
HAL Id: hal-00482856
https://hal.science/hal-00482856v1

Submitted on 11 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the Minimum Breakpoint Linearization
Problem

Laurent Bulteau, Guillaume Fertin, Irena Rusu

To cite this version:
Laurent Bulteau, Guillaume Fertin, Irena Rusu. Revisiting the Minimum Breakpoint Linearization
Problem. 7th Annual Conference on Theory and Applications of Models of Computation (TAMC
2010), Jun 2010, Prague, France. pp.163-174. �hal-00482856�

https://hal.science/hal-00482856v1
https://hal.archives-ouvertes.fr

Revisiting the Minimum Breakpoint

Linearization Problem

Laurent Bulteau1,2, Guillaume Fertin2 and Irena Rusu2

1 École Normale Supérieure, 45 rue d’Ulm, 75000 Paris, France
2 Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France
Laurent.Bulteau@ens.fr, {Guillaume.Fertin,Irena.Rusu}@univ-nantes.fr

Abstract. The gene order on a chromosome is a necessary data for
most comparative genomics studies, but in many cases only partial or-
ders can be obtained by current genetic mapping techniques. The Mini-
mum Breakpoint Linearization Problem aims at constructing a total
order from this partial knowledge, such that the breakpoint distance to
a reference genome is minimized. In this paper, we first expose a flaw in
two algorithms formerly known for this problem [5,3]. We then present
a new modeling for this problem, and use it to design three approxima-
tion algorithms, with ratios resp. O(log(k) log log(k)), O(log2(|X|)) and
m2 +4m−4, where k is the optimal breakpoint distance we look for, |X|
is upper bounded by the number of pair of genes for which the partial
order is in contradiction with the reference genome, and m is the number
of genetic maps used to create the input partial order.

1 Introduction

In a number of comparative genomics algorithms, a full knowledge of the order of
the genes on the chromosomes for the species under study is required. However,
we have access to a limited number of fully sequenced genomes, and for other
species, we only have genetic maps, in which there remains uncertainties in the
gene order. Hence, the problem of inferring a total order, compatible with the
partial knowledge on these genetic maps and optimizing some objective function,
is a first step to study nonetheless all genomes. In the past few years, growing
attention has been given to this problem, in which the objective function is an
evolutionary distance to a reference genome (e.g. number of rearrangements [9],
reversal [8,5], breakpoint [5,2,3], or common intervals [2] distance).

In this paper, we focus on the MBL problem, which aims at finding a lin-
earization of a partial order while minimizing the breakpoint distance to a refer-
ence genome. In [5] and [3], the study of this problem uses the construction of a
special graph, the adjacency-order graph, which leads to respectively a heuristic
and an approximation algorithm (whose ratio depends on m, the number of ge-
netic maps used to construct the studied genome). However, we have detected a
flaw in this construction, which makes both above mentioned algorithms invalid
on general data. Thus, in this paper, we define a new type of adjacency-order

graphs, give its construction, and show that it is effective to solve the MBL prob-
lem. This renewed approach allows us to use general graph theory results [4] to
obtain new approximation algorithms for MBL. Moreover, we also achieve an
O(m2)-approximation, in the same spirit as was done in [3].

To describe the MBL problem, let a genome be represented by a partial order
Π over a given set Σ = {1, . . . , n} of markers. A linearization of Π is a total
order (or a permutation) π = π(1)·π(2)· . . . ·π(n) on Σ, such that, for all markers
i, j, if i <Π j, then i <π j (alternatively, π−1(i) < π−1(j), or i precedes j in the
permutation π). In that case, π is said to be compatible with Π . An interval I
of π is a list of successive values from π, that is I = π(h)·π(h+1)· . . . ·π(l), with
1 ≤ h ≤ l ≤ n, from π. For any such interval, its length L is defined as l− h +1.
An adjacency in the total order π is an interval of length L = 2. The breakpoint
distance dB(π1, π2) between two total orders π1 and π2 (over the same set Σ)
is defined by the total number of adjacencies in π1 which are not adjacencies in
π2. We call Idn the identity permutation over Σ = {1, . . . , n}.

The Minimum Breakpoint Linearization Problem, in its optimization
formulation, can be defined as follows:

Problem : MBL
Input : A partial order Π .
Output : A linearization π of Π that minimizes k = dB(π, Idn).

Fig. 1a shows an example of partial order Π , that yields four optimal lin-
earizations (Fig. 1c) satisfying dB(π, Idn) = 3 for each linearization π.

