

Multiphoton imaging of host-pathogen interactions

Keira Melican, Agneta Richter-Dahlfors

▶ To cite this version:

Keira Melican, Agneta Richter-Dahlfors. Multiphoton imaging of host-pathogen interactions. Biotechnology Journal, 2009, 4 (7), pp.804-n/a. 10.1002/biot.200800347 . hal-00482926

HAL Id: hal-00482926 https://hal.science/hal-00482926

Submitted on 12 May 2010 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Biotechnology Journal

Biotechnology Journal

Multiphoton imaging of host-pathogen interactions

Journal:	Biotechnology Journal
Manuscript ID:	BIOT-2008-0347.R3
Wiley - Manuscript type:	Review
Date Submitted by the Author:	23-Mar-2009
Complete List of Authors:	Melican, Keira; Karolinska Institutet, Department of Neuroscience Richter-Dahlfors, Agneta; Karolinska Institutet, Department of Neuroscience
Keywords:	Infection , intravital microscopy, multiphoton, two-photon , pathogen

1	<u>Review</u>
2	Multiphoton imaging of host-pathogen interaction
3	The Hengstberger Symposium 'Imaging Host-Pathogen Interaction'
4	Heidelberg September 2008
5	
6	Keira Melican ^{1, 2} and Agneta Richter-Dahlfors ^{1,2}
7	¹ Swedish Medical Nanoscience Center, ² Department of Neuroscience,
8	Karolinska Institutet, SE 171-77 Sweden
9	
10	Correspondence:
10	Professor Agneta Richter-Dahlfors
12	Swedish Medical Nanoscience Center
13	Karolinska Institutet
14	Department of Neuroscience
15	Retzius väg 8
16	17177 Stockholm
17	Sweden
18	Fax: +468311101
19	Phone: +46852487425
20	Email: <u>Agneta.Richter.Dahlfors@ki.se</u>
21	
22 23	Keywords: Infection, intravital, multiphoton, two-photon microscopy, live imaging.
24	
25	Abbreviations: MPM (Multiphoton microscopy), UPEC (uropathogenic Escherichia
26	coli), LPS (lipopolysaccharide), GFP (green fluorescent protein), VSV (vesicular
27	stomatitis virus)

28	
29	
30	Abstract
31	Studying the events which occur when a pathogen comes into contact with its host is the
32	basis of the field of infection biology. Over the years, work in this area has revealed
33	many facets of the infection process including attachment, invasion and colonization by
34	the pathogen, as well as the host responses, such as the triggering of the immune system.
35	Recent advancements in imaging technologies, such as multiphoton microscopy, mean
36	that the field is in the process of taking another big leap forward. Multiphoton
37	microscopy allows for cellular level visualization of the real-time dynamics of infection
38	within the living host. The use of live animal models means that all the interplaying
39	factors of an infection, such as the influences of the immune, lymphatic and vascular
40	systems can be accounted for. This review outlines the developing field of multiphoton
41	microscopy in pathogen-host interaction, highlighting a number of new insights which
42	have been 'brought to light' using this technique.
43	
44	have been brought to light using this technique.

Wiley-VCH

45 Introduction	•
-----------------	---

The interaction between pathogens and their hosts is a complex and dynamic event. An infection is accompanied by responses from both the pathogen and the host and it is the balance between these responses which defines the infection outcome. In studying this complex interplay, imaging technologies can play a vital role [1]. Fluorescence based imaging techniques have long been a favorite in the infection field due the ability to differentially label the pathogens and the cells with which they interact. While many valuable studies have been carried out in cell culture models, the development of new imaging technologies is now enabling experiments to be performed within the full complexity of the host tissue. The host tissue is far more heterogeneous than cell culture and understanding the interaction between the different cells types in response to infection is crucial to understanding the infectious process [2]. Confocal microscopy, both laser scanning (LSCM) and others such as spinning disk (SDCM) [3] allows for 3D imaging providing the ability to address spatial aspects of tissue infection [4]. In a majority of cases, however, specimens for confocal microscopy are dead, fixed tissues which can only give a single time point for any particular infection. In live animal models, the imaging depth limitations of confocal microscopy means that they may only be utilized for very superficial sites of infections [5, 6]. With the recent advancements in intravital imaging technologies, however, we are now at a point where we can overcome these limitations as well as add the 4th dimension of infection; time, to enable visualization of the true dynamics of tissue infection. In recent years a number of very good technique focused reviews have been published on the subject of imaging in infection [1-3, 7], this review aims to focus on recent applications of multiphoton-

68 microscopy in pathogen-host interaction.

70 Multiphoton Microscopy

Multiphoton microscopy (MPM) is an increasingly popular technique which overcomes a number of the limitations of confocal microscopy while offering almost comparable resolution [8]. The principle of MPM lies in the use of non-linear optical processes [9]. While similar to LSCM in regards to the laser scanning of the specimen, MPM uses a long wavelength (infrared) light to excite only the fluorophores in a specific femtoliter sample volume at the focal plane [10]. To enable the excitation of the fluorophores in the sample volume using lower energy, longer wavelengths of light, the photons energies must be concentrated in space and time, 'crowded', so that two photons interact with the fluorophore simultaneously (within $\sim 10^{-16}$ s) to produce sufficient excitation energy [11]. Spatial concentration can be achieved by focusing the excitation laser through a high numerical aperture objective, while concentration in time is achieved by using ultra short (< 1ps) pulses to create the required excitation intensities while maintaining a relatively low average power [8, 12]. The simultaneous absorption of the two photons excites the fluorophore to its excitation state from which it will emit its characteristic Stokes shifted wavelength [10] (Figure 1). This form of imaging holds a number of advantages for intravital use. Wavelengths in the 700-1000nm range, as commonly used for MPM, are generally considered to produce negligible photodamage, resulting in improved cell viability [8]. Due to a reduction in Rayleigh scattering these longer wavelengths can also penetrate further into biological tissue [13]. By focusing the excitation to such a small volume, photobleaching and damage in the tissue is minimized

