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FAST DIFFUSION EQUATIONS: MATCHING LARGE

TIME ASYMPTOTICS BY RELATIVE ENTROPY

METHODS

JEAN DOLBEAULT AND GIUSEPPE TOSCANI

Abstract. A non self-similar change of coordinates provides improved
matching asymptotics of the solutions of the fast diffusion equation for
large times, compared to already known results, in the range for which
Barenblatt solutions have a finite second moment. The method is based
on relative entropy estimates and a time-dependent change of variables
which is determined by second moments, and not by the scaling corre-
sponding to the self-similar Barenblatt solutions, as it is usually done.

1. Introduction and main results

Consider on R
d the fast diffusion equation

(1)
∂v

∂τ
+∇ ·

(
v∇vm−1

)
= 0

for some m ∈ (mc, 1) with mc := (d − 2)/d. Assume that the initial data
is a given nonnegative function v0 in L1(Rd). It is well known (see for
instance [2]) that the large time behavior of the solution is captured by the
Barenblatt solutions given for any (τ, y) ∈ R

+ ×R
d by

B(τ, y) := (1 + τ)−
1

m−mc

(
D + 1

2 d (m−mc)
(1 + τ)

− 2
d (m−mc) |y|2

)− 1
1−m

+

where D > 0 is determined by the condition ‖v0‖L1(Rd) = ‖B(τ, ·)‖L1(Rd).

Using entropy methods, it has been established in [5] how a linearized prob-
lem involving the relative entropy and the relative Fisher information de-
termines the best rate of convergence towards the Barenblatt solution. The
note [6] is devoted to a refinement of the estimates in which the depen-
dence on v0 is clarified and the precise value of the best possible rate of
convergence is computed in terms of a spectral gap of the linearized opera-
tor associated to the relative entropy and the relative Fisher information for
all values of m < 1. By taking advantage of the translation invariance, it is
moreover possible to impose that the solution evolves in the orthogonal of
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the eigenspace associated to the first non-zero eigenvalue of the linearized
operator for m ∈ (m1, 1) with m1 := (d− 1)/d, thus providing an improved
rate of convergence. The corresponding conserved quantity is the center
of mass, while the generators of the eigenspace are the derivatives of the
Barenblatt solution with respect to each of the coordinates. There is no
other conserved quantity known, so that further improvements cannot be
achieved directly by this method.

One may however notice that the eigenspace corresponding to the second
non-zero eigenvalue in the range m ∈ (m1, 1) is generated by the infinites-
imal dilation of the Barenblatt solution. It is therefore natural to try to
adjust the Barenblatt solution by a scaling. This can be done by taking
a time-dependent change of variables where the scale is determined by the
solution itself and not anymore by its asymptotic, self-similar behavior, thus
providing improved convergence rates. Asymptotically, we will recover the
self-similar profile, but with a better matching. There is a price to pay:
the rescaled equation has a time-dependent coefficient, which converges to
a constant. From the point of view of the entropy – entropy production
inequality, however, nothing is changed, which is the main observation of
this paper.

Let m̃1 := d/(d+2). In the range m ∈ (m̃1,m1), the infinitesimal dilation
of the Barenblatt solution generates the eigenspace corresponding to the
first non-zero eigenvalue. Our time-dependent change of variables therefore
improves on the rate of convergence for any m ∈ (m̃1,m1), and also for any
m ∈ (m1, 1) if the center of mass is chosen at the origin.

The reader interested in understanding the heuristics of our approach is
invited to go directly to Section 2. In the remainder of this section, we will
give a precise statement of our main result and some additional references.

Define the mass and the center of mass of v0 respectively by

M :=

∫

Rd

v0 dy and x0 :=
1

M

∫

Rd

y v0 dy .

Consider the family of the Barenblatt profiles

(2) Bσ(x) := σ− d
2
(
CM + 1

σ |x|2
) 1

m−1 ∀ x ∈ R
d

where σ is a positive real parameter and

CM :=

(
M

M∗

)−
2 (1−m)

d (m−mc)

, M∗ :=

∫

Rd

(
1 + |x|2

) 1
m−1 dx = π

d
2

Γ
(d (m−mc)

2 (1−m)

)

Γ
(

1
1−m

) .

Notice that ‖Bσ‖L1(Rd) = M for any σ > 0 and Bσ is a solution of

∇ ·
[
B
(
σ

d
2
(mc−m)∇Bm−1 − 2x

)]
= 0 .
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Let us recall the definition of mc, m1, m̃1 and introduce the exponents m2

and m̃2, for later use:

mc =
d− 2

d
, m1 =

d− 1

d
, m̃1 =

d

d+ 2
,

m2 :=
d+ 1

d+ 2
and m̃2 :=

d+ 4

d+ 6
,

which are such that mc < m1 < m2 < 1, mc < m̃1 < m̃2 and, if d ≥ 2,
m̃1 ≤ m1 and m̃2 ≤ m2. For later purpose, it is also convenient to define

(3) KM :=

∫

Rd

|x|2 B1 dx =
(1−m) m̃1

m− m̃1
M CM

for any m ∈ (m̃1, 1). Notice that KM is finite if m > m̃1.
If v is a solution of (1), consider the time-dependent scale R(τ) defined

by

(4)
d logR

dτ
= 2

(
KM∫

Rd |y − x0|2 v(τ, y) dy

) d
2
(m−mc)

, R(0) = 1 .

