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Abstract: 11 

The accuracy of rockfall trajectory simulations depends to a large extent on the calculation of the rebound 12 

of falling boulders on different parts of a slope where rockfalls could occur. The models commonly used 13 

for rebound calculation are based on restitution coefficients, which can only be calibrated subjectively in 14 

the field. To come up with a robust and objective procedure for rebound calculation, a stochastic impact 15 

model associated with an objective field data collection method was developed and tested in this study. 16 

The aims of this work were to assess the adequacy of this approach and to evaluate the minimum amount 17 

of field data required to obtain simulation results with a satisfactory level of predictability. To achieve 18 

these objectives, the rebound calculation procedure developed was integrated into a three-dimensional 19 

rockfall simulation model, and the simulated results were compared with those obtained from field 20 

rockfall experiments. For rocky slopes, the simulations satisfactorily predict the experimental results. This 21 

approach is advantageous because it combines precise modelling of the mechanisms involved in the 22 

rebound and of their related variability with an objective field data collection procedure which basically 23 

only requires collecting the mean size of soil rocks. The approach proposed in this study therefore 24 

constitutes an excellent basis for the objective probabilistic assessment of rockfall hazard. 25 
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1. Introduction  29 

As shown by the recent accidents occurring in March 2006 in the French Alps and June 2006 on the 30 

Gotthard highway in Switzerland, rockfall is one of the main natural hazards that pose risks to residential 31 

areas, infrastructures, and populations in the Alps. Rockfall is generally defined as the removal of 32 

individual boulders from a cliff face (Varnes, 1978; Whalley, 1984; Selby, 1993; Cruden and Varnes, 33 

1996). This study focuses on single falling rocks with a volume up to 1.3 m3. In rockfall hazard 34 

assessment, trajectory simulation models are increasingly used for designing protective measures such as 35 

nets and dams (Descoeudres, 1997; Peila et al., 1998; Nicot et al., 2001, 2007) or for making hazard maps 36 

(Kobayashi et al., 1990; Evans and Hungr, 1993; Guzzetti et al., 2002; Chau et al., 2004; Jaboyedoff et 37 

al., 2005; Bourrier et al., 2008b; Frattini et al., 2008).  38 

The most difficult process to simulate in such trajectory models is the rebound, which describes the 39 

impact of the falling boulder on the slope surface. To calculate such a rebound, a wide range of 40 

algorithms is currently available, which are summarised in Guzzetti et al. (2002), Dorren (2003), and 41 

Heidenreich (2004). Rebound deterministic modelling remains highly speculative since the information 42 

available on the mechanical and geometrical properties of the soil is not sufficient to perform a relevant 43 

deterministic prediction of boulder rebound. In particular, the characterisation of the spatial distributions 44 

of the parameters required for rebound calculation generally result from a field survey which, for practical 45 

reasons, cannot be exhaustive. Stochastic approaches have therefore been proposed (Paronuzzi, 1989; 46 

Pfeiffer and Bowen, 1989; Azzoni et al., 1995; Dudt and Heidenreich, 2001; Guzzetti et al., 2002; 47 

Agliardi and Crosta, 2003; Jaboyedoff et al., 2005; Bourrier et al., 2007, 2008b; Frattini et al., 2008) to 48 

account for the variability of the rebound. Most of these approaches are based on two parameters, both 49 

called restitution coefficients, which proved to partially represent the complexity of the rebound (Wu, 50 
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1985; Bozzolo and Pamini, 1986; Chau et al., 1998; Ushiro et al., 2000; Chau et al., 2002; Heidenreich, 51 

2004). The problem is that stochastic variation of the restitution coefficients only account for the 52 

variability related to terrain characteristics. Variability due to the kinematics of the falling boulder is not 53 

accounted for. In addition, estimating the values of these two parameters in the field is a difficult task 54 

mainly based on literature values that are associated with certain surface characteristics of the slope. 55 

Overviews of commonly used values for restitution coefficients are given in (Paronuzzi, 1989; Pfeiffer 56 

and Bowen, 1989; Azzoni et al., 1992; Azzoni and De Freitas, 1995; Chau et al., 2002; Agliardi and 57 

Crosta, 2003; Scioldo, 2006). Most models are very sensitive to the values of these restitution 58 

coefficients. In addition, the values in the literature vary significantly for identical surface characteristics. 59 

The resulting subjectivity in the choice of these parameter values therefore partly explains the large 60 

variation in the results obtained when applying different models, or even the same model used by 61 

different operators, at the same site (Interreg IIc, 2001; Berger and Dorren, 2006). 62 

To overcome these difficulties, a more objective rebound calculation procedure based on a stochastic 63 

impact model was developed. This procedure models the variability associated with the rebound and only 64 

requires collecting a very limited set of field parameters: the size of the falling boulder and the sizes 65 

characterising the rocks composing the slope surface. Our first objective was to test and validate the 66 

procedure developed. The second objective was to evaluate the minimum amount of field data required to 67 

obtain simulation results with a satisfactory level of predictability.  68 

This paper first explains the rebound calculation procedure developed and its integration into a three-69 

dimensional rockfall trajectory simulation model. Then the simulation results are compared with those 70 

obtained from field rockfall experiments and discussed. 71 

2. Full-scale rockfall experiments on a mountain slope 72 

Full-scale rockfall experiments were carried out in an avalanche track in the Forêt Communale de 73 