Page 5 of 30

Biotechnology Journal

91	as the majority of the tissue volume is not in an excited state [11]. This feature also
92	means that no excitation occurs outside the specified region, in effect giving no out-of-
93	focus signal. The lack of out-of-focus absorption means more of the excitation light
94	reaches the target and also that all emitted photons are relevant. The use of detection
95	methods which capture as many emitted photons as possible can help increase the
96	sensitivity of fluorescence detection [11]. An additional advantage of MPM is the
97	phenomenon of second harmonic generation (SHG), a process of non-linear light
98	scattering. SHG occurs when multiple photons simultaneously interact with certain
99	proteins, such as those in the extracellular matrix, to produce radiation at half the
100	wavelength of the incident light [8, 14]. This means certain structures, e.g. collagen, can
101	be visualized without the need for staining or labeling. An example of SHG can be seen
102	in Figure 4. Despite its numerous advantages, there are drawbacks and/or limitations to
103	multiphoton microscopy which must be taken into account when designing experiments.
104	As described above, multiphoton excitation can reduce the overall levels of
105	photodamage, but it has been shown that instead of an intensity-squared relationship
106	between excitation power and the photobleaching rate, multiphoton excitation may
107	demonstrate higher order photobleaching at the focal site [15]. Linear absorption or the
108	infra-red excitation light can also result in some level of tissue heating, particularly in
109	pigmented tissue containing single photon absorbers such as hemoglobin or melanin [16,
110	17]. In our hands repeated imaging of a single site sometimes lead to subtle changes in
111	tissue homeostasis, such as effecting the cellular endocytosis pathways (unpublished
112	data), and as such must be carefully controlled to limit these effects. Speed of image
113	capture can also be a limitation depending on experimental aim. The relative slow

Biotechnology Journal

scanning speed of a single beam is now being improved upon by the use of a multifocal multiphoton set-up in which the incoming laser-beam can be split into numerous separate beams [18, 19]. This forms the basis for the recently developed TriM microscope system, which can increase the number of fluorescence photons per time unit without increasing photo damage by parallelizing the excitation process.

Organs such as the brain, kidney and lymph nodes are well established intravital models while others such as the liver and spleen are fast catching up. Of major importance when choosing MPM for the study of pathogen-host interaction is accessibility to the organ of interest. Organs which can be easily accessed or exteriorized without affecting structure and function are ideal [20]. Physiological processes such as respiration, peristalsis and heart beat can produce movement artifacts which can limit the usability of some organs. These issues can often be overcome through innovative surgical and experimental techniques. A common compromise to eliminate these movement and accessibility issues is to use tissue explants. Tissue explants are organs which are surgically removed and then maintained *in vitro* [21, 22]. Tissue explants have advantages over cell culture such as their heterogeneity, three dimensional structure and ease of accessibility and manipulation. They do not however, fully reflect the live situation due to the difficulty in maintaining a physiologically relevant environment and their lack of systemic influences, limiting their use in studies looking at factors such as blood flow. The presence of all interplaying physiological factors, such as the vascular, lymphatic and nervous systems, in the live animal model means the influences and interplays of all these systems can be accounted for. The live animal model also enables the study of systemic and remote responses to a local infection, giving a more complete

Biotechnology Journal

7

•
2
2
3
3 4 5 6 7
F
5
6
-
1
8
0
9
10
10
11
10
12
13
14
15
15
16
17
7 8 9 10 11 12 13 14 15 16 17 18
18
10
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
~~
23
24
27
25
26
20
27
28
20
25
30
21
31
32
~~
33
34
~
35
36
50
37
20
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

picture of the pathology. Good surgical techniques are essential for a number of reasons
in MPM of live animal models, not least to enable efficient exteriorization of the tissue of
interest. Maintenance of a physiological state in terms of fluid levels, temperature, blood
pressure and anesthesia are all factors which must be taken into account.

141

142 Studying pathogen-host interaction with multiphoton microscopy

143 Intravital MPM has primarily been pioneered in physiological studies, with much 144 of the early developmental work performed in the brain [12, 23-25]. It is only in recent 145 years that it has been adopted into infection biology. While the use of live pathogens is a 146 relatively recent advancement, using MPM to study the inflammatory response, using 147 immunomodulatory microbial components such as lipopolysaccharide (LPS) has been reported. A number of informative reviews have been published regarding the use of 148 149 MPM in immunology, and we would like to direct readers towards these for more in-150 depth discussion [21, 22, 26-28]. Proof of principle experiments using intact pathogens 151 showed the suitability of MPM for imaging events such as amoeboid motility of 152 Entamoeba histolytica [29] in infected tissue and fungal infection with Cryptococcus 153 *neoformans* in the brain [2]. So while still in its infancy, the use of MPM to study 154 infection is growing rapidly. The potential of the technique for the study of pathogen-host 155 interaction is rapidly becoming apparent, as is also outlined in a few other very recent 156 reviews on the topic [30-32].