The justification of such a choice for τ 7→ R(τ) will be made clear in Sec-
tion 2. Note that, in view of the fact that the quantity

∫
Rd |y−x0|2 v(τ, y) dy

is non-decreasing in time along the solution of the fast diffusion equation (1)
and because of its asymptotic behaviour, the time-dependent scale R(τ) is
such that logR(τ) is increasing from zero to infinity. We also define σ as a
function of τ by the condition

σ(τ) :=
1

KM R(τ)2

∫

Rd

|y − x0|2 v(τ, y) dy .

As a consequence, the equation for R can be rewritten as

(5) 2σ− d
2
(m−mc) = R 1−d (1−m) dR

dτ

and we can define for any x = y/R(t) ∈ R
d the Barenblatt type solution B

by

B(τ, y) := 1

R(τ)d
B

(
τ,

y

R(τ)

)
where B(τ, x) := Bσ(τ)(x) .

The difference of B with the Barenblatt solution B is that B depends on∫
Rd |y|2 v(τ, y) dy, so that they are only asymptotically equivalent, as we
shall see later. The point is that B provides a better asymptotic matching
than B. Our goal is indeed to measure the rate of convergence of v towards B.
For this purpose, it is convenient to change variables and study the rate of
convergence of u defined by

u(τ, x) = R(τ)d v (τ, x0 +R(τ)x)
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towards B. Let us consider the relative entropy of J. Ralston and W.I.
Newmann defined in [22, 24] by

E(τ) := 1

m− 1

∫

Rd

[
um −B

m −mB
m−1 (u−B)

]
dx .

Theorem 1. Assume that m ∈ (m̃1, 1), d ≥ 2. Let v be a solution of (1)
with initial datum v0 ∈ L1

+(R
d) such that vm0 and y 7→ |y|2 v0(y) are inte-

grable. With the above notations, we have

lim sup
τ→∞

R(τ)γ(m) E(τ) < ∞ ,

where R(τ) ∼ τ
1

d (m−mc) as τ → ∞ and

γ(m) =





((d−2)m−(d−4))2

4 (1−m) if m ∈ (m̃1, m̃2] ,

4 (d+ 2)m− 4 d if m ∈ [m̃2,m2] ,

4 if m ∈ [m2, 1) .

Once a relative entropy estimate is known, it is possible to control the
decay rate of u−B in various norms, for instance in Lq(Rd, dx) for

q ≥ max
{
1, 2 d (1−m)

2 (2−m)+d (1−m)

}
,

or in Ck, by interpolation. Up to a change of variables, this also allows to
prove decay rates of v − B. See [5] for more details.

Compared to the results of [6], an improvement for any m > m̃1 has been
obtained. The values obtained in [6] for γ(m) are indeed

γ(m) =

{
2 dm− 2 (d − 2) if m ∈ (m̃1,m1] ,

2 if m ∈ [m1, 1) ,

except that in [6] the scale R(τ) is determined by the self-similar Barenblatt
solutions (both scales are anyway equivalent as τ → ∞: see Lemma 8). Also
see Figure 2 at the end of this paper for more details on m 7→ γ(m) in the
setting of [6] compared to the results of Theorem 1.

Compared to other methods, it may look surprising that the scale R(τ)
and, as a consequence, the coefficient σ both depend on the solution v of (1).
Asymptotically, as τ → ∞, R(τ) is equivalent to the scale given by the self-
similar change of variables, but what has been gained is a better matching
with the closest Barenblatt solution. The family of the Barenblatt solutions
is globally invariant under scaling and, among all such solutions, there is
one which is closer to our solution of the evolution equation: the one with
the same second moment.

Convergence results of a suitably rescaled flow associated to (1) towards
an asymptotic profile has been established in [19] for m > mc (also see
for instance [26]) and in [5, 15] for m ≤ mc. Getting rates of convergence
beyond a simple interpolation between mass and uniform estimates has re-
quired the use of the relative entropies introduced by J. Ralston and W.I.
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Newman in [22, 24]. First results in this direction have been achieved in [13]
using the entropy / entropy-production method of D. Bakry and M. Emery
(also see [11] for general diffusions and [1] for an overview) and in [16] us-
ing sharp Gagliardo-Nirenberg interpolation inequalities. F. Otto made the
link with gradient flows with respect to the Wasserstein distance in [23],
and D. Cordero-Erausquin, B. Nazaret and C. Villani gave a proof of the
corresponding Gagliardo-Nirenberg inequalities using mass transportation
techniques in [14]. The condition m ≥ m1 was a strong limitation to these
first approaches. Gagliardo-Nirenberg inequalities indeed degenerate into a
critical Sobolev inequality for m = m1, while the displacement convexity
condition also requires m ≥ m1. For m < m1, various limitations appear.
To work with Wasserstein’s distance, it is crucial to have second moments
bounded, which amounts to request m > m̃1 for the Barenblatt profiles; see
for instance [17, 18]. Linearization of entropy estimates around the Baren-
blatt profiles has been considered in [12, 20] for m ∈ (mc, 1). In a certain
sense, this is also the strategy in [17, 18]. Integrability of the Barenblatt
profiles means m > mc. This condition has been removed in a series of
recent papers (see [4, 5, 6, 7]) together with a clarification of the strategy
of linearization of the relative entropies, at least from the point of view of
functional inequalities. In this paper, we shall however restrict m to the in-
terval (m̃1, 1), for spectral reasons that are explained in Section 3 and for the
second moment to be well defined. For m ≤ m̃1, even with an appropriate
definition a relative second moment, our method gives no improvement on
the convergence rates because of the presence of the continuous spectrum.