Vaujany in France (N. 45°12′, E. 6°3′). The study area covers an Alpine slope ranging from 1200 to 1400 74 

m above sea level with a mean gradient of 38°. The experimental site is part of a hillslope that is formed 75 
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by a postglacial talus slope (Fig. 1), downslope from rock faces consisting of the “Granite des Sept 76 

Laux”, which belong to the crystalline Belledonne massif. The talus cone mainly consists of rock 77 

avalanche, snow avalanche, and rockfall deposits. The study site is ~ 100 m wide and 570 m long 78 

(distance between the starting point and the lower forest road, measured along the slope). Between the 79 

starting point and the lower forest road, it has the shape of a channel with a maximum depth and width of 80 

2 and 10 m, respectively. Since avalanches occur every year in this channel, it is denuded of trees. 81 

 82 

Fig. 1. 83 

 84 

The protocol was identical for all rockfall experiments. Before each boulder release, the volume of the 85 

boulder was measured and the boulder was coloured with biodegradable paint so that it left traces after 86 

rebounding on the slope. The volume was estimated by measuring the height, width, and depth along the 87 

three most dominant boulder axes and by assuming that the boulders were rectangular. A total of 100 88 

boulders were released individually, one after the other. The mean volume was 0.8 m3, and the standard 89 

deviation 0.15 m3 (Fig. 2).  90 

 91 

Fig. 2. 92 

 93 

A front shovel was used to release the boulders down the slope, starting with a free fall of 5 m. As soon as 94 

the boulder stopped, the impact locations and stopping points were captured with an Impulse LR 200 laser 95 

distance meter manufactured by Laser Technology, Inc. (Centennial, CO, USA). In addition, the rockfall 96 

trajectories were filmed by five digital cameras, which were placed so that the camera planes were 97 

perpendicular to the channel, which is the preferred rockfall path, and 30 m away (Fig. 1). The cameras 98 

were fixed at a height of 10 m in trees. Additional details on the experiments are given in Dorren et al. 99 

(2006). 100 
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The digital films of the 100 rockfall trajectories were analysed using image processing software called 101 

AviStep 2.1.1 (developed by M. Delabaere, St. Denis de la Réunion, France). This program extracts the 102 

position and the velocity of a moving particle for each individual image in a digital film using the 103 

following principle. First, in the first image of each film, the field-measured rebound distances are 104 

identified. Second, soil surface detection is conducted by linking the successive impact points in the films 105 

assuming that soil surface is linear between two impact points. Third, the two-dimensional trajectory of 106 

each falling boulder was analysed using a sequence of movie images (Fig. 3). Finally, the analysis of the 107 

movie images provided the rebound heights, i.e., the maximum vertical distance between the centre of the 108 

boulder and the slope’s surface, as well as the position of the boulder for every image (every 0.04 s). This 109 

makes it possible to determine the velocity. 110 

Since the resolution of the movie images did not allow for a precise measurement of the rotational 111 

velocity, only the translational kinetic energy Etrans was calculated to reduce the uncertainty in the results. 112 

The translational kinetic energy Etrans of a falling boulder is calculated as: 113 

 21

2trans bE m V=  (1) 114 

where mb is the mass, and V is the translational velocity of the boulder. 115 

The experimental results therefore do not provide information on either the rotational kinetic energy Erot 116 

or the total kinetic energy Etot, which are defined as follows:  117 

21

2rot bE I ω=   (2) 118 

and119 

tot trans rotE E E= +  (3)120 

where Ib is the moment of inertia, and ω is the rotational velocity of the boulder. 121 

 122 

Fig. 3. 123 

 124 
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3. Trajectory simulation using a stochastic rebound algorithm 125 

The simulation model used is the 3D rockfall trajectory model Rockyfor3D, which has been developed 126 

since 1998 (Dorren et al., 2006). This model simulates the rockfall trajectory in 3D by calculating 127 

sequences of parabolic free fall through the air and rebounds on the slope, as well as impacts against 128 

trees, if specified. Rolling is represented by a sequence of short-distance rebounds and sliding is not 129 

modelled. Falling boulders are represented in the model by spheres using a hybrid approach. This means 130 

that, during parabolic free fall, the falling sphere is represented by a single point (lumped mass) and, 131 

during the rebound calculation, by a real sphere. The three major components of Rockyfor3D are 1) the 132 

parabolic free fall calculation and its intersection with the topography, 2) the rebound calculation, and 3) 133 

the fall direction calculation after rebound. 134 

3.1. Parabolic free fall 135 

The parabolic free fall is calculated with a standard algorithm for a uniformly accelerated parabolic 136 

movement through the air. This calculation determines the position and the normal (with respect to the 137 

local slope) Vn
in, tangential Vt

in, and rotational ωin velocities at the intersection with the slope topography, 138 

represented by a Digital Elevation Model (DEM). As such, Rockyfor3D simulates a 3D trajectory by 139 

calculating the displacement of the boulder position along the x-, y-, and z-axes (Fig. 4). Here, the z-axis 140 

corresponds to its vertical position, the x-axis to the east–west direction, and the y-axis to the north–south 141 

