇ v ⊥ f ) = div v (βvf ǫ ) + ν∆ v f ǫ , (2.1 
) eq:vlares where β, ν are two positive parameters, the subscript (resp. ⊥) denotes the projection on the direction parallel (resp. on the plane perpendicular) to B, and the superscript ⊥ denotes the projection on the plane perpendicular to B composed with the rotation of angle π/2. In others

words if v = (v 1 , v 2 , v 3 ), v ⊥ = (v 1 , v 2 , 0), v || = (0, 0, v 3 ), v ⊥ = (-v 2 , v 1 , 0) .
The next results require the additional notation,

J0 u g(x g , ρ L , v ) = 1 2π 2π 0 g(x g + ue iϕc , ρ L e i(ϕc-π 2 ) + v e ) dϕ c , (2.2 
) eq:J0tilde

which is a gyro-average performed in phase space, that will be used as an initial layer to adapt the initial condition to the fast Larmor gyration.

thm:FPgyro Theorem 2.1. Let E ∈ L ∞ t (L 2
) and f ǫ be a family of solutions to equation ( eq:vlares eq:vlares

2.1) with initial condition

f i ∈ L 2 satisfying sup t f ǫ (t) 2 ≤ f i 2 .
Then the family fǫ defined by

fǫ (t, x g , v) = f (t, x g + v ⊥ , v)
admits a subsequence that converges in the sense of distributions towards a function f depending only on (t, x g , u = |v|, v || ) and solution to

∂ t f + v ∂ x f + J 0 u E ∂ v f +(J 0 u E) ⊥ • ∇ xg f = β(v || ∂ v || f + u∂ u f + 3 f ) + ν ∆ xg ⊥ f + 1 u ∂ u (u∂ u f ) , (2. 
3) eq:FPlim in the sense of distributions with the weight u, with the initial condition J0 u (f 0 ).

Remark 2.1. The reason for the change of variables is that the 1/ǫ-term in equation ( eq:vlares eq:vlares 2.1) induces a very fast rotation in the perpendicular direction both in the x and v variables,

v(t) = v 0 e it/ǫ , x(t) = x 0 + v 0⊥ + v 0 e i(t/ǫ-π/2) .
But in the gyro-coordinates this fast rotation is simply described by a rotation in v,

v(t) = v 0 e it/ǫ , x g (t) = x 0 g . Remark 2.2.
The final diffusion appears in all dimensions except the x g || one. It does not mean that there is no regularization in that direction. Indeed, the models have diffusion in v || , which after some time regularize in the x g || direction. This mechanism is well known for the Fokker-Planck equation (see for instance bouchut [START_REF] Bouchut | Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system[END_REF]). However, we are not able to prove this phenomena in the non-linear setting because the electric field of the model lacks regularity. This is the reason why we will only study the 2D model.

Proof of Theorem

thm:FPgyro thm:FPgyro 2.1. We proved in a previous work

GheHauNou09 [4] that, provided f 0 ∈ L 2 and E ∈ L 1 t (W 1,2
x ), a subsequence of f ǫ solutions of ( eq:vlares eq:vlares 2.1) without the collision term converges towards a solution of ( eq:FPlim eq:FPlim 2.3) without the collision term. In order to simplify the presentation, we will neglect the electric field and the parallel translation terms. To obtain the result in full generality, the only thing to do is to add the argument given in our previous work to the one given below. For the same reason, we shall also not treat the problem of initial conditions.

So consider the above Vlasov Fokker-Planck equation without electric force field and parallel translation,

∂ t f + 1 ǫ (v ⊥ • ∇ x ⊥ f + v ⊥ • ∇ v ⊥ f ) = div v (βvf ) + ν∆ v f . (2.

4) eq:vlaFP

The first step is to use the change of variables (x, v) → (

x g = x + v ⊥ , v). Since ∇ v f = ∇ v f -∇ ⊥ xg f , ∆ v f = ∆ v f + ∆ xg ⊥ f -2∇ v • ∇ ⊥ xg f , ∇ v • (vf ) = v • ∇ v f + 3 f -v • ∇ ⊥ xg f ,

equation (

eq:vlaFP eq:vlaFP 2.4) becomes

∂ t fǫ + 1 ǫ v ⊥ • ∇ v fǫ = -β v • ∇ v fǫ + 3 fǫ -v • ∇ ⊥ xg fǫ + ν ∆ v fǫ + ∆ xg fǫ -2∇ v • ∇ xg fǫ . (2.5
)

By hypothesis fǫ is bounded in L ∞ t (L 2 
x;v ). Therefore, at least a subsequence of ( fǫ ) converges weakly to some f ∈ L ∞ t (L 2 ). Passing to the limit in ( eq:vlaFP eq:vlaFP 2.4), it holds that

v ⊥ • ∇ v f = 0 ,
since all the other terms are bounded. For v = (ue iϕ , v || ) where ϕ is the gyro-phase, the previous equality means that f is independent of the gyro-phase (in the sense of distribution and thus as a L 2 function). Equation ( eq:vlaFP eq:vlaFP 2.4) tested against a smooth function g independent of the gyro-phase writes

fǫ ∂ t g -β(v • ∇ v g -v • ∇ ⊥ xg g) -ν(∆ v g + ∆ xg ⊥ g -2∇ ⊥ xg • ∇ v g) dx g dv = 0 .
(2.6) eq:FP2

We may also pass to the limit when ǫ tends to zero in this equation and obtain that the same equality holds for fǫ replaced by f , considered as a function defined on

T 3 × R 3 . For the change of variable v = (ue iϕ , v || ), ∇ v g = (e iϕ ∂ u g + ie iϕ ∂ ϕ g, ∂ v || ).
Hence, for any function g independent on the gyrophase ϕ, it holds that

∆ vg g = ∂ 2 v || g + 1 u ∂ u (u∂ u g) , (∇ ⊥ xg • ∇ vg )g = ∇ ⊥ xg • (e iϕ ∂ u g) = e iϕ • ∇ ⊥ xg ∂ u g, v • ∇ v g = v || ∂ v || g + u∂ u g .
The other terms appearing in ( eq:FP2 eq:FP2 2.6) remain unchanged. Then,

f ∂ t g -β(v || ∂ v || g + u∂ u g -ue iϕ • ∇ ⊥ xg g) -ν(∂ 2 v || g + 1 u ∂ u (u∂ u g) + ∆ xg ⊥ g -2e iϕ • ∇ ⊥ xg ∂ u g) dx g dv || 2πududϕ = 0 .
(2.7) eq:FPuphi Since f is independent of ϕ, performing the integration in ϕ first makes the term containing ϕ vanish. So the function f of the five variables (x g , u, v || ) satisfies

f ∂ t g -β(v || ∂ v || g + u∂ u g) -ν(∂ 2 v || g + 1 u ∂ u (u∂ u g) + ∆ xg ⊥ g) dx g dv || udu = 0 .
(2.8) eq:FPuphi2

It exactly means that f satisfies the equation

∂ t f = β(v || ∂ v || f + u∂ u f + 3 f ) + ν ∂ 2 v || f + ∆ xg ⊥ f + 1 u ∂ u (u∂ u f ) , (2.9) 
in the sense of distributions with weight u. It is the equation ( eq:FPlim eq:FPlim 2.3) without parallel transport nor electric field.