Rescalings and convergence towards Barenblatt solutions, or intermediate

asymptotics, has not been the only issue of large time asymptotics. We can
for instance quote [25] for a study (in the porous media case) of the time
evolution of the second moment, and [10, 18, 21, 9] for the search of improved
convergence rates when moment conditions are imposed in the framework
of Wasserstein’s or other Fourier based distances. The question of improved
rates has been precisely formulated in [18], and solved in [6] in the weighted
L2 framework that we shall use in this paper, as far as the first moment
(position of the center of mass) is concerned. The main contribution of this
work is to explain how improvements based on the second moment can also
be achieved.

This paper is organized as follows. In Section 2, we explain how faster
convergence results can be achieved by introducing an appropriate time-
dependent rescaling, which is given by (4) and not by the explicit depen-
dence of the Barenblatt solutions. Improved Hardy-Poincaré inequalities
are established in Section 3, using the spectral results of [17, 18] and the
spectral equivalence found in [6]. The large time behaviour of the solution is
studied in Section 4. The proof of Theorem 1 is then completed in Section 5.
Further considerations on the case d = 1 and the limiting regime as m → 1−
are presented in the last section.
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2. The relative entropy approach

The result of Theorem 1 is easy to understand using a time-dependent
rescaling and the relative entropy formalism. Define the function u such
that

(6) v(τ, y + x0) = R−d u(t, x) , R = R(τ) , t = 1
2 logR , x =

y

R

where v is a solution of (1) with initial datum v0 ∈ L1
+(R

d). A simple
computation shows that u has to be a solution of

(7)
∂u

∂t
+∇ ·

[
u
(
σ

d
2
(m−mc)∇um−1 − 2x

)]
= 0 t > 0 , x ∈ R

d ,

with initial datum u0 = v0 (we assume that R is chosen such that R(0) = 1)
and σ given by

2σ− d
2
(m−mc) = R 1−d (1−m) dR

dτ
,

which is nothing else than (5). By virtue of the definition of R(τ), the new
time t = 1

2 logR(τ) increases monotonically from 0 to +∞. Consequently,
the old and new times can be uniquely related, and τ can be expressed in
terms of t through the inverse function of R, so that τ = R−1(e2t). Using
this transformation and with a slight abuse of notations, we shall consider
from now on σ as a function of t. It is important to notice that, as long as
dσ
dt 6= 0, the Barenblatt profile Bσ is not a solution of (7), but we may still
consider the relative entropy

Fσ[u] :=
1

m− 1

∫

Rd

[
um −Bm

σ −mBm−1
σ (u−Bσ)

]
dx .

Let us briefly sketch the strategy of our method before giving all details.

If we consider a solution of (7) and compute the time derivative of the
relative entropy, we find that
(8)
d

dt
Fσ(t)[u(t, ·)] =

dσ

dt

(
d

dσ
Fσ [u]

)

|σ=σ(t)

+
m

m− 1

∫

Rd

(
um−1 −Bm−1

σ(t)

) ∂u

∂t
dx .

Here comes the main difference with previous works. As we shall see below
in the proof of Lemma 2 (also see Remark 1), the first term of the right
hand side in (8) involves

(
d

dσ
Fσ[u]

)

|σ=σ(t)

=
mD(σ)

1−m

(∫

Rd

|x|2 Bσ dx−
∫

Rd

|x|2 u dx

)

|σ=σ(t)

where D(σ) := d
dσ

(
σd (mc−m)/2

)
. When taking a time-dependent rescaling

based on the self-similar variables, one finds that σ is constant in t, so that
dσ
dt = 0 and the term dσ

dt
d
dσ

(
Fσ [u]

)
does not contribute. In our approach,
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σ depends on t but can still be chosen so that this term does not show up
either. It is indeed enough to require that

(9)

∫

Rd

|x|2 Bσ dx =

∫

Rd

|x|2 u dx ,

which amounts to ask that R solves the ordinary differential equation (4),
to obtain that d

dσ

(
Fσ[u]

)
= 0. This will be justified in the first step of our

method, below (see Lemma 2).
In a second step, we shall use the fact that

(10)
d

dt
Fσ(t)[u(t, ·)] = −mσ(t)

d
2
(m−mc)

1−m

∫

Rd

u
∣∣∣∇

[
um−1 −Bm−1

σ(t)

]∣∣∣
2
dx .