It is worth noting that the input partial order is, in practice, obtained by
combining a limited number m of genetic maps [7,9]. A genetic map consists of
an ordered list of blocks B1, B2, . . . , Bq, each of which is an unordered list of
markers, i.e. any two markers from the same block are incomparable. The blocks
B1, B2, . . . , Bq induce a partial order Π as follows: for any a ∈ Bi and b ∈ Bj ,
a <Π b iff i < j. Note that it is always assumed that combining two or more
genetic maps never creates conflicts.

The Minimum Breakpoint Linearization Problem, based on the genome
rearrangement problem defined by Zheng and Sankoff [9], was studied indepen-
dently in [2] and [5] (we note that in the latter, the problem is denoted as PBD,
and deals with two partial orders instead of one partial order and one total order).
In [2], Blin et al. prove that MBL is NP-hard and give two types of algorithms
for solving MBL: (i) a heuristic and (ii) an exact, thus exponential-time, algo-
rithm based on dynamic programming. Moreover, this last algorithm is efficient
in the specific case where input genomes are created from a bounded number m
of gene maps, each with a bounded width. In [5], Fu and Jiang give an (indepen-
dent) NP-hardness proof, and present the construction of the adjacency-order
graph GΠ of a partial order Π (Π being represented as a DAG, called DAG(Π)).
Their central theorem, claiming that “All the possible common adjacencies in
an acyclic adjacency-order graph GΠ could always co-exist in some linearization
of DAG(Π)”, is used in a heuristic they provide for the problem, and is also

used by Chen and Cui [3] to obtain an m2
+m
2

-approximation algorithm. How-

ever, as shown in Theorem 2, the above mentioned theorem from [5] is false, and
consequently both those algorithms are invalid for the general MBL Problem.

The paper is organized as follows. In Section 2, we point out the APX-
hardness of MBL and give our counter-example to the central theorem in [5].
Section 3 is devoted to the definition of a new adjacency-order graph, which is
used in Section 4 to show that solving MBL may be reduced to solving a variant
of the well-known Feedback Vertex Set problem. Section 5 presents three
approximation algorithms, two of which are based on state-of-the-art algorithms
for the variant of Feedback Vertex Set we are interested in, whereas the
third is specific to partial orders created from genomic maps, and has a ratio
depending on the number m of those genomic maps. Section 6 is the conclusion.

Due to space constraints, most of the proofs have been moved to the Ap-
pendix, which is available for the referees.

2 Revisiting Previous Works

In this section, we focus on previous works: we first show that adapting the NP-
hardness proof for MBL from [2] leads to an APX-hardness proof. We then give
a counterexample to Theorem 1 from [5], which implies, among others, that the
approximation algorithm from [3] is invalid.

Theorem 1 The MBL problem is APX-hard.

See Theorem 1 in [2], where the reduction is in fact an L-reduction from Max-
imum Independent Set (MIS) to MBL, if we restrict MIS to cubic graphs.

Theorem 2 All the adjacencies appearing in GΠ (as defined in [5]) of a DAG
Π may not always coexist in a linearization of Π, even if GΠ is acyclic.

Proof. Consider the directed acyclic graph DAG(Π) obtained from the partial
order described in Fig. 1a. Here, there are only three possible common adjacen-
cies between Π and Idn: 1· 2, 2· 3 and 5· 6. Following the definitions proposed
in [5], there are three arcs in the adjacency-order graph GΠ (Fig. 1b): one from
1· 2 to 2· 3 (because of the common marker), one from 1· 2 to 5· 6 (because 1 < 5
in Π), and one from 5· 6 to 2· 3 (because 6 < 3 in Π). In that case, GΠ is
acyclic; however, its three adjacencies cannot coexist in any linearization of Π
(see Fig. 1c: there can be at most two adjacencies in the same linearization).
Thus Theorem 2 is proved, which contradicts Theorem 1 in [5]. ⊓⊔

3 Defining a New Adjacency-Order Graph GΠ

The direct consequence of Theorem 2 is that the adjacency-order graph defined
in [5] cannot be exploited. Hence, we introduce here the construction of a new
type of adjacency-order graph, whose main structural property will lead us to
three different approximation algorithms.