If we look at solutions of this equation invariant by translation in the direction of B, we exactly get the 2D-model announced in the introduction. In fact, if f is a solution of ( eq:FPlim eq:FPlim

2.3), then f (t, x, u) = f (t, x, u, v || ) dv ||
is a solution of ( eq:gyroFP2D eq:gyroFP2D

1.1). Such an assumption on f is reinforced by experiments and numerical simulations, where it is observed that the distribution of ions is quite homogeneous in x .

Some useful lemmas ct:apriori

We prove here some a priori estimates useful for the proof of our theorem. In order to simplify the proof of some of the following Lemmas, we sometimes uses the following formulation of ( eq:gyroFP2D eq:gyroFP2D

1.1) with the genuine two-dimensional velocity variable. Denote by f (t, x, u) = f (t, x, | u|), u ∈ R 2 . It is solution (in the sense of distribution with usual duality) of the following equation with 4D in space and velocity variables

∂ t f -∇ ⊥ x (J 0 | u| Φ) • ∇ x f = ν(∆ x f + ∆ u f ) + β(2 f + u • ∇ u f ). (3.1) eq:VFP4D
Heuristically, radial in u solution of equation ( eq:VFP4D eq:VFP4D

3.1) is a solution of ( eq:gyroFP2D eq:gyroFP2D

1.1). We can state for instance a precise Lemma in the case where φ is fixed and smooth. lem:3Deq4D Lemma 3.1. For a fixed smooth potential Φ, f is the unique solution of ( eq:gyroFP2D eq:gyroFP2D

1.1) with initial condition f i if and only if f is the unique solution of ( eq:VFP4D eq:VFP4D

3.1) with intial condition fi .

Proof of the Lemma lem:3Deq4D lem:3Deq4D

3.1 : The proof relies on the uniqueness of the solution to ( eq:VFP4D eq:VFP4D

3.1) (See

Ladyzen [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] and the conservation of the radial symmetry of the solution.

3.1 Regularizing properties of the gyro-average.

In this section, some regularizing property of the gyro-average operato are proven. They are based on the fact that Ĵ0 ∼ k -1 2 for large k (the precise bound are proved in App:A App:A A), which implies that J 0 maps H s onto H s+ 1 2 . It is important since the formula ( eq:elecneutr eq:elecneutr 1.2) giving the gyro-averaged potential in terms of the distribution f involves two gyro-averages, and thus a gain of one derivative for the gyro-averaged potential w.r.t. f . However, the regularizing properties of J 0 u are bad for small u, which raises difficulties. The first lemma of this section gives the regularity of the gyro-averaged potential in term of the potential Φ. The second one gives the regularity of the density ρ in terms of the distribution f . We will need the two following definitions before stating it. Definition 3.2. Let f be a measurable function defined on Ω. Denote by

f L 2 m (H s ) = f (•, u) 2 H s m(u) dw 1 2
the norm with the weight m(u) = 2πu(1 + u 2 ).

For any U > 0, let F be a measurable function defined on

Ω U = T 2 × [0, U ]. Denote by F H 1 U = T 2 U 0 |f | 2 + |∇ x f | 2 + |∂ u f | 2 2πu du 1 2
.

The lemmas stating the regularity of Φ and ρ are the following.

lem:phireg Lemma 3.2. For any s ∈ R, u > 0 and Φ with 0-mean, it holds that

i) J 0 u Φ H s ≤ Φ H s , ii) J 0 u Φ H s+ 1 2 ≤ 2 1 4 √ u Φ H s , iii) ∂ u J 0 u Φ H s ≤ 1 √ u Φ H s+ 1 2 .
As a consequence, for any U > 0,

iv) J 0 u Φ H 1 U ≤ 4 √ U Φ H 1 2
.

lem:rhoreg Lemma 3.3. For any s > 0, if f 2πu dxdu = 1 and ρ is defined by ( eq:defrho eq:defrho

1.3), then ρ -1 H s+ 1 2 ≤ 2 1 4 π f L 2 m (H s ) . (3.2)
Proof of Lemma lem:phireg lem:phireg

and

lem:rhoreg lem:rhoreg

3.3. Denote by Φ(k) the k Fourier coefficient of Φ. Then J 0 u Φ 2 H s = ∞ k=1 |J 0 u (k)| 2 |Φ(k)| 2 ≤ ∞ k=1 |Φ(k)| 2 = Φ 2 H s ,
using the bound Ĵ0 ∞ ≤ 1 proved in Lemma lem:boundJ lem:boundJ A.1. It is the inequality i). For the second inequality, remark that 1 A.1 in

+ |k| 2 1 + w 2 |k| 2 = 1 w 2 1 + 1 |k| 2 1 + 1 w 2 |k| 2 ≤ 2 w 2 , k ∈ Z * , (3.3 
J 0 u Φ 2 H s+ 1 2 = k =0 | Ĵ 0 u Φ(k, u)| 2 (1 + |k| 2 ) s+ 1 2 = k =0 | Φ(k)| 2 | Ĵ0 (|k|u)| 2 (1 + |k| 2 ) s+ 1 2 ≤ k =0 | Φ(k)| 2 (1 + |k| 2 ) s 1 + |k| 2 1 + |k| 2 u 2 ≤ √ 2 u Φ 2 H s .
For the third estimate of Lemma lem:phireg lem:phireg 3.2, remark that

∂ u Ĵ 0 u Φ (k) = ∂ u Ĵ0 (|k|u) Φ(k) = |k| Φ(k) Ĵ0 ′ (|k|u)
and use the bound iii) of Lemma lem:boundJ lem:boundJ

A.1 to get

|(∂ u Ĵ 0 u Φ)(k)| ≤ |k| u | Φ(k)| .
From this, we obtain

∂ u (J 0 u Φ) H s ≤ 1 √ u Φ H s+ 1 2 .
The point iv) uses the previous inequalities. First remark that the norm H 1 U is also equal to

F H 1 U = U 0 ∂ u F (•, u) 2 L 2 + F (•, u) 2 H 1 2πu du 1 2
.