direction (Fig. 4A). By its x and y coordinates, the 3D trajectory is linked to a set of raster maps with a 142 

resolution between 1 and roughly 20 m. For this study, however, the raster resolution was 2.5 m. The 143 

raster maps provide information on the topography (DEM), the slope surface characteristics, and the 144 

release points (for this study, only one release raster cell was defined).  145 

Knowing the position of the rebound and the slope surface characteristics defined by the raster maps at 146 

this position, as well as the velocities before rebound, the rebound calculation using the stochastic impact 147 

model can be initiated. 148 

 149 
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Fig. 4. 150 

  151 

3.2. Stochastic impact model 152 

The rebound calculation determines the normal Vn
out, tangential Vt

out, and rotational ωout velocities after 153 

rebound based on the velocities before rebound, called incident velocities, and on the parameters 154 

determining the energy loss during the rebound. The rebound model initially integrated in Rockyfor3D 155 

(Dorren et al., 2006) was replaced by a stochastic impact model that calculates the velocity vector after 156 

rebound Vout from the velocity vector before rebound Vin following the expression: 157 
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This means that each of the three velocities after rebound (Vt
out, Vn

out, and ωout) is calculated with the three 159 

incident velocity components (Vt
in, Vn

in, and ωin) and three coefficients of matrix A.  160 

For example, the tangential component of the velocity after rebound Vt
out is expressed as follows: 161 

1 2 3
out in in in

t t nV a V a V aω= + +   (5) 162 

The coefficients ai, as well as the correlations between them, are characterised by normal probability 163 

distribution functions. These allow the model to account for the high variability of the local slope surface 164 

characteristics and the kinematics of the rebounding sphere. Specific information can be found in Bourrier 165 

et al. (2007, 2008b). 166 

 167 

Fig. 5.  168 

 169 

Because of the defined inter-relationships between the outgoing and incident velocity components, the 170 

stochastic impact model differs completely from classical rebound algorithms. Most of these only use a 171 

tangential Rt and a normal Rn restitution coefficient for different slope surface types (see Guzzetti et al., 172 
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2002; Dorren, 2003), which are defined by the user but are not related to all three incident velocity 173 

components. Many authors have already revealed that this approach introduces errors in rebound 174 

calculations. The Rt and Rn coefficients are defined as follows: 175 

out
t

t in
t

V
R

V
=   (6) 176 

out
n

n in
n

V
R

V
= −   (7) 177 

Contrary to classical models, the restitution coefficients Rt and Rn that can be recalculated from the 178 

velocities before and after rebound as predicted by the stochastic impact model are not constant values. 179 

They both depend on all the incident kinematic parameters and the terrain characteristics. Figure 6 shows 180 

an example of the effect of the incident angle on the mean restitution coefficients Rt and Rn predicted by 181 

the stochastic impact model.  182 

 183 

Fig. 6. 184 

 185 

The values of the coefficients ai defined in matrix A are derived from the statistical analyses of a large 186 

data set obtained from numerical simulations of impacts (Bourrier et al., 2007, 2008a, 2008b). These 187 

numerical simulations of impacts were previously calibrated from laboratory experiments of the impact of 188 

a 10-cm spherical rock on a coarse soil composed of gravels ranging from 1 cm to 5 cm (Bourrier et al., 189 

2008b). The adequate agreement between the laboratory experiments and the numerical simulations of 190 

impacts proves that the impact simulations, and consequently the stochastic impact model, satisfactorily 191 

express the energy transfers occurring during the impact of a boulder on a coarse soil. Although the 192 

calibration of the numerical model of impacts was satisfactory, one limitation could stem from the 193 

differences in the size of the impacting and soil rocks during calibration and during application in this 194 

study. However, the influence of the scale change effects was proved to be small by comparing the results 195 

of the numerical simulations of impacts at different scales (Bourrier, 2008). 196 
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For this study, the parameters of the stochastic impact model were determined for five fixed ratios, which 197 

have the values 1, 2, 3, 4, and 5, between the radius of the falling boulder Rb and the mean radius of the 198 

particles constituting the slope surface Rm. For each Rb/Rm ratio, a fixed set of model parameters was 199 

calculated. For larger ratios, the model has not yet been calibrated, which means that it is currently not 200 

suitable for rebounds of large boulders on fine soils.  201 

3.3. Calculation of the fall direction 202 

The fall direction in the x–y plane is primarily determined by the slope topography at the rebound position 203 

and is calculated by a probabilistic algorithm. During each subsequent rebound, the model allows the 204 

sphere to deviate from its direction before rebound towards the direction of the aspect of the raster cell in 205 

which the boulder rebounds (Figs. 5 and 7). The aspect is the downslope direction of the maximum rate of 206 

change in value from each cell in a raster to its neighbouring ones and represents the steepest slope 207 

direction. The deviation angle δ (Fig. 5) is determined by a random number that defines whether the 208 

boulder is deviated between 0 and 22.5º from its original direction, or 22.5–45º, or 45–50º. The first case 209 

has a 72% probability of occurrence, the second one has a 24% probability, and the third one a 4% 210 

probability (Fig. 7). These deviation angles and their related probabilities are based on the experimental 211 

results presented in Dorren et al. (2005). If the sphere moves upslope, a maximum deviation of 22.5° is 212 

allowed for both directions lateral to the direction before rebound. If the boulder enters a depression in the 213 