54 1 2 36
(a) DAG(Π) represents the
partial order Π

5· 6

1· 2 2· 3

(b) GΠ , as defined in [5]

4 · 1 · 5 · 6 · 2 · 34 · 1 · 2 · 5 · 6 · 36 · 4 · 1 · 2 · 3 · 54 · 6 · 1 · 2 · 3 · 5
(c) Optimal lineariza-
tions of Π

Fig. 1: Counterexample of the main theorem from [5]

This new adjacency-order graph GΠ contains both the features of the partial
order Π and of the identity permutation Idn. Some of the cycles in this graph
will express the incompatibilities between the order Π and the permutation Idn.
In order to count or to bound the breakpoint distance between a linearization
π of Π and Idn, one has to identify the vertices in the adjacency-order graph
needed to break all these conflict-cycles, and to count or bound their number.
The MBL problem thus becomes a graph theory problem, which allows us either
to use existing algorithms or to build-up new algorithms based on graphs.

Adjacency-order graph. Let Π = (Σ, D) be a directed acyclic graph (DAG)
representing a partial order over Σ = {1, . . . , n} (see Fig. 2a), i.e. we write
i <Π j iff there is a directed path from i to j in Π . We create a set W of vertices
representing the adjacencies of the identity permutation Idn by W = {i· (i+1) |
1 ≤ i < n}. Finally, let V = Σ ∪ W (Fig. 2b). Note that, in the following,
we will not distinguish the vertices of Σ and their corresponding integers (this
will always be clear from the context). Moreover, the natural order < over the
integers is also used as an order over Σ. We now construct a set of arcs F
(denoted by an arrow →) in the following way:

F = {i· (i + 1) → i | 1 ≤ i < n} ∪ {i· (i + 1) → i + 1 | 1 ≤ i < n}

∪ {i → i· (i + 1) | 1 ≤ i < n} ∪ {i + 1 → i· (i + 1) | 1 ≤ i < n}

Each arc in F has one end in W and one end in Σ. We write E = D∪F (Fig. 2c)
and we define the adjacency-order graph GΠ of Π by GΠ = (V, E).

In GΠ , the arcs of D that go top-down (see Fig. 2c) intuitively show incom-
patibilities between the order in Π and the order in Idn. We note X [GΠ] (or
only X , if there is no ambiguity) the set containing them, that is X [GΠ] = {i →
j ∈ D | i > j}. Now, every cycle containing an arc of X is called a conflict-cycle.
In Theorem 4, we prove that the adjacencies involved in conflict-cycles are in-
compatible, so that we need to remove at least one adjacency from each of those
cycles to obtain a linearization of Π . We also define a weight map w[GΠ] on the
vertices of GΠ , which associates 1 to each u ∈ W , and ∞ to u ∈ Σ.

Notations. An arc between u and v is written u → v, or u →E′ v if it belongs to

some subset E′. A path P is a (possibly empty) sequence of arcs written u
P
→∗v,

or u
P
→∗

E′v if P uses only arcs from E′. A non-empty path Q is written with a

+ sign: u
Q
→+v. A cycle is a non-empty path u

C
→+v with v = u.

54 1 2 36
(a) Original DAG Π

W Σ

123
456

1 · 2

2 · 3

3 · 4

4 · 5

5 · 6

(b) Vertices of GΠ

F D

123
456

1 · 2

2 · 3

3 · 4

4 · 5

5 · 6

(c) Arcs of GΠ

Fig. 2: Construction of an adjacency-order graph. The symmetric arcs in F are repre-
sented as double arrows. The arcs in X are marked with a large dot.

Given in GΠ a path P = v0 → v1 → . . . → vℓ, we use the following notations:
ℓ(P) = ℓ is the length of P , V (P) = {vh | 0 ≤ h ≤ ℓ}, W (P) = V (P) ∩ W ,
Σ(P) = V (P) ∩ Σ, E(P) = {vh → vh+1 | 0 ≤ h < ℓ}, F (P) = E(P) ∩ F ,
D(P) = E(P) ∩ D, X(P) = E(P) ∩ X . A cycle C is said to be simple if all
vertices vh are distinct (except v0 = vℓ), which implies ℓ(C) = |V (C)| = |E(C)|.

The following property gives an insight on how conflict-cycles can appear in
the adjacency-order graph. (It is not, however, used in our algorithms.)

Property 3 Let C be a simple cycle with |D(C)| ≥ 2. Then C is a conflict-cycle.