Using this formulation and ii)-iii) leads to

J 0 u Φ 2 H 1 U = U 0 ∂ u J 0 Φ 2 L 2 + J 0 Φ 2 H 1 2πu du ≤ 2π Φ 2 H 1 2 U 0 1 + √ 2 u u du ≤ 16U Φ 2 H 1 2
, which gives the desired result and ends the proof of Lemma 

|ρ(k)| ≤ 2π | f |(k, w)w (1 + w 2 |k| 2 ) 1/4 dw.

It follows from (

eq:calc eq:calc 3.3) that for k = 0,

(1 + |k| 2 ) 2s+1 4 |ρ(k)| ≤ 2 5 4 π ∞ 0 | f |(k, w)(1 + |k| 2 ) s 2 √ w dw ≤ 2 5 4 π ∞ 0 | f | 2 (k, w)(1 + |k| 2 ) s w(1 + w 2 ) dw 1/2 ∞ 0 dw (1 + w 2 ) 1/2 = 2 1 4 π ∞ 0 | f | 2 (k, w)(1 + |k| 2 ) s 2πw(1 + w 2 ) dw 1/2 .
Hence, since ρ(0) = T 2 ρ(x) dx = 1 by mass conservation,

ρ -1 H s+ 1 2 ≤ 2 1 4 π k =0 ∞ 0 | f (k, w)| 2 (1 + |k| 2 ) s 2 2πw(1 + w 2 ) dw ≤ 2 1 4 π ∞ 0 f (w) 2 H s 2πw(1 + w 2 ) dw 1/2
, and Lemma lem:rhoreg lem:rhoreg 3.3 is proved.

Control of the potential by the density.

Denote by L T the operator that maps any function Φ on T 2 with zero mean to 1 T (Φ -Φ * x H T ) and by H s 0 (T d ) the space of H s functions with zero mean. This section is devoted to a proof of the boundedness of

L -1 from H s 0 (T d ) onto H s 0 (T d ).
Recall that in a Fourier setting (See the Appendix of 

|1 -Ĥ(k)| ≥ |k| 2 T 4 1 -e -1 |k| 2 T , ∀ k ∈ Z 2 \ {(0, 0)}.
As a consequence, the operator L -1 T maps any H s 0 , s ∈ R, into itself with norm

L -1 H s 0 ≤ c T := 4 1 -e -1 T . (3.4) 
Remark 3.3. Lemma lem:boundL lem:boundL 3.4 shows that L -1 is bounded for small T , and of order T for large T , the physical case of interest. The boundedness of the spatial domain is essential. When defined on the whole space R 2 rather than on the torus, the operator L -1 is not bounded. Its norm explodes in the low frequency range.

Proof of the Lemma lem:boundL lem:boundL 3.4 Two bounds on J 0 (l) are used, namely one of the bounds of Lemma lem:boundJ lem:boundJ A.1 for l ≥ 1 and the following bound given by the Taylor expansion of J 0 near 0 for l ≤ 1,

0 ≤ (J 0 (l)) 2 ≤ 1 - l 2 4 , if 0 ≤ l ≤ 1 .
Consequently,

| ĤT (k)| ≤ 2 T 1 |k| 0 1 - (|k|u) 2 4 e -u 2 /T u du + √ 2 |k|T ∞ 1 |k| e -u 2 T du ≤ 2 w 0 1 - x 2 4w 2 e -x 2 x dx + √ 2w ∞ w e -x 2 dx ≤ 1 - 3 4 e -w 2 - 1 4w 2 (1 -e -w 2 ) + √ 2w ∞ w e -x 2 dx,
where w = (|k| √ T ) -1 . Now, using the bounds 2 -1 2 < 3 4 and

w ∞ w e -x 2 dx ≤ ∞ w xe -x 2 dx = e -w 2 2 , it holds that 1 -| ĤT (k)| ≥ 1 4w 2 (1 -e -w 2 ).
This is the first claim of lemma lem:boundL lem:boundL

3.4

The function of w in the right-hand side of the previous inequality on | Ĥ(k)| is decreasing and goes from 1 4 at 0 to 0 at +∞. Consequently its minimal value are obtained for large w i.e. for small |k|, namely |k| = 1. Precisely ,

1 -sup k =0 | ĤT (k)| ≥ T 4 1 -e -1 T .
Since the Fourier representation of L -1 T is the multiplication by T (1 -Ĥ(k)) -1 we obtain that in any H s 0 , s ∈ R,

L -1 T H s 0 = sup k =0 T |1 -Ĥ(k)| ≤ 4 
1 -e -1 T , which is the desired result.

Propagation of L 2

m and L 2 m (L 4 ) norms of f .

sec:moment

The two following lemmas will be useful in the sequel.

m:u-moment Lemma 3.5. Assume that f i 2 2,u < +∞. Then, any solution of ( eq:gyroFP2D eq:gyroFP2D

1.1) and ( eq:indata eq:indata

1.4), for regular potential φ, satisfies ∀ t > 0, f (t) 2,u ≤ e βt f i 2,u .
Assume moreover that f i 2,m < +∞. Then any solution f satisfies

f (t) 2 2,m ≤ f i 2 2,m + (2ν + β) e 2βt -1 β f i 2 2,2πu . (3.5) eq:u-moment
with the convention that e 2βt -1

β = 2t if β = 0. lem:disp Lemma 3.6. Assume f i L 2 m (L 4 )
< +∞ and f is a solution of ( eq:gyroFP2D eq:gyroFP2D

1.1) with initial condition f i with a regular potential φ. Then f satisfies

f (t) L 2 m (L 4 ) ≤ e (β+2ν)t f i L 2 m (L 4 )
(3.6) eq:disp Remark 3.4. A more careful analysis will show that

f (t) 2 L 2 m (L 4 ) ≤ f i 2 L 2 m (L 4 ) + (2ν + β) e 2βt -1 β f i 2 L 2 2πu (L 4 ) ,
but the simple estimate of Lemma lem:disp lem:disp 3.6 will be sufficient.