From there on, the computation goes essentially as in [5, 6]. For complete-
ness, we will briefly reproduce it. However, with our choice of σ, we gain
an additional orthogonality condition which will be explicitly stated in the
third step of the method: see Lemma 3. This orthogonality condition is
the crucial point (see Corollary 7) for improving the rates in Theorem 1,
compared to the results of [6]. Now let us give further details.

First step: choice of the scaling parameter. For a while, we do not
need to take into account the dependence of σ in t. The main idea of this
paper is indeed to choose σ in terms of u by minimizing σ 7→ Fσ[u], so that

d

dσ
Fσ[u] = 0 .

Lemma 2. For any given u ∈ L1
+(R

d) such that um and |x|2 u are both

integrable, if m ∈ (m̃1, 1), there is a unique σ = σ∗ > 0 which minimizes

σ 7→ Fσ[u], and it is explicitly given by

(11) σ∗ =
1

KM

∫

Rd

|x|2 u dx .

For σ = σ∗, the Barenblatt profile Bσ∗ satisfies (9).

In (11), KM is the constant which has been defined in (3). The condition
m > m̃1 guarantees that B

m
σ is integrable and KM =

∫
Rd |x|2 B1 dx is finite.

Proof. We have to minimize

e(σ) := (1−m)

∫

Rd

Bm
σ dx+m

∫

Rd

Bm−1
σ u dx ,

which corresponds to the two σ-dependent terms in the expression of Fσ [u].

Using the fact that Bm−1
σ (x) = σd (1−m)/2(CM + |x|2/σ) and

∫
Rd u dx = M ,

it is easy to see that

e(σ) = (1−m)σ
d
2
(1−m)

[
M CM +KM

]

+mσ
d
2
(1−m)

(
M CM +

∫

Rd

|x|2
σ

u dx

)
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Collecting terms, we get

e(σ) = σ
d
2
(1−m)

[
M CM + (1−m)KM

]
+mσ

d
2
(1−m)−1

∫

Rd

|x|2 u dx .

Hence, by optimizing on σ > 0, we find that σ = σ∗ is given by

σ∗ =
m (m−mc)

(1−m)
[
M CM + (1−m)KM

]
∫

Rd

|x|2 u dx .

Using (3), we observe that

m (m−mc)

(1−m)
[
M CM + (1−m)KM

] =
1

KM
,

which proves (9) and therefore (11). �

Remark 1. To prove (9) directly, we may notice that σ∗ is determined by

the condition

0 = e′(σ) = m (1−m)

∫

Rd

Bm−2
σ

dBσ

dσ
(Bσ − u) dx .

Hence we obtain

0 = m

∫

Rd

(Bσ − u)
dBm−1

σ

dσ
dx = m

∫

Rd

(Bσ − u)
(
C(σ)CM +D(σ) |x|2

)
dx ,

where C(σ) = d
dσ

(
σd (1−m)/2

)
, and D(σ) = d

dσ

(
σd (1−m)/2−1

)
. Taking into

account that both Bσ and u have the same mass M , we get (9).

The dependence of σ in t when u is a solution of (7) has not been taken
into account yet. The choice of Lemma 2 determines an ordinary differential
equation for R in terms of

∫
Rd |x|2 u(t, x) dx. Undoing the time-dependent

rescaling (6), this equation is exactly (4). With the choice R(0) = 1, we
recall that u0 = v0.

As already mentioned, the choice of σ in Lemma 2 has a major interest. If
we consider a solution of (7) and compute the time derivative of the relative
entropy, we find that the first term of the right hand side in (8) drops so
that

d

dt
Fσ(t)[u(t, ·)] =

m

m− 1

∫

Rd

(
um−1 −Bm−1

σ(t)

) ∂u

∂t
dx

and we are back to the usual computations in self-similar variables.

Second step: the entropy / entropy production estimate. Accord-
ing to the definition of Bσ, we know that

2x = σ
d
2
(m−mc)∇Bm−1

σ .
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Using (7), we obtain

m

m− 1

∫

Rd

(
um−1 −Bm−1

σ(t)

) ∂u

∂t
dx

= −mσ(t)
d
2
(m−mc)

1−m

∫

Rd

u
∣∣∣∇

[
um−1 −Bm−1

σ(t)

]∣∣∣
2
dx ,

thus proving (10). Let w := u/Bσ and observe that the relative entropy can
be written as

Fσ[u] =
m

1−m

∫

Rd

[
w − 1− 1

m

(
wm − 1

)]
Bm

σ dx .

Define the relative Fisher information by

Iσ[u] :=
∫

Rd

∣∣∣
1

m− 1
∇

[
(wm−1 − 1)Bm−1

σ

] ∣∣∣
2
Bσ w dx .

For a solution u of (7), we find that

d

dt
Fσ(t)[u(t, ·)] = −m (1−m)σ(t)

d
2
(m−mc) Iσ(t)[u(t, ·)] ∀ t > 0 .