157

60

158 Bacteria

159 In the course of physiological MPM studies bacterial components, such as LPS, have

Biotechnology Journal

160	been used to study pathophysiology, such as in kidney injury during sepsis [33, 34].
161	Cecal ligation and LPS injections were shown to effect renal toll-like receptor 4
162	expression in a live sepsis model [33], while LPS induced exotoxemia was shown to be
163	ameliorated by activated protein kinase C [34]. These reports focused on the secondary
164	physiological injury caused or exacerbated by bacterial components rather than the
165	infection process itself. In collaboration with the intravital renal imaging specialists at the
166	George M. O'Brien Center for Advanced Renal Microscopic Analysis at the Indiana
167	Center for Biological Microscopy, our group utilized intravital MPM to follow the
168	progression of bacterial infection in the kidney [35]. To enable visualization of
169	uropathogenic Escherichia coli (UPEC) in vivo, where standard labeling techniques are
170	impracticable, a clinical isolate expressing the green fluorescent protein GFP ⁺ [36] from a
171	single chromosomal copy was constructed. This construct had a number of advantages
172	for long-term intravital studies; as the GFP ⁺ expression was under the control of a
173	constitutively active promoter, the protein was expressed in all tissue environments. The
174	chromosomal location also removed the risks of plasmid rejection or toxic GFP ⁺ levels.
175	Delivery of the bacteria to enable optimal spatial and temporal resolution was achieved
176	by micro-infusion directly into superficial tubule lumens in the renal cortex. Marking of
177	the site, by co-injection of a small molecular weight fluorescent dextran which is
178	endocytosed by the proximal tubules cells [35], enables visualization from the first hours
179	of infection, when bacterial numbers are very low, through to days after (Figure 2).
180	Visualization of the first hours of infection facilitated the identification of events such as
181	the early stages of bacterial colonization and vascular dysfunction [7]. Using MPM we
182	have shown that tubular bacterial infection triggers an epithelial response that affected

Page 9 of 30

Biotechnology Journal

183	signaling and local tissue oxygen tension, and resulted in clotting of local capillaries
184	within the first 4-5 h of infection. This response was identified as an innate immune
185	response as it was shown to be essential for the prevention of systemic bacterial
186	dissemination and fatal sepsis [37]. These results highlight the unique ability of the live
187	model to identify vascular biology events such as changes in tissue oxygen tension and
188	blood flow in the hours immediately following infection and identifying previously
189	unrecognized pathophysiology. These studies also identified the dynamics of immune
190	cell migration into the tissue and chemotaxis of neutrophils out into the lumen of
191	proximal tubules where the bacteria were located [35]. Current work in our laboratory is
192	using the same technology to begin looking more closely at bacterial adaptation to the
193	changing in vivo microenvironment during infection (Melican et al, unpublished data).
194	The ability to study both host and pathogen responses to infection in vivo means MPM is
195	helping advance the field of 'Cellular Microbiology' towards 'Tissue Microbiology'. An
196	example of MPM imaging of live kidney infection can be seen in Figure 2.
197	Other studies looking at bacterial infection have also utilized the unique 'all-
198	inclusive' nature of the live model to look at infection and particularly the host response
199	to it. Both live animal and explant MPM imaging of the terminal ileum of mice has
200	shown dendritic cell extension in response to infection with Salmonella typhimurium. It
201	was demonstrated how epithelial toll like receptor signaling induced active dendritic cell
202	(DC) sampling of the gut lumen [38]. Egen et al used intravital MPM to identify a role
203	for liver Kupffer cells in the capture of blood-borne mycobacteria and the initiation of
204	granuloma formation [39]. An investigation into the dynamics of innate immune cell
205	trafficking during the early phase (1-4 h) of Listeria monocytogenes induced

Biotechnology Journal

inflammation was performed using MPM on the mouse footpad [40]. Aoshi *et al* have
recently published a study performed using explanted spleen which suggests that splenic
dendritic cells rapidly deliver intracellular *Listeria monocytogenes* to the T cell areas of
the white pulp to initiate CD8+ T cell responses [41]. MPM of infection in both live
animal models and tissue explants highlights the advantages of MPM for study of the
dynamic responses of the host to bacterial infection.

Parasites

Parasitic infections are an ideal model for intravital imaging. The dynamic readouts offered by these techniques lend themselves very well to the study of both the parasitic lifestyle and the immune response to such infections. Imaging of the different parasite stages across the *Plasmodium* life cycle, has described a number of dynamic events [42-44]. Looking at the very early stages of infection in the mouse ear, Amino *et al* have used high speed confocal microscopy to study the fate of *Plasmodium* sporozoites following a mosquito bite [5, 6]. Confocal microscopy and conventional epi-fluorescence microscopy was also used to look at the liver stages of *Plasmodium* infection either through explants or live preparation [45-47]. In an MPM based study, the malarial pigment hemozoin (HZ) has been shown to shown to affect T cell interaction with dendritic cells in isolated lymph nodes [48]. MPM has also been utilized in the study of Leishmania parasitic infection. Infection with Leishmania major was shown to effect the localization of natural killer cells in live lymph nodes as well as their expression of interferon γ [49]. MPM imaging of *Leishmania m*. infection in the mouse ear has shown how early infiltrating neutrophils take up a significant fraction of infecting parasites

Biotechnology Journal

(Figure 3). These parasites remain viable and could contribute to the establishment and progression of the disease. Depletion of neutrophils was also shown to hinder rather than enhance parasitic infection [50]. These papers indicate how the parasite interacts with and affects the cells of the innate immune system. Intravital observations by MPM are of great help in elucidating the complexity of these interactions. Similarly, MPM of explanted lymph nodes visualized the effect of the parasite *Toxoplasma gondii* on neutrophil behavior, beautifully demonstrating the swarming behavior of these cells in the lymph node [51]. Viruses

Intravital imaging has also been used to study viral infections. In a study demonstrating both the dynamic and comprehensive nature of the live animal models, Junt *et al* injected fluorescently labeled inactivated, vesicular stomatitis virus (VSV) into the footpad of mice and then imaged live the draining lymph node showing virus arrival and localization [52] (Figure 4). This work also indicated a dual physiological function of CD169+ macrophages during infection, acting both as an innate 'flypaper' to prevent spread of lymph-borne viruses and in the initiation of the humoral immune response. In a similar study Hickman *et al* also studied how virus particles are handled in the draining lymph nodes, looking at both vaccinia, a large DNA virus and VSV, a small RNA virus [53]. This study also showed the initiation of the adaptive immune response and how antigen presentation in the lymph node periphery, as opposed to the lymphocyte exit sites, has a leading role in activation of antiviral CD8+ T cell. These two studies highlight how MPM can help in the study of pathogen interaction with, and initiation of, the innate