Proof of Lemma

lem:u-moment lem:u-moment

3.5] Multiply equation (

eq:VFP4D eq:VFP4D

3.1) by f . Using the notations

u = | u|, g(t, u) = 1 2 f (t, •, u) 2 2 , (3.7) 
and integrating in the x variable leads to

∂ t g -ν∆ u g = -(∇ x , ∇ u ) f (t, •, u) 2 2 + β(4g + u • ∇ u g). (3.8) 
Multiply the previous equation by k( u), where k is a smooth function on R 2 with compact support and integrate in the velocity variable u leads to

∂ t g(t, u)k( u) d u + (∇ x , ∇ u ) f (t, •, u) 2 2 k( u) d u = (ν∆ u k( u) + 4βk(u) -β div(k( u) u))g(t, u) d u.
By approximation, this is still true for functions k with unbounded supports. For k( u) = 1,

∂ t e -2βt g(t, u) d u = -e -2βt (∇ x , ∇ u ) f (t, •, u) 2 2 d u ≤ 0.
Coming back to the 1D original quantities, it means that

f (t) 2,u ≤ e βt f i 2,u .
(3.9) eq:calc2

For k( u) = m(u), then ∆k = 4 and

4 m(u) -div( m(u) u) = 2 m(u) -m′ (u)u = 2 .
Therefore,

g(t, u) m(u) d u ≤ g(0, u) m(u) d u + 2(2ν + β) t 0 g(s, u) d u ds
Or in other words

f (t) 2 2,m ≤ f i 2 2,m + 2(2ν + β) t 0 f (s) 2 2,u ds .
Using the bound of equation ( eq:calc2 eq:calc2

3.9), we get

f (t) 2 2,m ≤ f i 2 2,m + (2ν + β) e 2βt -1 β f i 2 2,u .
with the convention that e 2βt -1

β = 2t if β = 0.
Proof of Lemma lem:disp lem:disp 3.6 In order to simplify the presentation, we will first performed calculation without justifying every integration by parts and division. But once we obtain an a-priori result, we will explain the small adaptation needed to make it rigorous. First, we denote

α(t, u) = | f (t, x, u)| 4 dx = f 4 4 , γ(t, u) = | f | 2 |∇ u f | 2 dx
Multiply equation ( eq:gyroFP2D eq:gyroFP2D

1.1) by 3 sign(f )|f | 3 and integrating with respect to x leads to

∂ t α = -12ν f 2 |(∇ x , ∇ u )f | 2 dx + ν∆ u α + 8βα + β u • ∇ u α .
(3.10) eq:alpha

Hence, dividing by √ α

∂ t √ α = ∂ t α 2 √ α ≤ -6ν γ √ α + ν∆ u α 2 √ α + 4β √ α + β u • ∇ u α 2 √ α
Now, we multiply by m(u), integrate with respect to u

∂ t √ α m(u)d u ≤ -6ν γ √ α m(u) d u + ν 2 ∆ u α √ α m(u)d u + 4β √ α m(u) d u + β u • ∇ u α 2 √ α m(u) d u
With the help of some integration by parts, we get that

u • ∇ u α 2 √ α m(u) d u = -2 √ α( m(u) + u 2 ) d u ∆ u α √ α m(u)d u = -2 u • ∇ u α √ α d u + |∇ u α| 2 2α 3 2 m(u) d u = 8 √ α d u + |∇ u α| 2 2α 3 2 m(u) d u .
Thanks to that, the previous inequality simplify in

∂ t √ α m(u)d u ≤ -6ν γ √ α m(u) d u + ν 4 |∇ u α| 2 α 3 2 m(u) d u + 2(β + 2ν) √ α d u
Next we can estimate |∇ u α| in terms of γ. In fact by Hölder inequality

∇ u α = ∇ u f 4 dx = 4 f 3 ∇ u f dx |∇ u α| 2 ≤ 16 f 4 dx f 2 |∇ u f | 2 dx = 16αγ
So that the second term in the right hand side of the previous inequality is controlled up to a constant to the first one. We precisely get

∂ t √ α m(u)d u ≤ -2ν γ √ α m(u) d u + 2(β + 2ν) √ α d u (3.11) eq:ineqdiff
From which we conclude easily.

In the previous calculation, we have not justified all the integrations by part. To make the argument rigorous, a possibility is to choose a smooth function

ξ 1 from R + into [0, ] such that ξ(u) = 1 if u ∈ [0, 1] and ξ(u) = 0 if u ∈ [1,

+∞), and define for all

U > 0 ξ U (u) = ξ u U . Remark that |U ξ ′ U | ∞ ≤ |ξ ′ | ∞ and |U 2 ξ ′′ U | ∞ ≤ |ξ ′′ | ∞ .
Then, we performed the previous calculation with the weight mU = mξ U , we obtain an inequality very similar to ( eq:ineqdiff eq:ineqdiff 3.11)

∂ t √ α mU (u)d u ≤ -2ν γ √ α mU (u) d u + 2(β + 2ν) + C U 2 √ α d u (3.12) eq:diffappr from which we get f (t) L 2 mU (L 4 ) ≤ e (β+2ν+ C U 2 )t f i L 2 mU (L 4 )
, which give the desired result letting U going to infinity.

The other point not rigorously justified is the division by √ α that may be zero. However, since we have a diffusion equation, it may be proved that for t > 0, α > 0 everywhere. Or we can use a family of smooth approximation of √ •. Or we can say that α + ǫ satisfy ( eq:alpha eq:alpha 3.10) with a additional term that has the good sign, so that it will satisfy ( eq:diffapprox eq:diffapprox 3.12), and we will obtain the desired inequality letting ǫ going to zero and then U going to infinity. It is well justified since the maximum principle applies there so that any solution with non-negative initial condition remains non-negative.

Short time estimate of the

m-moment of ∇ x f . nt-grad_xf
The following lemma provide is central in the proof of the stability and uniqueness of the solution for short time.

em:grad_xf Lemma 3.7. Assume that f is a solution of the system ( eq:gyroFP2D eq:gyroFP2D

1.1)-(

eq:indata eq:indata

1.4) satisfying initially ∇ x f i 2,m < +∞.
Then there exists a constant C * and a time τ * depending on (T, ν, ∇ x f i 2,m ), such that

∇ x f i 2 2,m + ν 2 τ * 0 (∇ x , ∂ u )∇ x f 2 2,m dt ≤ C *
We also mention that the result is true if the definition of Φ in ( eq:elecneutr eq:elecneutr 

∂ t ∇ x f -∇ ⊥ x (J 0 u Φ)∇ 2 x,x f = β(2∇ x f + u • ∇ u ( f )) + ν∆ x, u (∇ x f ) -∇ x (∇ ⊥ x (J 0 u Φ)∇ x f .
If we now multiply by t ∇ x f on the left and integrate in x, the function h defined by h(t, u) = 1 2

|∇ x f | 2 dx satisfies, ∂ t g(u) = β(4g(u) + u • ∇ u g(u))ν∆ u g(u) -ν ∇ x, u ∇ x f 2 2 - t ∇ x f ∇ x (∇ ⊥ x J 0 u Φ) ∇ x f dx. ( 3 

.13) eq:gevol

We may also multiply this equation by m(u) = (1 + u 2 ) and integrate it in u. We obtain after that