As in [5, Lemma 3] (also see [6]) we can estimate from below and above the
entropy Fσ[u] by

(12) hm−2

∫

Rd

|f |2B2−m
σ dx ≤ 2

m
Fσ[u] ≤ h2−m

∫

Rd

|f |2B2−m
σ dx

where f := (w − 1)Bm−1
σ , h1(t) := infRdw(t, ·), h2(t) := supRdw(t, ·) and

h := max{h2, 1/h1}. The fact that h is bounded for any t > 0 is easy to
prove by the Maximum Principle if h(0) is finite. See for instance [5] for
more details. Even if h(0) is infinite, h is anyway bounded for any t > 0,
large enough, when m ∈ (mc, 1); see [8, Theorem 1.2]. By [5, Corollary 1],
we also know that limt→∞ h(t) = 1.

According to [5, Lemma 7] (also see [6]) , the generalized Fisher informa-
tion satisfies the bounds

(13)

∫

Rd

|∇f |2 Bσ dx ≤ [1 +X(h)]Iσ [u] + Y (h)

∫

Rd

|f |2B2−m
σ dx

where

h−1
1 h

2 (2−m)
2 ≤ h5−2m =: 1 +X(h) ,

d (1−m)
[
(h2
h1
)2 (2−m) − 1

]
≤ d (1−m)

[
h4 (2−m) − 1

]
=: Y (h) .

Notice that X(1) = Y (1) = 0.

Third step: orthogonality conditions. To obtain decay rates of t 7→
Fσ(t)[u(t, ·)] is now reduced to establish a relation between

∫
Rd |f |2 B2−m

σ dx

and
∫
Rd |∇f |2Bσ dx. This is the purpose of the next section, but before let

us make a few additional observations on the properties of f = Bm−2
σ u −

Bm−1
σ .
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Lemma 3. Let u be a solution of (7) and f = Bm−1
σ (u/Bσ − 1) where

σ = σ(t) is defined by (5). With these notations, the function f has the

following properties, for any t > 0 :

(i) Mass conservation:
∫
Rd f(t, x)B

2−m
σ dx = 0 if m > mc.

(ii) Position of the center of mass:
∫
Rd x f(t, x)B

2−m
σ dx = 0 if m >

(d− 1)/(d + 1).
(iii) Conservation of the second moment:

∫
Rd |x|2 f(t, x)B2−m

σ dx = 0 if

m > m̃1.

Notice that Property (ii) has already been used in [6, Theorem 7] to
obtain improved rates of convergence for m ∈ (m1, 1). Property (iii) is
new and arises from the fact that the change of variables (6) is chosen in
Lemma 2 by imposing a condition on the moment and not according to the
self-similar variables corresponding to the Barenblatt solutions. Restrictions
on m are such that mass, first and second moments are well defined for Bσ.
As in [6], such conditions could be relaxed by considering moment conditions
on f only, or relative moment conditions; we will however not pursue in this
direction, as such an approach does not improve on the rates of convergence.

Proof. It is straightforward to rewrite the conservation of mass along evolu-
tion into Property (i).

Equation (1) being independent of y, it is clear that
∫
Rd y v(τ, y) dy =∫

Rd y v0(y) dy for any τ > 0. As a consequence, the center of mass of u is

located at x = 0:
∫
Rd xu(t, x) dx = 0, and so we get Property (ii).

Finally, Property (iii) is a direct consequence of (9). �

3. Improved Hardy-Poincaré inequalities

When M = M∗ and σ = 1, with the notations of Section 1, the quantities∫
Rd |f |2B2−m

σ dx and
∫
Rd |∇f |2Bσ dx involve various powers of (1 + |x|2).

On R
d, we shall therefore consider the measure dµα := µα dx, where the

weight µα is defined by µα(x) := (1 + |x|2)α, with α = 1/(m − 1) < 0, and
study the operator

Lα,d := −µ1−α div [µα ∇· ]
on the weighted space L2 (dµα−1). The operator Lα,d is such that

∫

Rd

f (Lα,d f) dµα−1 =

∫

Rd

|∇f |2 dµα .

Notice that in the range m ∈ (mc, 1), that is for α ∈ (−∞,−d/2), dµα

is a bounded positive measure. If additionally m > m̃1, that is for α <
−(d+2)/2, then dµα−1 is a bounded measure and

∫
Rd |x|2 dµα is also finite.

Let α∗ := −(d−2)/2. Based on [17, 18, 4, 6], we have the following result.

Proposition 4. The bottom of the continuous spectrum of the operator

Lα,d on L2 (dµα−1) is λcont
α,d := (α− α∗)

2. Moreover, Lα,d has some discrete
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spectrum only for α < α∗. For d ≥ 2, the discrete spectrum is made of the

eigenvalues

λℓk = −2α (ℓ+ 2 k) − 4 k
(
k + ℓ+ d

2 − 1
)

with ℓ, k = 0, 1, . . . provided (ℓ, k) 6= (0, 0) and ℓ+2k−1 < −(d+2α)/2. If

d = 1, the discrete spectrum is made of the eigenvalues λk = k (1− 2α− k)
with k ∈ N ∩ [1, 1/2 − α].

Let α∗ := −(d− 2)/2. The following result has been established in [5].