Biotechnology Journal

252	and adaptive immune responses. A very recent study using MPM to image the meninges
253	of a mouse infected with Lymphocytic choriomeningitis virus (LCMV), showed how the
254	immune response may affect other physiological systems such as the vasculature.
255	Recruitment of myelomonocytic cells caused leakage in the local meningeal vascular,
256	breakdown of the blood-brain barrier, and lead to fatal seizures [54]. This study also
257	demonstrated the use of a thinned skull window, a common technique in neuroscience,
258	allowing for extended imaging over a number of days with no repeated surgical
259	intervention required. Viruses have also been used as delivery vectors, as exemplified by
260	adenoviral-mediated gene transfer to introduce fluorescent proteins for intravital MPM
261	[55].
262	

- **Conclusions and future directions**

Imaging within the living organ is becoming more and more accessible to researchers looking at pathogen-host interaction. The dynamics of infection and the host response to it are now able to be visualized, often in real-time, in the most physiologically relevant setting. As the technology advances, with the development of more 'turn-key' systems enabling ease of use, as well as optical advancements such as the endoscopic models [56, 57], its usability will increase. These models will open up numerous new lines of research, as physiological responses which are unable to be studied *in vitro* or in static models are identified. The ability to be able to combine molecular quantification with visualized events will help give an *in vivo* role to a number of events seen *in vitro*. One expanding field combining imaging with molecular quantification is the development of new fluorescent probes. Fluorescently labeled dextrans have allowed for functional

Page 13 of 30

Biotechnology Journal

studies on numerous physiological processes in the kidney [58]. Photoswitchable fluorescent proteins such as Kaede [59] and Dendra [60] allow for switching of fluorescent wavelengths after photoactivation, which can be used for tracking certain populations of labeled cells. This technique, combined with the implantation of a chronic imaging window and intravital confocal microscopy, has been recently described in an elegant paper describing cancer cell metastasis [61]. The use of functionalized quantum dots is another developing field which may allow imaging based sensing of cellular environments and delivery of ligands and other factors in vivo [62, 63]. Bacterial genetic mutants and the like will also help address the precise role of certain bacterial virulence factors in the *in vivo* setting, roles which may be previously unimaginable. The study of drug treatment regimes within the living model in high resolution may demonstrate both the effectiveness of treatment, and also the drugs mode of action. In conclusion intravital MPM offers great opportunities for researchers working on pathogen-host interaction to move their studies directly into the host without compromising on spatial or temporal resolution.

291 Acknowledgments

292 The authors would like to thank The Swedish Research Council – Medicine,

- 293 Jordbruksverket and Svenska Läkaresällskapet for financial support of our work. The
- authors have declared no conflict of interest.

2 3	
3	
4	
5 6 7	
6	
7	
8	
ā	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
29 30 31 32 33 34 35 36 37 38 39 40	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
n()	

297 References

- 298 [1] Frischknecht, F., Renaud, O., Shorte, S. L., Imaging Today's Infectious Animalcules.
- 299 *Curr Opin Microbiol* 2006, *9*, 297-306.
- 300 [2] Roux, P., Munter, S., Frischknecht, F., Herbomel, P., Shorte, S. L., Focusing Light on
- 301 Infection in Four Dimensions. *Cell Microbiol* 2004, *6*, 333-343.
- 302 [3] Enninga, J., Sansonetti, P., Tournebize, R., Roundtrip Explorations of Bacterial
- 303 Infection: From Single Cells to the Entire Host and Back. *Trends Microbiol* 2007, 15,
- 304 483-490.
- 305 [4] Richter-Dahlfors, A., Buchan, A. M., Finlay, B. B., Murine Salmonellosis Studied by
- 306 Confocal Microscopy: Salmonella Typhimurium Resides Intracellularly inside
- 307 Macrophages and Exerts a Cytotoxic Effect on Phagocytes in Vivo. J Exp Med 1997,
- 308 *186*, 569-580.
- 309 [5] Amino, R., Franke-Fayard, B., Janse, C., Waters, A., et al., Imaging Parasites in Vivo,
- 310 in: Shorte, S. L., Frischknecht, F. (Eds.), *Imaging Cellular and Molecular Biological*
- 311 *Functions*, Springer, Heidelberg 2007, pp. 345-364.
- 312 [6] Amino, R., Thiberge, S., Martin, B., Celli, S., *et al.*, Quantitative Imaging of
- 313 Plasmodium Transmission from Mosquito to Mammal. *Nat Med* 2006, *12*, 220-224.
 - 314 [7] Mansson, L. E., Melican, K., Molitoris, B. A., Richter-Dahlfors, A., Progression of
 - 315 Bacterial Infections Studied in Real Time--Novel Perspectives Provided by Multiphoton
 - 316 Microscopy. *Cell Microbiol* 2007, *9*, 2334-2343.
 - 317 [8] Zipfel, W. R., Williams, R. M., Webb, W. W., Nonlinear Magic: Multiphoton
 - 318 Microscopy in the Biosciences. *Nat Biotechnol* 2003, *21*, 1369-1377.