1 2 ∂ t ∇ x f 2 2, m + ν ∇ x, u ∇ x f 2 2, m = (4ν + 2β) ∇ x f 2 2,u 0 - t ∇ x f ∇ x (∇ ⊥ x J 0 u Φ) ∇ x f m(u) dx d u. (3.14) eq:gevol2
To go on, we need to understand a little better the matrix

M (t, x, u) = ∇ x (∇ ⊥ x J 0 u Φ). First remember that Φ = L -1
T (ρ -1), and then remark that from there definition, J 0 and L -1 commute with derivation in x. So that our term may be rewritten

M = J 0 u L -1 (∇ x (∇ ⊥ x ρ)).
Using the bound of the Lemma lem:rhoreg lem:rhoreg

and

lem:boundL lem:boundL

we obtain that

∀u > 0 , M (t, u) H 1 = J 0 u L -1 (∇ x (∇ ⊥ x ρ)) H 1 ≤ 2 1 4 c T √ u ρ -1 H 5 2 ≤ Cc T √ u f L 2 (H 2 m ) .
Moreover, the H 2 m -norm of f appears in the right-hand side of ( eq:gevol eq:gevol 3.13). So that we may use it to control M . With a control on the H 1 norm of M , we do not get an infinite bound on M , like

M ∞ ≤ C f H 2 .
In that case, we will be able to use a classical tool to conclude. But this is almost true, we are in a critical case (d = 2 and p = 2) for the Sobolev imbeddings, but we still know that the square of M is exponentially integrable. Precisely, since M is of average 0, we have for all u > 0 the following Trüdinger inequality

x e M 2 6 M 2 H 1 dx ≤ 2
We refer to Moser [START_REF] Moser | A sharp form of an inequality by Trudinger[END_REF] for a proof of that result. To estimate t ∇ f M ∇ f (1 + u 2 ) dxdu, we first perform the integral in x. For this, we apply the inequality

ab ≤ e a -b + b ln b , ∀ a, b > 0, to (a, b) = |M| 6 M 2 H 1 2 , |∇ f | 2 ∇ f 2 2
. The previous inequality comes from the Legendre transform of e a , as the Young inequality, so that our application will be a log-exp analog of the Hölder inequalities. We obtain

M ∇ f 2 = 6 M H 1 ∇ f 2   |M | 6 M 2 H 1 2 |∇ f | 2 ∇ f 2 2 2 dx   1 2 ≤ Cc T √ u f L 2 m(H 2 ) ∇ f 2 2 -1 + |∇ f | 2 ∇ f 2 2 ln |∇ f | 2 ∇ f 2 2 dx 1 2 , ≤ Cc T √ u f L 2 m(H 2 ) ∇ f 2 1 + ln ∇ x f 4 4 ∇ x f 4 2 1/2 , ≤ Cc T √ u f L 2 m(H 2 ) ∇ f 2 1 + ln c s ∇ 2 x,x f 2 2 ∇ x f 2 2 1 2
, where we have used the Jensen inequality -precisely, for a function g of integral 1, g ln g ≤ ln( g 2 ) -in the last but one line, and the Sobolev imbedding from H 1 into L 4 with constant c s in the last one. The constant C may change from line to line. Using this and Jensen inequality in the previous equation, we get

| t ∇ f M ∇ f | m(u) dxdu ≤ M ∇ f 2 ∇ f 2 m(u) du , ≤ Cc T | f L 2 m(H 2 ) ∇ f 2 2 1 + ln cs ∇ 2 x,x f 2 2 ∇x f 2 2 1 2 m(u) √ u du , ≤ Cc T f L 2 m(H 2 ) ∇f 2, m u ∇ f 2, m 1 + m(u) ∇ f 2 2 ∇ f 2 2, m ln c s ∇ 2 x,x f 2 2 ∇ x f 2 2 du 1 2 , ≤ Cc T f L 2 m(H 2 ) ∇f 2, m u ∇ f 2, m 1 + ln cs ∇ 2 x,x f 2 2, m ∇x f 2 2, m 1 2
Remark that the fraction inside the logarithm is always greater than 1 so that the square root is well defined.

In order to get a bound on ∇ x f 2, m u , we use that

∇ x f 2 2, 1 u = 2 h(u) d u |u| = 2 h(u) div u u |u| d u = -∇ u (|∇ x f | 2 ) • u |u| dxd u ≤ 2 ∇ 2 u f 2 ∇ x f 2 , (3.15) so that ∇ x f 2 2, m u = ∇ x f 2 2,u + ∇ x f 2 2, 1 u ≤ 2 ∇ x f 2, m + ∇ u ∇ x f 2, m ∇ x f 2, m Therefore, 1 2 ∂ t ∇ x f 2, m + ν ∇ x, u ∇ x f 2 2, m ≤ (4ν + 2β) ∇ x f 2 2,u 0 + Cc T ∇ 2 x,x f 2, m ∇ f 3 2 2, m ∇ x f 1 2 2, m + ∇ u ∇ x f 1 2 2, m 1 + ln c s ∇ 2 x,x f 2 2, m ∇ x f 2 2, m 1 2 . 
(3.16) eq:gevol3

We next use the inequality 1 + ln(x) ≤ x ǫ ǫ , valid for any ǫ ∈ (0, 1), x > 0, and get We will use the Young inequalities xy ≤ x p p + y q q , where 1 p + 1 q = 1. For the first term, with p = 2 1+ǫ and then q = 2 1-ǫ , and for the second with p = 4 3+2ǫ and then q = 4 1-2ǫ . We obtain the following bounds

∂ t ∇ x f 2, m + ν ∇ x, u ∇ x f 2 2, m ≤ (4ν + 2β) ∇ x f 2 2,u 0 + . . . C(ǫ) ∇ x, u ∇ x f 1+ǫ 2, m ∇ x f 3 2 -ǫ 2, m ∇ x f 1 2 2, m + ∇ x, u ∇ x f 1 2 2, m .
b 1+ǫ a 2-ǫ ≤ 1 + ǫ 2 b 2 + 1 -ǫ 2 a 4+ 2ǫ 1-ǫ , and b 3 2 +ǫ a 3 2 -ǫ ≤ 3 + 2ǫ 4 b 2 + 1 -2ǫ 4 a 6+ 8ǫ 1-2ǫ , valid for ǫ < 1 2 .
Taking into account the two constants ν and C(ǫ) we get for ǫ < 1 2

1 2 ∂ t ∇ x f 2 2, m + ν 2 ∇ x, u ∇ x f 2 2, m ≤ (4ν + 2β) ∇ x f 2 2,m + . . . C(ǫ) 2 1-ǫ ν -1+ǫ 1-ǫ ∇ x f 4+ 2ǫ 1-ǫ 2, m + C(ǫ) 4 1-2ǫ ν -3+2ǫ 1-2ǫ ∇ x f 6+ 8ǫ 1-2ǫ 2, m
.

where C(ǫ) has only change from a numerical constant. With the notation h = ∇ x f 2 2, m, it gives

1 2 ∂ t h ≤ (4ν + 2β)h + C(ǫ) 2 1-ǫ ν -1+ǫ 1-ǫ h 2+ ǫ 1-ǫ + C(ǫ) 4 1-2ǫ ν -3+2ǫ 1-2ǫ h 3+ 4ǫ 1-2ǫ .
That is a differential inequality with a growth faster than linear, that give a solution that may explode in a finite time. The time of explosion τ * may be bounded below by something depending only on ν, ǫ, T and h(0) = ∇ x fi 2,m . Since ǫ may be choosen arbitrairy between 0 and 1 2 , τ * depends only on ν,β, T and the initial value h 0 .