4 Cutting all Conflict-Cycles in GΠ is enough

Now that we have defined how to construct GΠ starting from the input partial
order Π , we turn to proving the main structural result of our paper: conflict-
cycles contain all the conflicts between the partial order Π and the identity
permutation Idn (see Theorem 4). More precisely, when appropriate adjacencies
in Idn (identified as vertices in W) are given up, the remaining adjacency-order
graph has no conflict-cycle and this condition is necessary and sufficient to obtain
a linearization of Π that preserves all the remaining adjacencies in Idn.

Theorem 4 Let Π be a partial order, GΠ = (V, E) its adjacency-order graph
(with V = Σ ∪ W and E = D ∪ F), and W ′ ⊆ W . Then there exists a total
order π over Σ, compatible with Π, and containing every adjacency from W ′ iff
GΠ [W ′ ∪ Σ] has no conflict-cycle.

Proof. (⇒) Let π be a linearization of Π containing every adjacency of W ′. The
following lemma (of which the proof can be found in the appendix) will allow us
to conclude by contradiction.

Lemma 5 Let P = v1 → v2 → . . . → vℓ be a path with vertices in W ′ ∪ Σ such
that (H1) the vertices vi are pairwise distinct, (H2) ℓ ≥ 2, (H3) v1, vℓ ∈ Σ, and
(H4) for any 1 ≤ i < ℓ, vi → vi+1 ∈ F .

Let a = min(v1, vℓ) and b = max(v1, vℓ). Then the sequence a· (a + 1)· (a +
2)· . . . · b is an interval of π. Moreover, Σ(P) = {a, . . . , b} and W (P) = {c· (c +
1) | a ≤ c < b}.

We suppose, by contradiction, that there exists in GΠ [W ′ ∪ Σ] a cycle C =
v0 → v1 → v2 → . . . → vℓ = v0 containing an arc from X (e.g., v0 →X v1).
Wlog, we may assume that C is simple (otherwise, there exists a simple sub-
cycle of C that contains an arc from X). We distinguish two cases, depending on
whether v0 →X v1 is the only arc in D(C) or not.

First case: v0 → v1 ∈ X and for all i, 1 ≤ i < ℓ, vi → vi+1 ∈ F holds. In that
case, we can directly use Lemma 5. Indeed, the path v1 → v2 → . . . → vℓ = v0

satisfies hypothesis H1 (by simplicity of C), H2 (otherwise there would be a loop
v0 → v0 in X), H3 (since vℓ → v1 ∈ D) and H4 (this is assumed in this first case).
We also know, due to the fact that v0 →X v1, that v1 < vℓ. We can conclude
that v1· v1 + 1· . . . · vℓ is an interval of π, so v1 <π vℓ = v0. This contradicts the
fact that π is compatible with Π , since v0 <Π v1.

Second case: Let i0 = 0, i1, . . . , ih−1, ih = ℓ be the increasing sequence of
indices such that vij

→ vij+1 ∈ D for all j such that 0 ≤ j < h. Note that
h ≥ 2 and for all j, we have vij

∈ Σ. Let us prove that for all j < h, the
relation vij

<π vij+1
holds. The case where ij+1 = ij + 1 is easy, since the arc

vij
→D vij+1 implies vij

<Π vij+1
(by construction of GΠ) and vij

<π vij+1

(since π is compatible with Π). Now, assume there are several arcs between vij

and vij+1
, i.e. ij+1 = ij +m with m ≥ 2. We use Lemma 5 with the path P in F

given by vij+1 → vij+2 → . . . → vij+m. Path P satisfies the hypotheses H1, H2,
H3 and H4 of the lemma, thus one of the sequences vij+1· (vij+1 + 1)· . . . · vij+m

and vij+m· (vij+m + 1)· . . . · vij+1 is an interval of π. Note that vij
is a distinct

vertex from vij+1
(since h ≥ 2), and from other vertices in the set Σ(P) as well

(since each of them is the source of an arc from F in C, whereas vij
is the source

of an arc from D in C). Consequently, vij
cannot appear in either of the intervals

vij+1· (vij+1+1)· . . . · vij+m and vij+m· (vij+m+1)· . . . · vij+1 of π. As vij
precedes

vij+1 in Π (and thus in π), we have vij
<π vi′ for all i′ ∈ [ij + 1, ij + m], and

particularly, vij
<π vij+1

.

In conclusion, we have vij
<π vij+1

for all j < h and vih
= vi0 , a contradiction

since there can be no cycle in the relation <π. Hence, the subgraph GΠ [W ′ ∪Σ]
does not contain any conflict-cycle.