Biotechnology Journal

2		
3 4	319	[9] Bullen, A., Microscopic Imaging Techniques for Drug Discovery. Nat Rev Drug
5 6 7	320	Discov 2008, 7, 54-67.
, 8 9	321	[10] Hazelwood, K. L., Olenych, S. G., Griffin, J. D., Cathcart, J. A., Davidson, M. W.,
10 11	322	Entering the Portal: Understanding the Digital Image Recorded through a Microscope, in:
12 13 14	323	Shorte, S. L., Frischknecht, F. (Eds.), Imaging Cellular and Molecular Biological
15 16	324	Functions, Springer, Heidelberg 2007, pp. 3-45.
17 18	325	[11] Piston, D. W., Imaging Living Cells and Tissues by Two-Photon Excitation
19 20 21	326	Microscopy. Trends Cell Biol 1999, 9, 66-69.
22 23	327	[12] Helmchen, F., Denk, W., Deep Tissue Two-Photon Microscopy. Nat Methods 2005,
24 25 26	328	2,932-940.
20 27 28	329	[13] Theer, P., Hasan, M. T., Denk, W., Two-Photon Imaging to a Depth of 1000 Microm
29 30	330	in Living Brains by Use of a Ti:Al2o3 Regenerative Amplifier. Opt Lett 2003, 28, 1022-
31 32 33	331	1024.
34 35	332	[14] Kaestner, L., Lipp, P., Towards Imaging the Dynamics of Protein Signalling, in:
36 37	333	Shorte, S. L., Frischknecht, F. (Eds.), Imaging Cellular and Molecular Biological
38 39 40	334	Functions, Springer, Heidelberg 2007, pp. 289- 312.
41 42	335	[15] Patterson, G. H., Piston, D. W., Photobleaching in Two-Photon Excitation
43 44	336	Microscopy. Biophys J 2000, 78, 2159-2162.
45 46 47	337	[16] Diaspro, A., Chirico, G., Collini, M., Two-Photon Fluorescence Excitation and
48 49	338	Related Techniques in Biological Microscopy. Q Rev Biophys 2005, 38, 97-166.
50 51 52	339	[17] Tauer, U., Advantages and Risks of Multiphoton Microscopy in Physiology. Exp
52 53 54	340	Physiol 2002, 87, 709-714.
55 56		
57 58		
59		

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
2 3 4 5 6 7 8 9 10 1 12 13 14 5 6 7 18 9 20 12 22 24 5 6 7 8 9 10 1 12 13 14 5 6 7 18 9 20 12 22 24 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
24
25
26
20
21
28
29
30
31
32
33
34
35
36
30
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
56 57
57 58
58
59

341	[18] Bewersdorf, J., Pick, R., Hell, S. W., Multifocal Multiphoton Microscopy. Opt Lett
342	1998, <i>23</i> , 655-657.

- 343 [19] Nielsen, T., Fricke, M., Hellweg, D., Andresen, P., High Efficiency Beam Splitter
- 344 for Multifocal Multiphoton Microscopy. *J Microsc* 2001, *201*, 368-376.
- 345 [20] Dunn, K. W., Sandoval, R. M., Kelly, K. J., Dagher, P. C., et al., Functional Studies
- 346 of the Kidney of Living Animals Using Multicolor Two-Photon Microscopy. Am J
- 347 *Physiol Cell Physiol* 2002, 283, C905-916.
- 348 [21] Germain, R. N., Miller, M. J., Dustin, M. L., Nussenzweig, M. C., Dynamic Imaging
- 349 of the Immune System: Progress, Pitfalls and Promise. *Nat Rev Immunol* 2006, 6, 497-
- 350 507.
- 351 [22] Resau, J. H., Sakamoto, K., Cottrell, J. R., Hudson, E. A., Meltzer, S. J., Explant
- 352 Organ Culture: A Review. *Cytotechnology* 1991, 7, 137-149.
- 353 [23] Denk, W., Delaney, K. R., Gelperin, A., Kleinfeld, D., et al., Anatomical and
- 354 Functional Imaging of Neurons Using 2-Photon Laser Scanning Microscopy. J Neurosci
 - 355 *Methods* 1994, 54, 151-162.
- 356 [24] Helmchen, F., Waters, J., Ca2+ Imaging in the Mammalian Brain in Vivo. *Eur J*
- 357 *Pharmacol* 2002, 447, 119-129.
 - 358 [25] Kleinfeld, D., Mitra, P. P., Helmchen, F., Denk, W., Fluctuations and Stimulus-
- 359 Induced Changes in Blood Flow Observed in Individual Capillaries in Layers 2 through 4
- 360 of Rat Neocortex. *Proc Natl Acad Sci U S A* 1998, 95, 15741-15746.
- 361 [26] Bajenoff, M., Germain, R. N., Seeing Is Believing: A Focus on the Contribution of
- 362 Microscopic Imaging to Our Understanding of Immune System Function. *Eur J Immunol*
 - 363 2007, *37 Suppl 1*, S18-33.

Biotechnology Journal

1		17
2 3 4	364	[27] Garside, P., Brewer, J. M., Real-Time Imaging of the Cellular Interactions
5 6 7	365	Underlying Tolerance, Priming, and Responses to Infection. Immunol Rev 2008, 221,
8 9	366	130-146.
10 11	367	[28] Mempel, T. R., Scimone, M. L., Mora, J. R., von Andrian, U. H., In Vivo Imaging of
12 13 14	368	Leukocyte Trafficking in Blood Vessels and Tissues. Curr Opin Immunol 2004, 16, 406-
15 16	369	417.
17 18	370	[29] Coudrier, E., Amblard, F., Zimmer, C., Roux, P., et al., Myosin Ii and the Gal-
19 20 21	371	Galnac Lectin Play a Crucial Role in Tissue Invasion by Entamoeba Histolytica. Cell
22 23	372	Microbiol 2005, 7, 19-27.
24 25	373	[30] Hickman, H. D., Bennink, J. R., Yewdell, J. W., Caught in the Act: Intravital
26 27 28	374	Multiphoton Microscopy of Host-Pathogen Interactions. Cell Host Microbe 2009, 5, 13-
29 30	375	21.
31 32 33	376	[31] Konjufca, V., Miller, M. J., "Two-Photon Microscopy of Host-Pathogen
34 35	377	Interactions: Acquiring a Dynamic Picture of Infection in Vivo". Cell Microbiol 2009.
36 37	378	[32] Melican, K., Richter-Dahlfors, A., Real-Time Live Imaging to Study Bacterial
38 39 40	379	Infections in Vivo. Curr Opin Microbiol 2009, 12, 31-36.
41 42	380	[33] El-Achkar, T. M., Huang, X., Plotkin, Z., Sandoval, R. M., et al., Sepsis Induces
43 44	381	Changes in the Expression and Distribution of Toll-Like Receptor 4 in the Rat Kidney.
45 46 47	382	Am J Physiol Renal Physiol 2006, 290, F1034-1043.
48 49	383	[34] Gupta, A., Rhodes, G. J., Berg, D. T., Gerlitz, B., et al., Activated Protein C
50 51 52	384	Ameliorates Lps-Induced Acute Kidney Injury and Downregulates Renal Inos and
52 53 54	385	Angiotensin 2. Am J Physiol Renal Physiol 2007, 293, F245-254.
55 56		
57 58 59		
60		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
11 12 13 14 15 16 17 18	
14	
15	
16	
17	
18	
19	
20	
21	
21 22 23	
23	
24	
25	
26	
26 27 28 29	
28	
29	
30	
31	
32	
33	
34	
34	
35	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