Using that in the inequality ( eq:gevol3 eq:gevol3

3.16), and turning back to the original u variable, we obtain the existence of a constant

C 3 (T, ν, ∇ x f i m ) such that ∇ x f i 2 2,m + ν 2 τ * 0 (∇ x , ∂ u )∇ x f 2 2,m dt ≤ C 3 (T, ν, ∇ x f i 2,m )
A bound by below for τ * . In order to simplify the next two paragraphs, we assume that β ≤ ν. A careful analysis of the term in the right hand side of the previous equation shows that if ǫ is choosen small enough so that ν ≤ C(ǫ), then for h ≤ h := ν C(ǫ) 2 the dominant term is 4νh and for h ≥ h the dominant term is h 6+ 8ǫ 1-2ǫ . Then, if h(0) ≥ h, the explosion time is given by the equation

∂ t h ≤ C(ǫ) 2 1-2ǫ ν -3+2ǫ 1-2ǫ h 3+ 8ǫ 1-2ǫ .
For that equation, we get that the explosion time is larger than

τ * = C(ǫ) -4 1-2ǫ ν 3+2ǫ 1-2ǫ h(0) -2 1-2ǫ
In the case h(0) ≤ h, then for the early time, the equation may be rewritten

∂ t h ≤ 12νh ,
till h(0) = h. It take a time greater than T 1 = 1 12ν ln h h(0) . And after that time, the explosion time is given by the later calculation, and due to simplification it comes C ν . Finally, we get an explosion time

τ * = 1 12ν ln h h(0) + C ν
Best choice for ǫ. It is quite difficult to optimize that quantity in ǫ. But, as the condition on ǫ are 0 < ǫ < 1 2 and ν ≤ C(ǫ) = C cT ǫ , we can choose

ǫ = min 1 8 , C c T ν With that choice, we get i) If ν ≤ 8Cc T , τ * =    Cν 13 3 h -8 3 0 if h 0 ≥ C ν cT 2 C ν 1 + ln Cν 2 c 2 T h0 else ii) If ν ≥ 8Cc T , τ * = Cν 13 3 h -8 3 0 if h 0 ≥ 1 C ν (1 -ln h 0 )
else It is then clear that the value of τ * depends only on ν, h 0 and the temperature T .

The case of physical interest is the first one. Since in core of tokamaks, we have a large temperature T which implies a constant c T large, and a small colisionnality, in other words a small ν.

4 Existence of solutions.

:existence

In this section, we prove the existence theorem thm:existence thm:existence 1.1. The proof will use the following notation and a preliminary lemma. A priori estimates of the Lemma lem:u-moment lem:u-moment 3.5 on the solution (f, Φ) to eq:gyroFP2D eq:gyroFP2D

1.1-eq:elecneutr eq:elecneutr 1.2 on [0, T ] lead to the definition of the set K of functions f such that

f (t) 2,m ≤ √ M , a.a.t ∈ 0, T,
where

M = f i 2 2,m + (2ν + β) e 2βt -1 β f i 2 2,2πu
For each n > 0, we also introduce an approximation of the potential Φ n defined for any

f ∈ L 2 m by Φ n (t, x) := |k|≤n;k =0 e ik•x 1 1 -Ĥ(k) 2πJ 0 w fn (t, k, w)wdw -1 , (4.1) 
lem:approx Lemma 4.1. For any n ∈ N * and any T > 0, there is a unique f n in K ∩ L 2 (0, T ; H 1 u (Ω)) solution to ( eq:gyroFP2D eq:gyroFP2D

1.1) with the potential Φ replaced by Φ n = Φ n (f n ) and initial condition f i . That solution satisfy all the a priori estimate of the previous section.

Proof of Lemma

lem:approx lem:approx 4.1 Let S be the map defined on K by S(f ) = g, where g is the solution in K ∩ L 2 (0, T ; H 1 u (Ω)) to ( eq:gyroFP2D eq:gyroFP2D

1.1) with the potential Φ n (f ) and initial condition f . The existence and uniqueness of S(F ) follows from

Lions-Magenes

[8] Thm 4.1 p 257, since ∇Φ n is bounded in L ∞ (0, T ; H 3 (T 2 )) by c n M for some constant c n . Then S maps K into K. Moreover, S is a contraction in L ∞ (0, T ; L 2 u (Ω)) for T small enough. Indeed, let g 1 = S(f 1 ) (resp. g 2 = S(f 2 )). By estimates very similar to the one performed in Lemma lem:rhoreg lem:rhoreg

it holds that

∀t ≥ 0, (Φ n (f 1 ) -Φ n (f 2 ))(t, •) L ∞ (T 2 ) ≤ cn (f 1 -f 2 )(t, •) 2,m ,
for some constant cn . Substracting the equation satisfied by g 2 from the equation satisfied by g 1 and integrating over Ω leads to

e 2(2ν+β)t 2 d dt e -2(2ν+β)t g 1 -g 2 2 2,m ≤ -ν (∇ x , ∂ u )(g 1 -g 2 ) 2 2,m -g 2 ∇ ⊥ (J 0 u (Φ n (f 2 ) -Φ n (f 1 ))) • ∇(g 1 -g 2 ) m(u) dxdu ≤ -ν (∇ x , ∂ u )(g 1 -g 2 ) 2 2,m + cn (f 1 -f 2 ) 2,m ∇ x (g 1 -g 2 ) 2,m g 2 2,m ≤ cn 2 4ν 2 (f 1 -f 2 ) 2 2,m g 2 2 2,m ≤ cn 2 M 4ν 2 (f 1 -f 2 ) 2 2,m
And so

g 1 -g 2 L ∞ (0,T ;L 2 m ) ≤ cT e 2(ν+β)T f 1 -f 2 L ∞ (0,T ;L 2 m )
. Hence there is a unique fixed point of the map S on [0, T 1 ] for T 1 small enough. The bounds used for defining T 1 being independent of T 1 , a unique solution of the problem can be determined globally in time by iteration. The fact that this unique solution satisfy the a-priori estimates of the next section is clear since these estimates only depends on the bound satisfied by Φ and not on its precise form.