(⇐) (constructive proof) We use the following method to construct a lin-
earization π of Π containing all adjacencies of W ′, where the subgraph G′ =
GΠ [W ′ ∪ Σ], is assumed to contain no conflict-cycle. We denote by V1, . . . Vk

the strongly connected components of G′, ordered by topological order (i.e., if
u, v ∈ Vi, there exists a path from u to v ; moreover, if u ∈ Vi and v ∈ Vj and
there exists a path u →∗v in G′, then i ≤ j). We sort the elements of each set
Vi ∩ Σ in ascending order of integers, and obtain a sequence µi. The concate-

nation µ1·µ2· . . . gives π, a total order over Σ. We now check that π contains
every adjacency in W ′ and is compatible with Π .

Let a· (a + 1) ∈ W ′. Vertices a and a + 1 are in the same strong connected
component Vi, because of the arcs a ↔ a· (a + 1) ↔ a + 1. Those two elements
are obviously consecutive in the corresponding µi, and appear as an adjacency in
π. By contradiction, assume now that there exist two distinct elements a, b ∈ Σ
such that a <π b and b <Π a. We denote by i and j the indices such that a ∈ Vi

and b ∈ Vj . Since a <π b, we have i ≤ j, and since b <Π a, there exists a

path b
P1→+

Da in (Σ, D). Therefore, in G′, we have i ≥ j. We thus deduce that
i = j, and therefore a and b share the same strong connected component. This
means that there also exists a path P2 from a to b in G′. Hence, we have a cycle

b
P1→ +a

P2→ +b, which cannot be a conflict-cycle, thus those paths do not use
any arc from X . The latter is in particular true along P1, which implies b < a,
since each arc u → v in D−X is such that u < v. On the other hand, a appears
before b in π, and therefore in µi, so a < b, a contradiction. Finally π is a feasible
solution for MBL(Π), with at least |W ′| common adjacencies with the identity
permutation Idn. ⊓⊔

Since all vertices in W − W ′ count for unconserved adjacencies (and thus
define dB(π, Idn)), from Theorem 4 we directly get the following corollary.

Corollary 6 The value k of an optimal solution of MBL(Π) is the mini-
mum number of vertices one needs to delete in W to remove all conflict-cycles
from GΠ .

5 Three Approximation Algorithms for MBL

5.1 Two Approximation Algorithms based on Subset-FVS

Our previous result implies that we have reduced the problem MBL to a gen-
eralization of the well studied Feedback Vertex Set (FVS) problem, where
only the conflict-cycles must be cut. In order to solve MBL, we use a (more
general) variant of FVS, named Subset-FVS and studied by Even et al. [4],
whose definition is the following:

Problem : Subset-FVS
Input : A directed graph G = (V, E), a set Y ⊆ V ∪E, a weight map w : V → R.
Output : A set V ′′ ⊆ V of minimum weight such that, with V ′ = V − V ′′, no
cycle in G[V ′] uses a vertex or an arc from Y .

In our paper, we are only interested in the restriction of Subset-FVS on
adjacency-order graphs, where Y is the set of top-down arcs and w is such that
only vertices in W can be deleted:

Problem : AOG-Subset-FVS
Input : An adjacency-order graph GΠ , Y = X [GΠ], w = w[GΠ]
Output : A set W ′′ solution of Subset-FVS(GΠ , Y, w)

We note that any algorithm for Subset-FVS is also valid for AOG-Subset-
FVS. Two approximation algorithms are given in [4] for Subset-FVS. The first

Algorithm 1 O(log2(|X |))- and O (log(k) log log(k))-approximation for MBL

Input: A directed acyclic graph Π = (Σ, D)
1. Create GΠ = (V, E) the adjacency-order graph of Π ;
2. W ′′ ← AOG-Subset-FVS(GΠ , X[GΠ], w[GΠ]);
3. W ′ ←W −W ′′;
4. (V1, V2, . . . , Vh)← SCC-sort(GΠ [W ′ ∪Σ]);
5. For i← 1 to h;
6. µi ← sort(Vi ∩Σ);
7. π ← µ1·µ2· . . . ·µh;
8. return π;

one achieves an approximation ratio of O(log2 |Y |), while the second algorithm
achieves a ratio of O (min(log(τ∗) log log(τ∗), log(n) log log(n))), where τ∗ is the
value of the optimal fractional solution for the corresponding linear programming
problem (thus τ∗ is upper bounded by the optimal solution of Subset-FVS).