386 [35] Mansson, L. E., Melican, K., Boekel, J., Sandoval, R. M., et al., Real-Time Studies

- 387 of the Progression of Bacterial Infections and Immediate Tissue Responses in Live
- 388 Animals. *Cell Microbiol* 2007, *9*, 413-424.
- 389 [36] Hautefort, I., Proenca, M. J., Hinton, J. C., Single-Copy Green Fluorescent Protein
- 390 Gene Fusions Allow Accurate Measurement of Salmonella Gene Expression in Vitro and
- 391 During Infection of Mammalian Cells. *Appl Environ Microbiol* 2003, 69, 7480-7491.
- 392 [37] Melican, K., Boekel, J., Mansson, L. E., Sandoval, R. M., et al., Bacterial Infection-
- 393 Mediated Mucosal Signalling Induces Local Renal Ischaemia as a Defence against
- 394 Sepsis. Cell Microbiol 2008, 10, 1987-1998.
- 395 [38] Chieppa, M., Rescigno, M., Huang, A. Y., Germain, R. N., Dynamic Imaging of
- 396 Dendritic Cell Extension into the Small Bowel Lumen in Response to Epithelial Cell Tlr
- 397 Engagement. J Exp Med 2006, 203, 2841-2852.
- 398 [39] Egen, J. G., Rothfuchs, A. G., Feng, C. G., Winter, N., et al., Macrophage and T Cell
- 399 Dynamics During the Development and Disintegration of Mycobacterial Granulomas.
- 400 *Immunity* 2008, 28, 271-284.
- 401 [40] Zinselmeyer, B. H., Lynch, J. N., Zhang, X., Aoshi, T., Miller, M. J., Video-Rate
- 402 Two-Photon Imaging of Mouse Footpad a Promising Model for Studying Leukocyte
 - 403 Recruitment Dynamics During Inflammation. *Inflamm Res* 2008, *57*, 93-96.
 - 404 [41] Aoshi, T., Zinselmeyer, B. H., Konjufca, V., Lynch, J. N., et al., Bacterial Entry to
 - 405 the Splenic White Pulp Initiates Antigen Presentation to Cd8+ T Cells. *Immunity* 2008,

406 *29*, 476-486.

- 407 [42] Amino, R., Menard, R., Frischknecht, F., In Vivo Imaging of Malaria Parasites--
- 408 Recent Advances and Future Directions. *Curr Opin Microbiol* 2005, *8*, 407-414.

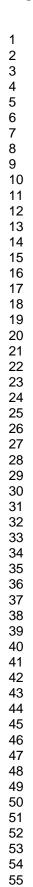
Biotechnology Journal

1 2		
3 4	409	[43] Frischknecht, F., Baldacci, P., Martin, B., Zimmer, C., et al., Imaging Movement of
5 6 7	410	Malaria Parasites During Transmission by Anopheles Mosquitoes. Cell Microbiol 2004,
8 9	411	6, 687-694.
10 11	412	[44] Vlachou, D., Zimmermann, T., Cantera, R., Janse, C. J., et al., Real-Time, in Vivo
12 13 14	413	Analysis of Malaria Ookinete Locomotion and Mosquito Midgut Invasion. Cell
15 16	414	Microbiol 2004, 6, 671-685.
17 18	415	[45] Frevert, U., Engelmann, S., Zougbede, S., Stange, J., et al., Intravital Observation of
19 20 21	416	Plasmodium Berghei Sporozoite Infection of the Liver. PLoS Biol 2005, 3, e192.
22 23	417	[46] Tarun, A. S., Baer, K., Dumpit, R. F., Gray, S., et al., Quantitative Isolation and in
24 25 26	418	Vivo Imaging of Malaria Parasite Liver Stages. Int J Parasitol 2006, 36, 1283-1293.
20 27 28	419	[47] Thiberge, S., Blazquez, S., Baldacci, P., Renaud, O., et al., In Vivo Imaging of
29 30	420	Malaria Parasites in the Murine Liver. Nat Protoc 2007, 2, 1811-1818.
31 32 33	421	[48] Millington, O. R., Gibson, V. B., Rush, C. M., Zinselmeyer, B. H., et al., Malaria
34 35	422	Impairs T Cell Clustering and Immune Priming Despite Normal Signal 1 from Dendritic
36 37	423	Cells. PLoS Pathog 2007, 3, 1380-1387.
38 39 40	424	[49] Bajenoff, M., Breart, B., Huang, A. Y., Qi, H., et al., Natural Killer Cell Behavior in
41 42	425	Lymph Nodes Revealed by Static and Real-Time Imaging. J Exp Med 2006, 203, 619-
43 44	426	631.
45 46 47	427	[50] Peters, N. C., Egen, J. G., Secundino, N., Debrabant, A., et al., In Vivo Imaging
48 49	428	Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies.
50 51 52	429	Science 2008, 321, 970-974.
52 53 54	430	[51] Chtanova, T., Schaeffer, M., Han, S. J., van Dooren, G. G., et al., Dynamics of
55 56 57 58 59 60	431	Neutrophil Migration in Lymph Nodes During Infection. <i>Immunity</i> 2008, 29, 487-496.