DEM, the direction before and after rebound remains unchanged.  214 

 215 

Fig. 7. 216 

  217 

3.4. Input data 218 

The DEM used for the experimental site covers an area from the release point to the opposite river bank 219 

in the valley bottom. The DEM was created using inverse distance-weighted interpolation (see for 220 
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instance Weber and Englund, 1992) of, on average, three x, y, z points per DEM cell. These points were 221 

collected in the field with a detailed topographical survey using a laser distance meter and a compass. The 222 

topographical survey was conducted so that a mean density of 1 point/m was available in all directions. 223 

We created this DEM because, due to the surrounding forest cover, GPS measurements are not accurate 224 

on the study site and a high-resolution, photogrammetric or LiDAR-derived DEM was not available. 225 

Verification with an available 10-m DEM and an orthophoto showed that the accuracy of the created 226 

DEM was about 1 m in the x–y plane and 0.5–1.5 m in the z-direction.  227 

At the release point, boulders were dropped from a height of 5 m. The simulated boulders were assumed 228 

to be spherical, and the distribution of their volumes was identical to the experimental distribution (Fig. 229 

2). The errors associated with volume estimation were therefore the same in the experiments and in the 230 

simulations. Volume estimation errors were reduced as much as possible by choosing the released 231 

boulders in a quarry so that they were as spherical as possible.  232 

The slope surface characteristics were determined in the field by identifying homogenous zones that are 233 

represented as polygons on a map (Fig. 1). Each polygon defines the size of the material covering the 234 

slope. To represent the size of the surface material in this polygon map, we used two different 235 

approaches. The first one, which is called method A (“size classes”), describes the surface with three size 236 

probability classes according to Dorren et al. (2006). The second one, called method B (“mean size”), is a 237 

more simplified description, which is based only on the mean radius Rm of the material covering the 238 

slope. Method A aims at giving a precise description of the size of the surface material and its variation. 239 

The method uses three roughness classes Rg70, Rg20, and Rg10. These classes represent the diameter of the 240 

obstacle, corresponding to rocks covering the soil surface, encountered by a falling boulder during 70%, 241 

20%, and 10%, respectively, of the rebounds in a homogenous zone. For method A, the field survey 242 

therefore consists of estimating the equivalent diameter of the rocks covering the soil surface 243 

corresponding to the three classes Rg70, Rg20, and Rg10 in each homogenous zone on the study slope. 244 

During each rebound calculation, the mean radius Rm of the material encountered by the impacting 245 

boulder was randomly chosen from the three material size values Rg70, Rg20, and Rg10 given their 246 
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accompanying probabilities. In method B, only one mean radius Rm value represented the material size in 247 

each homogenous zone. Rebound was therefore calculated by considering Rm the mean radius of the rock 248 

encountered by the falling boulder in a given zone.  249 

In the rebound model used, the value of the Rb/Rm ratio is rounded to the nearest integer with a maximum 250 

of 5. A set of rebound model parameters (ai coefficients) was determined depending on the value of the 251 

Rb/Rm ratio. Table 1 reports the values used for all the polygons defined and shown on the map in Fig. 1.  252 

 253 

Table 1. 254 

 255 

3.5. Simulation scenarios 256 

Rockfall trajectory simulations were carried out using method A (“size classes”) and method B (“mean 257 

size”). For each method, 100, 1000, 2000, 5000, and 10000 falling boulders were simulated. For each set 258 

of simulations, the probability distribution functions of the velocity, translational kinetic energy, and 259 

passing height were compared with the corresponding experimental distributions at two “evaluation lines” 260 

(Figure 1). Evaluation line 1 (EL1) was located 185 m from the starting point, measured along the slope, 261 

directly in the centre of the viewing plane of camera 4. Evaluation line 2 (EL2) was located after 235 m, 262 

in the centre of the viewing plane of camera 5. In addition, the spatial patterns of the trajectories, the 263 

passing frequencies per raster cell, and the stopping locations of the simulated boulders were analysed. 264 

The latter were compared with stopping locations observed during the field rockfall experiments. 265 

3.6. Rebound analysis 266 

If the agreement between the experimental and simulated results is satisfactory, the simulations can 267 

collect additional information on the kinematics of the falling boulders, which cannot be measured during 268 

the full-scale field experiments. First, precise values of the rotational kinetic energy of the falling 269 

boulders at EL1 and EL2 can be obtained from simulations, whereas the rotation of the falling boulder 270 
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cannot be precisely measured from the experimental films. In the simulations, the rotational kinetic 271 

energy of the falling boulder Erot can therefore be compared with the translational kinetic energy of the 272 

falling boulder Etrans and with the total kinetic energy of the falling boulder Etot.  273 

Information regarding the incident kinetic energy for all rebounds can also be collected, whereas this is 274 

not possible from field experiments. In particular, for each rebound, the simulations provide information 275 

on the distribution of the incident kinetic energy between the tangential, normal, and rotational incident 276 

velocity components. Starting from Eqs. 1, 2, and 3, the incident kinetic energy 
tot

inE  is divided into 277 

normal incident energy
n

inE , tangential incident energy 
t

inE , and rotational incident energy inrotE  defined 278 

as follows: 279 

tot t n rot

in in in inE E E E= + +   (8) 280 

21
( )