Corollary 5 (Sharp Hardy-Poincaré inequalities). Let d ≥ 2. For any

α ∈ (−∞, α∗) ∪ (α∗, 0), there is a positive constant Λα,d such that

(14) Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ L2 (dµα−1)

under the additional condition
∫
Rd f dµα−1 = 0 if α < α∗. Moreover, for

d ≥ 3, the sharp constant Λα,d is given by

Λα,d =





1
4 (d− 2 + 2α)2 if α ∈

[
−d+2

2 , α∗

)
∪ (α∗, 0) ,

− 4α− 2 d if α ∈
[
−d,−d+2

2

)
,

− 2α if α ∈ (−∞,−d) .

For d = 2, Inequality (14) holds for all α < 0, with the corresponding

values of the best constant Λα,2 = α2 for α ∈ [−2, 0) and Λα,2 = −2α for

α ∈ (−∞,−2). For d = 1, (14) holds, but the values of Λα,1 are given by

Λα,1 = −2α if α < −1/2 and Λα,1 = (α − 1/2)2 if α ∈ [−1/2, 0).

The constant Λα,d is determined by the spectral gap and corresponds
either to the lowest positive eigenvalue, λ1,0 or λ0,1, or to the bottom of the
continuous spectrum, λcont

α,d := 1
4(d+ 2α− 2)2 (see Fig. 1).

With additional orthogonality conditions, one improves on the spectral
gap in the range for which discrete spectrum exists. A first result in this
direction has been achieved in [6] for solutions with center of mass at the
origin. Here we give a refined version of it, by going to the next order, that
is, by considering functions with zero moments up to order two.

Corollary 6 (Improved Hardy-Poincaré inequalities). Under the assump-

tions of Corollary 5, if α < −(d+ 2)/2 and f ∈ L2 (dµα−1) is such that
∫

Rd

f dµα−1 = 0 ,

∫

Rd

x f dµα−1 = 0 and

∫

Rd

|x|2 f dµα−1 = 0 ,

then (14) holds for any d ≥ 3 with

Λα,d =





1
4 (d− 2 + 2α)2 if α ∈

[
−d+6

2 ,−d+2
2

)
,

− 8α− 4 (d + 2) if α ∈
[
−(d+ 2) ,−d+6

2

]
,

− 4α if α ∈ (−∞,−(d+ 2)] .

For d = 2, Λα,2 = α2 for α ∈ [−4,−2) and Λα,2 = −4α for α ∈ (−∞,−4).
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The constant Λα,d is now determined either by the lowest of the two eigen-
values, λ1,1 or λ2,0, or by the bottom of the continuous spectrum, λcont

α,d (see

Fig. 1), since the components corresponding to the eigenspaces associated
to λ1,0 and λ0,1 have been removed.

,

λ01 = −4 α − 2 d

λ10 = −2 α

λ11 = −6 α − 2 (d + 2)

λ02 = −8 α − 4 (d + 2)

λ20 = −4 α

λ30

λ21 λ12
λ03

λcont := 1
4(d + 2 α− 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

α = −
√

d − 1 − d
2

α = −
√

d − 1 − d+4
2

α = −
√

2 d − d+2
2

(d = 5)

Essential spectrum ofLαd

,

LαdSpectrum of

,
αd

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d
d+2

m̃2 = d+4
d+6

Spectrum of
(1 − m)L1 (m−1) d

(d = 5)

Essential spectrum

of

1

2

4

6

/ ,

(1 − m)L1 (m−1) d/ ,

m

Figure 1. Spectrum of Lα,d as a function of α (left), and
spectrum of (1−m)L1/(m−1),d as a function of m (right), for
d = 5.

A crucial observation is that we can scale Inequality (14).

Corollary 7. Let M > 0 and d ≥ 2. With Bσ defined by (2), let f be a

function in L2(B2−m
σ dx) such that

∫

Rd

(1, x, |x|2) f B2−m
σ dx = (0, 0, 0) and ∇f ∈ L2(Bσ dx) .

Then the inequality

Λα,d

∫

Rd

|f |2 B2−m
σ dx ≤ σ

d
2
(m−mc)

∫

Rd

|∇f |2Bσ dx

holds with Λα,d as in Corollary 6.
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Proof. The proof relies on a simple change of variables. From Corollary 6,
we know that

Λα,d

∫

Rd

|g|2
(
1 + |x|2

)α−1
dx ≤

∫

Rd

|∇g|2
(
1 + |x|2

)α
dx

for any g ∈ L2 (dµα−1) satisfying the conditions of Corollary 6. Then Corol-
lary 7 holds for f such that f(x) = g(x/

√
CM σ ) for any x ∈ R

d, which
concludes the proof. �

4. Estimates on the second moment

Up to now, we have not determined the behavior of R(τ) as τ → ∞, nor
the fact that σ has a finite, positive limit as t → ∞. These properties can
be deduced for instance from [5]. For the convenience of the reader, let us
give some details. As in [5], consider the standard change of variables

(τ, y) 7→
(
t = 1

2 logR0(τ), x = y
R0(τ)

)

based on the self-similar behavior of the Barenblatt solution B(τ, y), where

R0(τ) := (1 + 2 d (m −mc) τ)
1

d (m−mc) .