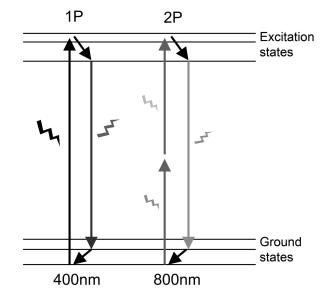
Biotechnology Journal

432	[52] Junt, T., Moseman, E. A., Iannacone, M., Massberg, S., et al., Subcapsular Sinus
433	Macrophages in Lymph Nodes Clear Lymph-Borne Viruses and Present Them to
434	Antiviral B Cells. Nature 2007, 450, 110-114.
435	[53] Hickman, H. D., Takeda, K., Skon, C. N., Murray, F. R., et al., Direct Priming of
436	Antiviral Cd8+ T Cells in the Peripheral Interfollicular Region of Lymph Nodes. Nat
437	Immunol 2008, 9, 155-165.
438	[54] Kim, J. V., Kang, S. S., Dustin, M. L., McGavern, D. B., Myelomonocytic Cell
439	Recruitment Causes Fatal Cns Vascular Injury During Acute Viral Meningitis. Nature
440	2009, <i>457</i> , 191-195.
441	[55] Tanner, G. A., Sandoval, R. M., Molitoris, B. A., Bamburg, J. R., Ashworth, S. L.,
442	Micropuncture Gene Delivery and Intravital Two-Photon Visualization of Protein
443	Expression in Rat Kidney. Am J Physiol Renal Physiol 2005, 289, F638-643.
444	[56] Bao, H., Allen, J., Pattie, R., Vance, R., Gu, M., Fast Handheld Two-Photon
445	Fluorescence Microendoscope with a 475 Microm X 475 Microm Field of View for in
446	Vivo Imaging. Opt Lett 2008, 33, 1333-1335.
447	[57] Kim, P., Puoris'haag, M., Cote, D., Lin, C. P., Yun, S. H., In Vivo Confocal and
448	Multiphoton Microendoscopy. J Biomed Opt 2008, 13, 010501.
449	[58] Ashworth, S. L., Sandoval, R. M., Tanner, G. A., Molitoris, B. A., Two-Photon
450	Microscopy: Visualization of Kidney Dynamics. Kidney Int 2007, 72, 416-421.
451	[59] Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., Miyawaki, A., An Optical
452	Marker Based on the Uv-Induced Green-to-Red Photoconversion of a Fluorescent
453	Protein. Proc Natl Acad Sci U S A 2002, 99, 12651-12656.

2		
2	454	[60] Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., et al.,
5 6	455	Engineering of a Monomeric Green-to-Red Photoactivatable Fluorescent Protein Induced
7 8 2 9	456	by Blue Light. Nat Biotechnol 2006, 24, 461-465.
10 11	457	[61] Kedrin, D., Gligorijevic, B., Wyckoff, J., Verkhusha, V. V., et al., Intravital Imaging
12 13 ⁴ 14	458	of Metastatic Behavior through a Mammary Imaging Window. Nat Methods 2008, 5,
	459	1019-1021.
17 18	460	[62] Liu, W., Howarth, M., Greytak, A. B., Zheng, Y., et al., Compact Biocompatible
19 20 4 21	461	Quantum Dots Functionalized for Cellular Imaging. J Am Chem Soc 2008, 130, 1274-
22 23	462	1284.
20	463	[63] Zhou, M., Ghosh, I., Quantum Dots and Peptides: A Bright Future Together.
26 27 28	464	Biopolymers 2007, 88, 325-339.
00	465	
30 5		
31 '	466	
32		
33		
34		
35		
36		
37 38		
39		
40		
41		
42		
43		
44		
45		
46 47		
47 48		
49		
50		
51		
52		
53		
54		
55 56		
56 57		
58		
59		
60		

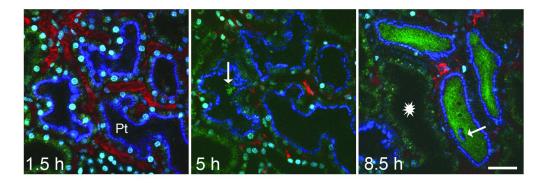

467	Figure Legends
468 469	Figure 1
470	Jablonski diagram showing the energetic states of a fluorophore. Fluorescence is emitted
471	when a flourophore absorbs light at a particular wavelength, gets moved to its excitation
472	state and after a brief interval, termed the fluorescence lifetime, returns to its ground
473	state, emitting light. A 400nm single photon excitation (left) will excite a flourophore
474	such as FITC. In two-photon excitation, two lower-energy photons of a wavelength of
475	around 800 nm combine to excite FITC (right).
476	
477	
478	Figure 2
479	
480	MPM of bacteria-host interaction. UPEC infection in the kidney. Example images show
481	the spatial resolution possible when using MPM. Infection site shown 1.5 h post bacterial
482	infusion into the kidney (left). Injected proximal tubules (Pt) are outlined with a co-
483	injected 10 kDa dextran conjugated to cascade blue, which is endocytosed by the
484	proximal tubule cells (blue). Cellular nuclei are labeled with Hoechst 33342 (cyan) and
485	blood plasma with a 500 kDa dextran conjugated to tetramethylrhodamine (red). Red
486	blood cells can be seen as black silhouettes in the red stained plasma within the vessels.
487	No bacteria are visible at this early time point. The endogenous autofluorescence of
488	proximal tubules cells is seen as a dull green in non-injected tubules. 5 h post infection
489	(center) a few bacteria can be seen adhering to the epithelial lining of proximal tubule
490	(arrow, bright green). Despite the low numbers of bacteria seen in this particular image
491	vascular shutdown can be noted by the loss of red dextran. Different view of same
492	infected nephron showing heavy bacterial colonization (bright green) of proximal tubules