2t

in in
b tE m V=   (9) 281 

21
( )

2n

in in
b nE m V=   (10) 282 

21
( )

2
in in
rot bE I ω=   (11) 283 

Finally, to compare the implemented rebound algorithm to classical rebound models based on the use of 284 

restitution coefficients, the Rt and Rn values obtained during the simulations were computed using the 285 

classical definition given in Eqs. 6 and 7. 286 

4. Results 287 

1000 rockfall simulations were required to provide stable predictions, meaning that the variation in the 288 

means and standard deviations of the parameters measured on EL1 and EL2 became < 5%. However, to 289 

decrease the variation in the results as much as possible, 10000 simulations were executed for both 290 

methods. 291 
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4.1. Kinematic results at the evaluation lines 292 

The comparisons between the experimental and simulated results at EL1 and EL2 show that both the 293 

mean values and standard deviations were predicted accurately for boulder velocity, passing heights, and 294 

translational kinetic energy (Table 2). However, in most cases, the simulated mean values and standard 295 

deviations were slightly smaller than the experimental values. In addition, the predictions obtained using 296 

method B (“mean size”) were systematically closer to the experimental results than those obtained using 297 

method A (“size classes”). All relative errors (RE) (Table 3) are < 21% for method B, whereas they reach 298 

up to 32% for method A. 299 

The shapes of the distributions of the simulated quantities were very similar for methods A and B (Fig. 8). 300 

These distributions were also similar to those obtained from the experimental results. On the contrary, the 301 

maximum values were overestimated by the simulations, irrespective of the method used (Table 3).  302 

The statistical Kolmogorov-Smirnov test was performed to compare all the simulated distributions with 303 

the corresponding experimental distributions. If the result of the test is 0, it can be assumed that the 304 

simulated and experimental results are similar. If the result is 1, this is not the case. The similarity 305 

hypothesis is rejected if the p-value associated with the test is less than 0.05. The larger the p-value is, the 306 

more plausible the hypothesis that the two samples belong to the same distribution. The results of the 307 

Kolmogorov-Smirnov tests showed that method B (“mean size”) provided a better prediction of the 308 

experimental distributions because the similarity hypothesis was only rejected once out of 6 comparisons. 309 

For method A (“size classes”), it was rejected 4 times out of 6 comparisons. In addition, the p-value 310 

obtained when comparing the simulated distributions to the measured distributions were all between 0.01 311 

and 0.3 whatever method was used, which means that the simulated distributions were not significantly 312 

different from the experimental distributions. Both methods A and B can therefore be considered suitable 313 

to simulate the experimental results. 314 

 315 

Table 2. 316 

 317 
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Table 3. 318 

 319 

Table 4. 320 

 321 

Fig. 8. 322 

 323 

4.2. Rockfall trajectories 324 

The numbers of boulders deposited with decreasing altitude are presented in Fig. 9, for both the 325 

experimental and simulated results. The simulations, using methods A and B, provided values similar to 326 

the experimental values for the distribution of stopping points, especially for boulders reaching low 327 

altitudes. Interestingly, predictions using method A (“size classes”) resulted in a slight underestimation of 328 

the percentage of passing boulders with decreasing altitude. On the contrary, the simulations using 329 

method B (“mean size”) provided a slight overestimation. For boulders stopping just after the release 330 

point and for boulders reaching long distances from the release point (> 350 m), both methods predicted 331 

larger percentages of passing boulders than the experimental results. 332 

 333 

Fig. 9. 334 

 335 

The comparison between simulated run-out zones and experimental stopping points (Fig. 10) showed 336 

that, first, the simulated run-out zone was larger than the one observed during the experiments. Second, 337 

discrepancies were observed for stopping points located below the forest road. In the experiments, two 338 

distinct deposit areas were observed, whereas the simulated passing frequencies only highlighted one of 339 

them located on the bottom left of the maps in Fig. 10.  340 

 341 

Fig. 10. 342 



 

 15 

 343 

4.3. Information gathered from simulations 344 

Since we consider that the agreement between the experimental and simulated results is highly 345 

acceptable, we used the simulations to study kinematical parameters that could not be measured in the 346 

field, in particular the distribution of the rotational velocity of the falling boulder (Fig. 11). The mean 347 

value of the Erot/Etot ratio was 6% for EL1 and 8% for EL2. In addition, the associated standard deviation 348 

was 7% for EL1 and 8% for EL2.  349 

 350 

Fig. 11. 351 

 352 

Further, the simulated in in
t tot/E E  ratios (Fig. 12) showed that most of the incident energy was associated 353 

with the tangent-to-soil-surface component of the incident velocity. This result was confirmed by the 354 

distribution of the incidence angle (Fig. 13), which highlights the small values of this angle. Finally, the 355 

simulation results provided information on the distribution of Rt and Rn restitution coefficients for all 356 

rebounds, as shown in Fig. 14. 357 

 358 

Fig. 12. 359 

 360 

Fig. 13. 361 

 362 

Fig. 14.  363 

 364 
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5. Discussion 365 

5.1. Comparison of the experimental and simulation results 366 

The comparisons of the experimental and simulated results, using methods A and B, showed that the 3D 367 