With the above change of variables, if v is a solution of (1), then the function
U(t, x) := v(τ, y) solves

∂U

∂t
+∇ ·

[
U

(
∇Um−1 − 2x

)]
= 0 t > 0 , x ∈ R

d ,

which is nothing else than (7), except that here σ is replaced by 1. It has
been established in [5] that

lim
t→∞

e2 c tF1[U(t, ·)] = 0

for some positive constant c. By Hölder’s inequality, we know that
∫

Rd

Um dx =

∫

Rd

(
U Bm−1

1

)m
B

m (1−m)
1 dx

≤
(∫

Rd

U Bm−1
1 dx

)m (∫

Rd

Bm
1 dx

)1−m

,

thus proving that

F1[U ] ≥
∫

Rd

Bm
1 dx+

m

1−m

∫

Rd

U Bm−1
1 dx

− 1

1−m

(∫

Rd

U Bm−1
1 dx

)m (∫

Rd

Bm
1 dx

)1−m

.

With

k(t) :=

∫
Rd U Bm−1

1 dx∫
Rd Bm

1 dx
=

∫
Rd |x|2 U dx+M CM

KM +M CM
,
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this can be rewritten as

F1[U ] ≥
∫

Rd

Bm
1 dx

k
m − 1−m (k− 1)

m− 1
∼ |k(t)− 1|2 as t → ∞ ,

hence showing

lim
t→∞

ec t |k(t)− 1| = 0 .

As a consequence, we observe that
∣∣∣∣
∫

Rd

|x|2 U(t, x) dx−KM

∣∣∣∣ = O
(
e−c t

)
as t → ∞ ,

Undoing the change of variables, we find that
∣∣∣∣

1

R0(τ)2

∫

Rd

|y|2 v(τ, y) dy −KM

∣∣∣∣ = O
(
R0(τ)

−c/2
)

as τ → ∞ ,

which, by definition of σ, gives

σ =
1

R(τ)2
(1 + 2 d (m−mc) τ)

2
d (m−mc)

(
1 +O

(
R0(τ)

−c/2
))

as τ → ∞, where τ 7→ R(τ) is given by (4). Using (5), this means that

1

R(τ)

dR

dτ
= 2 (R0(τ)

2 σ)−
d
2
(m−mc) =

1

d (m−mc)

1

τ

(
1 +O

(
τ−ε

))

with ε = min{1, c/2} > 0. With these estimates, we can prove the following
result.

Lemma 8. With the notations of Sections 1 and 2,

R(τ) ∼ τ
1

d (m−mc) as τ → ∞

and, as a function of t, t 7→ σ(t) is positive, decreasing, with

lim
t→∞

σ(t) =: σ∞ > 0 .

More precisely, we know that for some C∞ > 0,

R(τ) = C∞ τ
1

d (m−mc) (1 + o(1)) as τ → ∞

and σ∞ = (2 d (m−mc))
2

d (m−mc) /C2
∞. However, the value of σ∞ in terms

of v0 is not known.

Proof. The asymptotic behaviors of R and σ are direct consequences of
the above computations. We only have to prove the monotonicity of σ.
According to Lemma 2, we know that

σ(t) =
1

KM

∫

Rd

|x|2 u(t, x) dx .



ASYMPTOTICS OF FAST DIFFUSION EQUATIONS 15

Using (7) and integrating by parts, we compute

dσ

dt
=

1

KM

d

dt

∫

Rd

|x|2 u(t, x) dx

=
2 d (1 −m)

mKM
σ

d
2
(m−mc)

∫

Rd

um dx− 4σ .

On the other hand, by Lemma 2, we have
∫

Rd

Bm−1
σ(t) u(t, x) dx =

∫

Rd

Bm
σ(t) dx ,

so that

Fσ(t)[u(t, ·)] =
∫

Rd

um −Bm
σ(t)

m− 1
dx

=
2m

d (1−m)2
KM σ

d
2
(1−m) − 1

1−m

∫

Rd

um dx .

Hence we have proved that

dσ

dt
= −2 d

(1−m)2

mKM
σ

d
2
(m−mc)Fσ(t)[u(t, ·)] ≤ 0 ,

which completes the proof. �

Remark 2. We may notice that the second moment converges to a well de-

fined value:

lim
t→∞

∫

Rd

|x|2 u(t, x) dx = KM σ∞ .

This is not the one which is usually found by considering the time-dependent

rescaling corresponding to the self-similar Barenblatt solutions.

5. Proof of Theorem 1

We are now ready to resume with the relative entropy estimates and
conclude the proof of Theorem 1. Using (12), (13) and Corollary 7, we find
as in [6] that

(15) Fσ[u] ≤
h2−m [1 +X(h)]

2
[
Λα,d − σ Y (h)

] mσ
d
2
(m−mc) Iσ[u]

as soon as 0 < h < h∗ := min{h > 0 : Λα,d − supt∈R+ σ(t)Y (h) ≥ 0}.
Two differences with [6] arise: Λα,d has been improved in Corollary 7, to the
price of a factor σ, which however plays no role because it also appears in
the computation of d

dtFσ(t)[u(t, ·)]. The m factor is present because Fσ has
not been normalized as in [6], and also because the equation for v is not the
same.