Proof of Theorem

thm:existence thm:existence

1.1 The sequence (f n ) is compact in L 2 loc,u ((0, T ) × Ω). Indeed, it is bounded in L ∞ (0, T ; L 2 u (Ω U )) ∩ L 2 (0, T ; H 1 u (Ω U ))
for any bounded subset U > 0 (Recall of Ω U = T 2 × R + ). It follows from the interpolation theory that (f n ) is bounded in L 10 3 u ((0, T ) × T 2 × U ). Together with the boundedness of (∇ x Φ n (f n )) in L 2 loc,u ((0, T ) × Ω), this implies that ( ∂fn ∂t ) is bounded in W -1, 5 4 loc,u ((0, T ) × Ω U ). By the Aubin lemma Lions-Magenes [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], it holds that (f n ) is compact in L 2 u ((0, T )×Ω U ), so converges up to a subsequence to some function f in L 2 u . It remains to pass to the limit when n → +∞ in the weak formulation satisfied by f n . A weak form of ( eq:gyroFP2D eq:gyroFP2D 1.1)-( eq:indata eq:indata 1.4) is that for every smooth test function α with compact support in [0, T [×Ω,

f i (x, u)α(0, x, u) u dxdu + t 0 f n ∂α ∂t + ∇ ⊥ x (J 0 u Φ n (f n )) • ∇ x α u dxduds = t 0 uν∇ x f n • ∇ x α + ∂ u f n ∂ u α + βu 2 f n ∂ u α dxduds . (4.
2) eq:weakform

The passage to the limit in ( eq:weakform eq:weakform 4.2) when n → +∞ can be performed if

lim n→∞ t 0 uf n ∇ ⊥ x (J 0 u (Φ n (f n )) • ∇ x αdxduds = t 0 uf ∇ ⊥ x (J 0 u (Φ(f )) • ∇ x αdxduds. This holds since (f n ) (resp. (∇ x (J 0 u (Φ n )(f n ))) strongly (resp. weakly) converges to f (resp. ∇ x (J 0 u (Φ(f ))) in L 2
loc,u ((0, T ) × Ω). And since the f n satisfy all the a priori bound, the limit f also satisfies them.

5 Short time uniqueness and stability of the solution.

uniqueness

In this section we prove the shot time uniqueness and stability theorem 

d dt δf 2 2,m ≤ -ν (∇ x , ∂ u )δf 2 2,m + (4ν + 2β) δf 2 2,u + δf ∇ ⊥ x (δΦ) • ∇ x f 2 m(u) dxdu ≤ -ν (∇ x , ∂ u )δf 2 2,m + 4ν δf 2 2,m + δf ∇ x (δΦ) 2,um ∇ x f 2 2, m u . To estimate δf ∇(δΦ) 2,u m , apply the inequality ab ≤ e a -b + b ln b , a, b > 0, to (a, b) = ∇xδΦ 6 ∇ 2 x δΦ 2 2 , δf δf 2 2
for every nonnegative u and apply the Trüdinger inequality (See 

Moser [9]) T 2 e ∇x δΦ 6 ∇ 2 x ψ 2 2 dz ≤ 2 . ( 5 
δf ∇ x (δΦ) 2 2 = C ∇ 2 δΦ 2 2 δf 2 2 δf δf 2 2 |∇ x δΦ| 6 ∇ 2 δΦ 2 2 dx ≤ C ∇ 2 δΦ 2 2 δf 2 2 1 + (δf ) 2 δf 2 ln (δf ) 2 δf 2 2 dx . ≤ Cc 2 T u ∇ x δf 2 2,m δf 2 2 1 + ln δf 4 δf 4 2
Integrating in u with the weight um, it holds using again Jensen inequality that

δf ∇(δΦ) 2 2,um ≤ 2Cc 2 T ∇ x δf 2 2,m δf 2 2,m δf 2 2 δf 2 2,m 1 + ln δf 2 4 δf 2 2 m(u) du ≤ Cc 2 T ∇ x δf 2 2,m δf 2 2,m 1 + ln δf 2 L 2 m (L 4 ) δf 2 2,m . Consequently, 1 2 
d dt δf 2 2,m ≤ Cc T ∇ x δf 2,m δf 2,m 1 + ln δf 2 L 2 m (L 4 ) δf 2 2,m ∇f 2 2, m u -ν (∇ x , ∂ u )δf 2 2,m + (4ν + 2β) δf 2 2,m ,
and finally using the inequality and from that inequality we get the short time uniqueness and stability. Remark that the previous calculation do not use ∇ x f 1 and this is why we do not need an assumption on this quantity in the stability result.

f (t) L 2 m (L 4 ) ≤ e (β-2ν)t f i L 2 m (L 4 ) from lemma lem:disp lem:disp 3.6 1 2 d dt δf 2 2,m ≤ Cc 2 T 4ν δf 2 2,m ln 2e δf 2 L 2 m (L 4 ) δf 2,m ∇f 2 2 2, m u + (4ν + 2β) δf 2 2,m , ≤ Cc 2 T 4ν δf 2 2,m ln r 2 e 2(β+2ν)t+1 δf 2 2,m ∇f 2 2 2, m u + (4ν + 2β) δf 2 2,m , where r = e 1 2 f 1,i L 2 m (L 4 ) + f 2,i L 2 m (L 4 ) . Defining s(t) = 1 r 2 δf 2 2,m e -2(
It remains to prove that H is bounded on [0, τ * ]. In fact,

τ * 0 ∇f 2 2 2,(1+u 2 ) 7 2 dt ≤ 2 5 2 τ * 0 ∇f 2 2 2,(1+u 7 ) dt, since (1+u 2 ) 7 2 ≤ 2 5 2 (1+u 7 ). Moreover, τ * 0 ∇f 2 2 
2,u 0 dt may be bounded using Lemma lem:grad_xf lem:grad_xf 3.7 and the inequality ( eq:trick eq:trick 3.15) (we emphasize that the form used here is slighty different because we are in here in the 1D setting for the variable u) A Appendix: Some controls on the Bessel function of zero-th order.

App:A

The first Bessel function J 0 is much used in this paper. Indeed, in Fourier space, J 0 1 that appears in the definition of the gyroaverage of the electric field, is the multiplication by J 0 . Some properties of the function J 0 are given in Watson [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]. In this appendix, some bounds on J 0 and its derivative are proven. The bound by ( √ 2k) -1 2 is obtained as follows. J 0 is solution of the ordinary differential equation k 2 (J 0 ) ′′ + k(J 0 ) ′ + k 2 J 0 = 0 , J 0 (0) = 1 , (J 0 ) ′ (0) = 0 .