trajectory simulation could predict rockfall trajectories and kinematics. Reproducible simulation results 368 

were obtained from 1000 simulations onwards, which makes 3D trajectory simulation feasible. However, 369 

in this study, there were fewer sources of variability than in the daily practice of rockfall hazard 370 

assessment. In particular, the rockfall starting position and the boulder volumes were exactly known. In 371 

practice, the latter are not always easy to predict.  372 

The differences between the observed and simulated distributions, the maximum values in particular, 373 

could stem from the fact that, in the experiments, the distributions were based on only 100 rockfall 374 

experiments. They therefore do not represent the full asymptotic distribution that would have been 375 

obtained from a very large number of experiments. However, the global shape of the distribution, such as 376 

the most probable value and the global distribution of the values, was satisfactorily represented. Thus, if 377 

only the global characteristics of the distributions are compared, the simulated distributions can be 378 

considered good predictions, which was confirmed by the results of the Kolmogorov-Smirnov test, in 379 

particular for method B (“mean size”).  380 

The comparisons between the simulated and the experimental stopping points showed the capability of 381 

the rockfall model to predict run-out distances (Fig. 9). However, Fig. 9 shows that method B (“mean 382 

size”) approached the experimentally observed deposit pattern best. Neither method A nor B reproduced 383 

the number of boulders stopping in the upslope section of the test site. These blocks stopped within the 384 

first 20–40 m from the release point due to sliding on the side with the largest surface after the first 385 

rebound. Figure 9 shows that this accounted for ~ 5% of the released boulders. For large distances from 386 

the release point (350 m and farther), the differences between the simulated and the experimental 387 

maximum run-out distances (Fig. 9) resulted from the rebound algorithm not being adapted to the surface 388 

material consisting of soils composed of fine particles, which was found in the valley bottom (Fig. 10). 389 
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The algorithm was specifically developed for rocky surfaces and therefore will not produce realistic 390 

results for other soil types.  391 

Although the simulated run-out zones were larger than the experimental run-out zones (Fig. 10), the 1% 392 

pass frequency limit, i.e., the limit passed by 1% of the boulders, correspond quite well to the 393 

experimentally observed stopping points only (Fig. 10), especially for method B.  394 

The existence of two deposit areas was not reproduced by the simulations. The simulated passing 395 

frequency maps show two main trajectory paths upslope of the forest road, which converge into a single 396 

path in the downslope section. The experimental trajectories, however, also show two distinct paths in the 397 

downslope section. The difference between these experimental and simulated patterns resulted from an 398 

imperfect digital representation of the terrain in the DEM south-west of the middle forest road (Fig. 15). 399 

This local discrepancy induced slight changes in the pattern of the trajectory path and in the shape of the 400 

run-out zone associated with the 1/100 pass frequency (Fig. 10).  401 

 402 

Fig. 15.  403 

  404 

Finally, the comparison of the results obtained by method A and method B raises questions on how 405 

precise the parameter values estimated in the field must be. For methods A and B, the simulated 406 

distributions of velocities, rebound heights, and energies (Fig. 8) as well as the run-out zones (Fig. 9) 407 

were very similar. The detail of the description of the slope surface characteristics therefore only slightly 408 

influences the simulation results. Our experience shows, however, that in the field it is easier to estimate 409 

three size classes than a single one, as shown in Fig. 16. For example, on a slope covered with rather fine 410 

scree (< 5 cm), quite some rocks measured 10 cm in diameter, and 10% of the surface covered with 20-411 

cm rocks, it is quite difficult to estimate a single, valid, mean particle size. The “size classes” method 412 

describes the mean size of the particles that cover 70%, 20%, and 10% of the surface, with 70% = 5 cm, 413 

20% = 10 cm, and 10% = 20 cm. Since method B (“mean size”) provided more accurate results, this 414 
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implies that method A (“size classes”) could be used in the field for a better estimate of the single mean 415 

particle size, so that method B (“mean size”) could be used in the simulation.  416 

 417 

Fig. 16. 418 

 419 

5.2. Advantages and limitations of the approach 420 

An advantage of the approach presented here is that simulation can be used to gather information that 421 

cannot be obtained in the field (see section 3.6). First, the simulated distributions of the rotational kinetic 422 

energies compared to the total kinetic energy at EL1 and EL2 show that the translational velocity of the 423 

boulder mainly determines the total boulder kinetic energy (Fig. 11). One could note a slight trend toward 424 

a downhill increase in the Erot/Etot ratio, which may be due to the specific topography of the study site. 425 