As in [6], uniform relative estimates hold, according to [7, Inequality
(5.33)]: for some positive constant C, we have

0 ≤ h(t)− 1 ≤ CFσ(t)[u(t, ·)]
1−m

d+2−(d+1)m .
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Summarizing, we end up with a system of nonlinear differential inequalities,
with h as above and, at least for some t∗ > 0 large enough,

d

dt
Fσ(t)[u(t, ·)] ≤ − 2

Λα,d − σ(t)Y (h)[
1 +X(h)

]
h2−m

(1−m)Fσ(t)[u(t, ·)]

for any t > t∗. Gronwall type estimates then show that

lim sup
t→∞

e2 (1−m) Λ1/(m−1),d tFσ(t)[u(t, ·)] < ∞ .

Notice as in [5] that for some constant c > 0, limt→∞ ec t(h(t) − 1) = 0, so
that the fact that the quotient Iσ[u]/Fσ [u] in (15) is not estimated exactly
by (2Λα,d)/(mσ) plays no role for the rate of convergence. This completes
the proof of Theorem 1 with γ(m) = (1−m)Λ1/(m−1),d (see Fig. 2). �

Remark 3. Exactly as in [6, Corollary 3], explicit estimates of the constants

can be obtained. If v0/B1 is uniformly bounded from above and from below

by two positive constants, an estimate of lim supτ→∞R(τ)γ(m) Fσ(t)[u] in

Theorem 1 can be given in terms of v0 by computing a Gronwall estimate.

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃1 := d
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

Figure 2. For d = 5, the value of m 7→ γ(m) is given by the
curve of Case 1 when no assumptions are made on the initial
data. The curve of Case 2 corresponds to the case where the
center of mass is chosen at the origin, as in [6], while the
curve of Case 3 corresponds to the exponent found in Theo-
rem 1.
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6. Concluding remarks

The case of the heat equation, i.e. m = 1, is not covered in our approach.
However, we may pass to the limit as m → 1− in Corollary 7, for the special
choice 1/σ = 2 (1−m). Both weights B2−m

σ and Bσ converge to the Gaussian
weight, so that the conditions of Corollary 7 become

∫

Rd

(1, x, |x|2) f e−|x|2/2 dx = (0, 0, 0) and ∇f ∈ L2(e−|x|2/2 dx) .

By requiring the orthogonality with respect to all Hermite polynomials up
to order two, we achieve the improved Poincaré inequality

2

∫

Rd

|f |2 e−|x|2/2 dx ≤
∫

Rd

|∇f |2 e−|x|2/2 dx .

Compared with the results of [6], nothing is gained, as

lim
m→1−

(1−m)λ01 = lim
m→1−

(1−m)λ20 = 4 ,

where λℓk are defined in Proposition 4 and α = 1/(m− 1). See [3] for more
details on improved convergence rates of relative entropies in case m = 1.

For completeness, let us extend our results to the case d = 1, which is
very simple. Eigenvalues of Lα,1 are ordered uniformly with respect to α,
according to Proposition 4. Let α < −1/2 and consider f ∈ L2 (dµα−1) such
that ∫

R

f dµα−1 = 0 ,

∫

R

x f dµα−1 = 0 and

∫

R

|x|2 f dµα−1 = 0 .

Then (14) holds with

Λα,d =

{
(α− 1

2 )
2 if α ∈

[
−5

2 ,−1
2

)
,

− 6 (α+ 1)) if α ∈ (−∞,−5
2 ] .

Theorem 9. Assume that d = 1, m ∈ (1/3, 1). Let v be a solution of (1)
with initial datum v0 ∈ L1

+(R) such that vm0 and |y|2 v0 are integrable. With

the above notations, we have lim supτ→∞R(τ)γ(m) E(τ) < ∞, where R(τ) ∼
τ

1
m+1 as τ → ∞ and

γ(m) =





(3−m)2

4 (1−m) if m ∈
(
1
3 ,

3
5

]
,

6m if m ∈
[
3
5 , 1

)
,
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Mathématique, 344 (2007), pp. 431–436.

[5] , Asymptotics of the fast diffusion equation via entropy estimates, Archive for
Rational Mechanics and Analysis, 191 (2009), pp. 347–385.

[6] M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vázquez, Sharp rates of

decay of solutions to the nonlinear fast diffusion equation via functional inequalities,
Proceedings of the National Academy of Sciences, 107 (2010), pp. 16459–16464.

[7] M. Bonforte, G. Grillo, and J. Vázquez, Special fast diffusion with slow asymp-

totics: Entropy method and flow on a riemannian manifold, Archive for Rational
Mechanics and Analysis, 196 (2010), pp. 631–680.

[8] M. Bonforte and J.-L. Vázquez, Global positivity estimates and Harnack in-

equalities for the fast diffusion equation, Journal of Functional Analysis, 240 (2006),
pp. 399–428.
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