Wiley-VCH


Biotechnology Journal

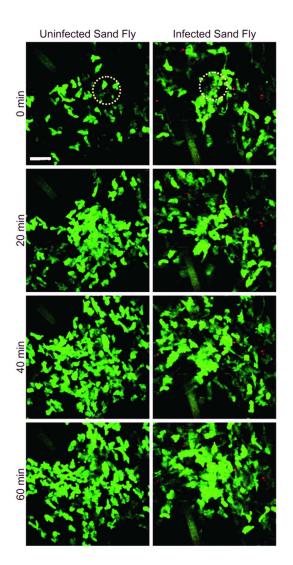
493	at 8.5 h (right). Blood flow in the area is greatly compromised as noted by the lack of red
494	dextran, and RBC flow. Epithelial breakdown is noted by the sloughing of blue dextran
495	labeled epithelial cells into the bacteria filled lumen of the proximal tubule (arrow). A
496	non-infected proximal tubule can also be seen (*). Scale bar = $30\mu m$.
497	
498	Figure 3. Parasite-host interaction. Neutrophils are rapidly recruited to sites of sand fly
499	bite. MPM time-lapse images from the ears of LYS-eGFP mice (mice expressing
500	enhanced green fluorescent protein (eGFP) under the control of the endogenous lysozyme
501	M promoter) (green) beginning 40 min after exposure to uninfected sand flies (left) or
502	Leishmania major -RFP-infected (red) sand flies (right). Circles represent sites of sand
503	fly proboscis penetration. Scale bar = 30μ m. From [50]. Reprinted with permission from
504	AAAS.
505	
505	
505 506	Figure 4. Viral-host interaction. Capture of lymph-borne vesicular stomatitis virus
	Figure 4. Viral-host interaction. Capture of lymph-borne vesicular stomatitis virus (VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph
506	
506 507	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph
506 507 508	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown
506 507 508 509	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown by second harmonic generation (blue). Numbers in the left upper corner indicate minutes
506 507 508 509 510	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown by second harmonic generation (blue). Numbers in the left upper corner indicate minutes and seconds after footpad injection of the virus. Scale bar = $100 \mu m$. Adapted by
506 507 508 509 510 511	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown by second harmonic generation (blue). Numbers in the left upper corner indicate minutes and seconds after footpad injection of the virus. Scale bar = $100 \mu m$. Adapted by
 506 507 508 509 510 511 512 	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown by second harmonic generation (blue). Numbers in the left upper corner indicate minutes and seconds after footpad injection of the virus. Scale bar = $100 \mu m$. Adapted by
 506 507 508 509 510 511 512 513 	(VSV). MPM micrographs of ultraviolet-inactivated VSV (green) in a popliteal lymph node (LN). Numbers indicate minutes after footpad injection. Tissue structure is shown by second harmonic generation (blue). Numbers in the left upper corner indicate minutes and seconds after footpad injection of the virus. Scale bar = $100 \mu m$. Adapted by

er Ph.D. 1994 in Microbiology at Uppsala University, Sweden. She joined iotechnology Laboratories, University of British Columbia, Vancouver, as a post- octoral fellow 1995–1997, developing technologies to visualize bacteria-induced tissue arrangements using rodent infection models. In 1998, she was recruited to Karolinska istitutet, Stockholm, where she became Professor in cellular microbiology. She is urrently pioneering a novel research area, termed "tissue microbiology", where MPM, olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that ecompanies bacterial infections. Richter-Dahlfors is engaged in interdisciplinary
octoral fellow 1995–1997, developing technologies to visualize bacteria-induced tissue arrangements using rodent infection models. In 1998, she was recruited to Karolinska astitutet, Stockholm, where she became Professor in cellular microbiology. She is urrently pioneering a novel research area, termed "tissue microbiology", where MPM, olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that
arrangements using rodent infection models. In 1998, she was recruited to Karolinska astitutet, Stockholm, where she became Professor in cellular microbiology. She is arrently pioneering a novel research area, termed "tissue microbiology", where MPM, olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that
stitutet, Stockholm, where she became Professor in cellular microbiology. She is urrently pioneering a novel research area, termed "tissue microbiology", where MPM, olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that
urrently pioneering a novel research area, termed "tissue microbiology", where MPM, olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that
olecular techniques, and recordings of various physiological functions, are combined to sualize in real-time the immediate/early alteration of the tissue homeostasis that
sualize in real-time the immediate/early alteration of the tissue homeostasis that
companies bacterial infections. Richter-Dahlfors is engaged in interdisciplinary
search projects. As co-director of the Strategic Research Centre for Organic
ioelectronics (OBOE), she is integrating organic electronic technologies in biological
oplications. She was recently appointed director for the Swedish Medical Nanoscience
enter at Dept of Neuroscience, Karolinska Institutet.
eira Melican received her B.Sc. from Monash University, Australia in 2004 and
ompleted her M.Sc. at Uppsala University, Sweden in 2005. She has been a graduate
udent in the lab of Prof. Agneta Richter-Dahlfors since 2005. Her research interest is
cused on the analysis of the early tissue responses occurring during the bacterial
fection process. To achieve this, she has explored the use of MPM-based live imaging
the kidney as a means to analyze tissue responses to uropathogenic Escherichia coli
duced infection in the renal cortex.



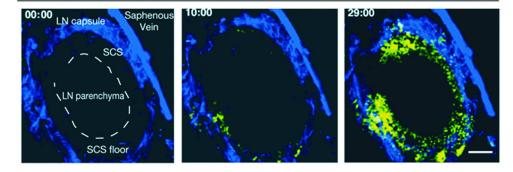
Wiley-VCH

Figure 2

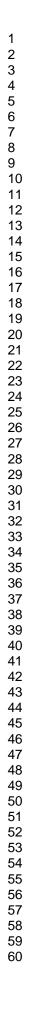


160x73mm (300 x 300 DPI)

3 4 5 6


Figure 3

84x187mm (300 x 300 DPI)


Figure 4

UV-VSV Second harmonic signal

152x77mm (300 x 300 DPI)

99x111mm (300 x 300 DPI)

99x118mm (300 x 300 DPI)