Although the rotational energy was smaller than the translational energy, the knowledge of the 426 

distribution between these two energies is essential for designing effective protective structures. The 427 

translational kinetic energy mainly determines the design of the structure (structural strength 428 

performance), whereas the rotational kinetic energy determines the capability of the structure to prevent 429 

boulders from rolling over the structure (structure shape efficiency).  430 

Another advantage of the approach presented is the insight obtained in the commonly used coefficients Rt 431 

and Rn. The values of the Rt calculated from the simulated rebounds (Fig. 14) are in accordance with 432 

common values for talus slopes, but they show that the variability of Rt is even greater than assumed in 433 

the literature. In contrast, the values of the Rn coefficients (Fig. 14) are extremely high compared to the 434 

common values, which generally range from 0.25 to 0.65. The dependence of Rt and Rn recalculated from 435 

the stochastic impact model on the incidence angle explains this phenomenon (Fig. 6). For small 436 

incidence angles, which correspond to most of the rockfall impacts in the simulations (Fig. 13), the values 437 

of Rt depend only slightly on the incidence angle; they correspond to common values (Rt ≈ 0.7; Fig. 14). 438 

On the contrary, the values of Rn are very high (Rn > 1) compared to common values (Fig. 14). However, 439 
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in the case of a vertical impact, the Rn values predicted by the stochastic impact model (Fig. 6) are in 440 

accordance with common experimental results (Rn ≈ 0.4). The main reason for these differences is that the 441 

common values of Rn are generally obtained from experimental campaigns conducted for boulders falling 442 

vertically on a slope surface. This does not correspond to the simulated impact cases because simulation 443 

incidence angles were, for the most part, < 50°, as shown in Fig. 13. The high values of Rn in the 444 

simulations explain that, although the incident normal velocity in
nV  was small for impacts that were 445 

parallel to the slope’s surface, the normal velocity of the boulder after a rebound can be very high because 446 

of the energy transfer from the rotational to the translational kinetic energy. This phenomenon is not 447 

accounted for in classical rebound algorithms, whereas it is included in the stochastic impact model.  448 

The values of Rn should therefore be chosen with caution when performing a rockfall trajectory analysis 449 

using classical rebound algorithms. However, the importance of Rn is generally subordinate to Rt. Indeed, 450 

properly modelling the transfer of the tangential incident energy between the falling boulder and the soil 451 

during a rebound is essential because Fig. 12 shows that the tangential incident energy is, in most cases, 452 

determinant for the total incident energy (93% of the calculated 
t tot

in in/E E  ratios are > 0.75).  453 

The two main points of interest in the rebound calculation procedure developed herein are, first, precisely 454 

modelling the mechanisms governing the rebound as well as their associated variability and, second, the 455 

more objective field data collection procedure. Both points are of great interest for rockfall hazard 456 

mapping, which demand a satisfactory prediction of the variability of both the stopping points and the 457 

kinematics of the falling boulders. Following the proposed approach, hazard mapping can be greatly 458 

improved because it allows the reliable spatial characterisation of the passing frequencies as well as of the 459 

mean and standard deviation values of the rockfall energies (intensity). Rockfall hazard mapping 460 

approaches based on combinations of intensity and probability, such as those developed in Switzerland 461 

(Raetzo et al., 2002; Jaboyedoff et al., 2005), can therefore be used with increased confidence. 462 

However, this work is limited by the partial character of the validation. From a theoretical point of view, 463 

the amount of experimental data is not (and almost never is) sufficient to validate simulated rare events. 464 
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Since the performance and analysis of 1000 full-scale rockfall experiments would take roughly 10 years, 465 

one must rely on simulations to predict extreme events, even though they are not fully validated.  466 

Another limitation of this study is that the stochastic impact model developed can only be used on rocky 467 

slopes. However, similar approaches could be developed to characterise the rebound of a boulder on all 468 

types of soil provided that large data sets composed of reproducible and precisely defined impact tests are 469 

available for statistical analysis. To create these data sets, the direct use of laboratory or field experiments 470 

is not suitable. However, they can be generated from numerical simulations that have previously been 471 

calibrated using these experiments. That is exactly were the challenge lies. 472 

6. Conclusions 473 

This paper has investigated a newly developed stochastic impact model, which was implemented in an 474 

existing 3D rockfall trajectory model to calculate velocities of simulated boulders after a rebound on the 475 

slope. The first objective of this study was to assess the adequacy of the approach proposed. For this 476 

purpose, a full-scale experimental program made it possible to assess the predictive capacity of this tool. 477 

Comparisons between experimental and simulated results show very acceptable agreements. The second 478 

objective of the study was to evaluate the minimum amount of field data required to obtain accurate 479 

simulation results. The main advantages of the developed approach are the small number of parameters to 480 

be assessed in the field and the clear physical meaning of these parameters. Basically, only the mean size 481 

of the rocks covering the surface of the slope is required. This can be measured objectively in the field. 482 

The method developed does not work for boulders impacting fine soils. We believe, however, that a 483 

similar objective stochastic rebound model could be developed, based on a similar combination of 484 

numerical and laboratory experiments.  485 

The stochastic feature of this new approach is an excellent basis for continuing integrating probabilistic 486 

information in rockfall hazard management. As reliable spatially distributed probabilistic information on 487 

rockfall trajectories is provided, such as the passing heights and kinetic energy distributions as well as the 488 
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passing frequencies for each position on a slope, the proposed approach offers a complete data set for 489 

positioning and designing rockfall protective structures as well as for hazard zoning. 490 