(A.4)

The new unknown u = √ kJ 0 is solution to

u ′′ + 1 + 1 4k 2 u = 0 .
There are no exact initial conditions for u. However,

u(k) = k→0 + √ k[1 + O(k 2 )] , u ′ (k) = k→0 + 1 2 √ k [1 + O(k 2 )].
The second equation admits the k-dependent energy,

H(k) = H(k, u, u ′ ) = u ′2 2 + u 2 2 1 + 1 4k 2 ,
that satisfies

H(k) -H(k 0 ) = - k k0 u 2 (l) 4l 3 dl.
It follows from the behaviour of u near 0 that

H(k) = k→0 + 1 4k + O(k) .
Moreover the series expansion of J 0 near k = 0,

J 0 (k) = ∞ j=0 (-1) j k 2j 2 2j (j!) 2
and its alternate character if k ≤ 2 imply that u 2 (k) ≥ k -k 3 2 (valid for k ≤ √ 2). Using, the inequality and the behavior of H near 0, we get if 0 < k 0 ≤ k ≤ √ 2

H(k) ≤ 1 4k 0 + O(k 0 ) - k k0 1 4l 2 - 1 8 dl, H(k) ≤ 1 4k + k 8 , (A.5)
since the first line is satisfied for any k 0 > 0. Therefore,

u 2 (k) ≤ k k 2 + 2 4k 2 + 1 , k ≤ √ 2 .
A simple calculation shows that the function appearing in the right hand side is increasing in k, so that

u 2 (k) ≤ 1 √ 2 , k ∈ [0, √ 2] .
For k ≥ √ 2, simply remark that H is decreasing and that from ( eq:Hk eq:Hk A.5)

u 2 (k) ≤ 2H(k) ≤ 2H( √ 2) ≤ 1 √ 2 
In any case we get u 2 (k) ≤ 2 -1 2 which gives the desired inequality.

Second inequality : It is a consequence of the first, for k ≥ 1. For k ≤ 1, it may be obtain from a comparison of the entire development of J 0 and (1 + k) -1/4 around the origin. We get

J 0 (k) ≤ 1 - k 2 4 + k 4 64 ≤ 1 - k 2 4 + 5k 4 32 - 15k 6 128 ≤ (1 + k 2 ) -1/4
Third inequality : Taking the derivative of J 0 in the definition ( eq:J0 eq:J0 (-1) j s j , where (h i ) 1≤i≤j are the points where sin(kθ) vanishes and 1,

h 0 = 0 < h 1 = π k < h 2 = 2π k < . . . < h j-1 = (j -1)π k < h j = 1.
The previous sum has alterned sign, the larger terms occuring for large i. Its terms are with increasing absolute values, except for the last one which is incomplete and may be smaller than the next to last term. However,

-s 1 ≤ s 0 -s 1 ≤ j i=0
(-1) j s j ≤ s 0 -s 1 + s 2 ≤ s 0 , so that

|(J 0 ) ′ (k)| ≤ max(s 0 , s 1 ) ≤ 2 π 1 1-π/k αdα √ 1 -α 2 ≤ 1 π 2π k - π 2 k 2 ≤ 2 πk , k ≥ π.
This ends the proof of the third inequality.

The proof of iv) is similar to the proof of ii), since 

2 √ T |x| . ( 1 . 6 )

 216 eq:dfH We also used the notation b ⊥ = (-b 2 , b 1 ), for any vector b = (b 1 , b 2 ) of R 2 .

lem:phireg lem:phireg 3 . 2 .

 32 Proof of Lemmalem:rhoreg lem:rhoreg 3.3. Denote by ρ(k) the k-th Fourier term of ρ with respect to the space variable, i.e. ρ(k) = 2π J 0 (|k|w) f (k, w)w dw. By lem:boundJ lem:boundJ A.1,

GheHauNou09 [ 4 ]

 4 for more details), the operator H T = I -T L T is the multiplication by ĤT (k) = 2 T +∞ 0 J 0 (ku) 2 e -u 2 /T u du. lem:boundL Lemma 3.4. The Fourier multipliers ĤT (k) satisfy,

1. 2 )

 2 is replaced by another definition which still satisfies the bound given in Lemma lem:rhoreg lem:rhoreg 3.3 and lem:phireg lem:phireg 3.2. Precise bounds by below for τ * are given at the end of the proof (only in the case β = 0). Proof of Lemma lem:grad_xf lem:grad_xf 3.7 : We take the x-gradient of equation ( eq:VFP4D eq:VFP4D 3.1), written in 2D in u (with u = | u|), and obtain

3 2 +ǫ a 3 2

 33 with C(ǫ) = CcT ǫ √ c s . Now, with the temporary notations a = ∇ x f 2, m and b = ∇ x, u ∇ x f 2, m, what we need is to eliminate all the b in the right hand side, with the help of the b of the left hand side. Precisely, in the right hand side, we have the two terms b 1+ǫ a 2-ǫ , and b -ǫ .

1 . 2 .

 12 Denote by f 1 (resp. f 2 ) a solution to eq:gyroFP2D eq:gyroFP2D 1.1 for the field Φ 1 (resp. Φ 2 ), by δf = f 1 -f 2 and by δΦ = J 0 u (Φ 1 -Φ 2 ). Multiplying the equation satisfied by (1 + u 2 )δf by δf and integrating w.r.t. (x, u) with the weight u leads to 1 2

. 1 )

 1 eq:exp-int Therefore, using ∇ 2x δΦ 2 ≤ CcT √ u ∇δf 2,m (Lemmas lem:rhoreg lem:rhoreg

  f (t) 2,u ∇ x f (t)7 dt is bounded by Lemma lem:u-moment lem:u-moment 3.5, with n = 3.

2π 2π 0 e

 0 lem:boundJLemma A.1. J 0 satisfies the following estimates for all k ∈ R i)|J 0 (k)| ≤ min 10 ) ′ (k)| ≤ (1 + k 2 ) First Inequality : The bound |J 0 (k)| ≤ 1 is clear from the definition of J 0 , J 0 (k) = 1 ik cos θ dθ = 1 π π 0 cos(k cos θ) dθ . (A.3) eq:J0bis

1. 5

 5 ),(J 0 ) ′ (k) = i 2π 2π 0 cos θe ik cos θ dθ = -1 π π 0 cos θ sin(k cos θ) dθ , from which it is clear that |(J 0 ) ′ (k)| ≤ 1 for all k.Next we transform the previous integral in (J 0 ) ′ (k) = -

2 π < 2

 22 -1 4 .
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