 491 
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versus the x coordinate. 588 
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Fig. 5. Definitions of outgoing (Vt
out, Vn

out, and ωout) and incident (Vt
in, Vn

in, and ωin) velocity components 589 

used in the stochastic impact model and of the deviation angle δ characterising changes in boulder fall 590 

direction due to the rebound. 591 

Fig. 6. Predictions of the mean values of the Rt and Rn coefficients versus the incident angle α
in using the 592 

stochastic impact model. 593 

Fig. 7. Plan view (x–y plane) illustrating the principle used for calculating the fall direction after rebound. 594 

The deviation of the boulder from its direction before rebound is only allowed towards the aspect. 595 

Fig. 8. Distribution of the velocities, passing heights, and translational kinetic energy for observed and 596 

simulated trajectories for EL1 scaled to the observed values for both methods A (“size classes”) and B 597 

(“mean size”). 598 

Fig. 9. Percentage of passing boulder versus distance from the release point for the experiments, method 599 

A (“size classes”) and method B (“mean size”). 600 

Fig. 10. Map of the simulated pass frequencies for methods A (“size classes”) and B (“mean size”) and 601 

the observed stopping points (white dots). 602 

Fig. 11. Distribution of the simulated rotational kinetic energy compared with the total kinetic energy for 603 

EL1 and EL2 using method B (“mean size”). 604 

Fig. 12. Distribution of the simulated tangential incident energy 
t

inE  compared with the total incident 605 

energy 
tot

inE  for all the simulated rebounds using method B (“mean size”). 606 

Fig. 13. Distributions of the incidence angle α
in over all the simulations using method B (“mean size”). 607 

 608 

Fig. 14. Distribution of the tangential and normal restitution coefficients Rt and Rn over all simulations 609 

using method B (“mean size”). 610 

Fig. 15. Hillshade of the DEM showing the study site downslope from camera 5. The white dotted circle 611 

outlines the imperfect digital representation of the terrain. Black arrow 1 shows the main simulated 612 
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trajectory. Black arrow 2 indicates the second main trajectory and its deviation due the artefact in the 613 

DEM. The small grey circles represent the stopping positions of the experimental boulders. 614 

Fig. 16. A typical field situation in Zone 3, where the surface material should be characterised by size 615 

classes method. 616 
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Table 1.  658 

Zone Rg70 (m) Rg20 (m) Rg10 (m) Rm (m) Description 

1 0.20 0.15 0.07 0.10 Inside the avalanche channel 

2 Inf Inf Inf Inf River 

3 0.30 0.10 0.45 0.18 Zone covered with talus alongside the channel  

4 0.50 0.30 0.10 0.25 Old road on talus slope, covered with single blocks 

5 0.40 0.20 0.10 0.25 Talus slope downslope of middle forest road 

6 0.50 0.25 0.75 0.25 Rough talus slope downslope of middle forest road 

7 0.50 0.28 0.90 0.25 
Roughest part of the talus slope downslope of 
middle forest road 

8 0.40 0.25 0.50 0.25 Small block accumulation  

9 0.20 0.05 0.10 0.10 North-east forested part of talus slope 

10 0.50 0.30 0.10 0.10 Irregular forest road on talus slope 

11 0.05 0.05 0.05 0.05 Soils in valley bottom 

12 0.02 0.05 0.10 0.03 Fine soils in valley bottom 

13 0.25 0.15 0.10 0.10 South-west forested part of talus slope 

14 0.10 0.20 0.30 0.10 Upper forest road 
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Table2.  659 

 Velocity (m. s−1) Passing height (m) Trans. kin. en. (kJ) 

 Mean 
Std. 
Dev. Max. Mean 

Std. 
Dev. Max. Mean 

Std. 
Dev. Max. 

EL1a observed 12.5 5.2 28.1 1.4 1.1 5.0 205 169 786 

EL1 method A 11.5 4.2 27.7 1.2 0.9 10.4 175 126 1081 

EL1 method B 12.7 4.3 30.3 1.4 1.0 11.0 213 152 1332 

EL2 observed 13.8 5.5 28.9 1.6 1.4 6.2 245 196 958 

EL2 method A 10.9 4.7 29.6 1.2 1.0 15.5 167 139 1174 

EL2 method B 12.1 5.1 31.8 1.4 1.1 12.7 207 173 1575 
a EL = Evaluation line. 660 
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Table 3. 662 

 RE velocity (%) RE passing height (%) RE Trans. kin. en. (%) 

 Mean 
Std. 
Dev. Max. Mean 

Std. 
Dev. Max. Mean 

Std. 
Dev. Max. 

EL1 method A −8 −19 −1 −14 −18 108 −15 −25 38 

EL1 method B 2 −17 8 0 −9 120 4 −10 69 

EL2 method A −21 −15 2 −25 −29 150 −32 −29 23 

EL2 method B −12 −7 10 −13 −21 105 −16 −12 64 
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Table 4. 663 

Velocity Passing height Trans. kin. en. 

 KS test  
0: not rejected 
1: rejected 

P-value 
KS test  
0: not rejected 
1: rejected 

P-value 
KS test  
0: not rejected 
1: rejected 

P-value 

EL1 method A 0 0.2225 1 0.0385 0 0.1772 

EL1 method B 0 0.2172 0 0.0570 0 0.1421 

EL2 method A 1 0.0033 1 0.0224 1 0.0223 

EL2 method B 0 0.1022 1 0.0366 0 0.2911 
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