We use those approximation algorithms to solve MBL (see Algorithm 1).
We denote by SCC-sort() an algorithm that decomposes a graph into its strong
connected components, and then topological sorts these components. Also, let
sort() be an algorithm that sorts a set of integers according to the increasing
order of its elements. Algorithm 1 is derived from the constructive proof of
Theorem 4, and its correctness follows from Theorem 4 itself.

Depending on the algorithm used for AOG-Subset-FVS, Algorithm 1 can
be either an exponential-time exact algorithm, an O(log2 |X |)-approximation or
an O (log(k) log log(k))-approximation (where |X | is the number of arcs u → v
in Π = (Σ, D) with u > v, and k the optimal value of our problem). Note that
the two latter ratios are incomparable, since we may have |X | ≈ nk or k ≈ n|X |
(see for instance Fig. 5a and Fig. 5b in the appendix).

5.2 An (m2 + 4m − 4)-approximation Algorithm

In this section, we assume that the partial order Π is generated from m gene
maps. Recall that a gene map is a totally ordered sequence of blocks, each of
which is an unordered set of markers. We exploit this supplementary information
to obtain an (m2 + 4m − 4)-approximation algorithm for AOG-Subset-FVS,
and therefore a new approximation algorithm, having the same ratio, for MBL.

Before giving the algorithm, we first introduce a few definitions: a path u
R
→∗

Dv
in (Σ, D) is said to be a shortcut of a conflict-cycle C (see Fig. 3), if:

- u, v ∈ Σ(C) (we write P and Q the paths such that C = u
P
→+v

Q
→+u),

- cycle C′ = u
P
→+v

R
→∗

Du is a conflict-cycle,

- W (Q) 6= ∅ (using the shortcut removes at least one adjacency).

We say that a conflict-cycle is minimal if it has no shortcut. With the fol-
lowing property, we ensure that removing minimal conflict-cycles is enough to
remove all conflict-cycles.

1

1 · 2

2

2 · 3

3

8

7 · 8

7

R

Q

P

Fig. 3: Cycle C = 2
P
→∗7

Q
→∗2 is a conflict-cycle (it contains 7→ 1 ∈ X). The length-1

path R forms a shortcut for C (with C′ = 2
P
→ ∗7

R
→ ∗2, C′ is a conflict-cycle, and

W (Q) = {1· 2}). So C′ is the only minimal conflict-cycle.

Algorithm 2 (m2 + 4m − 4)-approximation for AOG-Subset-FVS

Input: An adjacency-order graph GΠ = (V, E), X[GΠ], w[GΠ]
1. W ′′ ← ∅;
2. while there exists a minimal conflict-cycle C in GΠ [V −W ′′];
3. L← the set of low joints of C;
4. W ′′ ←W ′′ ∪ {eF : e ∈ L};
5. return W ′′;

Property 7 If an adjacency-order graph contains a conflict-cycle, it also con-
tains a minimal conflict-cycle.

In a cycle C, we say that a vertex e ∈ Σ(C) is a low joint, if in this cycle, u is
adjacent to both an arc of D and an arc of F linking it to e· (e + 1). Formally,
there exist vertices eD ∈ Σ(C) and eF = u· (u + 1) ∈ W (C) such that one of the
paths eD →D e →F eF or eF →F e →D eD appears in C.

Algorithm 2 is an (m2+4m−4)-approximation for AOG-Subset-FVS. Used
as a subroutine in Algorithm 1, it gives us an (m2+4m−4)-approximation for the
MBL problem (see Corollary 10). Due to space constraints, the approximation
ratio analysis for this Algorithm 2 is only briefly summarized: the first step is to
bound the number of low joints that can appear in some minimal conflict-cycle
by m (although two markers corresponding to different low joints can appear in
the same gene map). Then, we show that for any adjacency w ∈ W , at most 2m
minimal conflict-cycles using w can appear during step 2. of Algorithm 2. Hence
we can bound the number of vertices deleted by Algorithm 2 for a given vertex
w ∈ W by 2m2. A tighter analysis gives us the following result.

Lemma 8 Let w ∈ W and let C be the set of all cycles considered during step
2. of Algorithm 2 going via w. Then the cardinality of the set of low joints in
cycles of C is upper bounded by m2 + 4m − 4.

Theorem 9 Algorithm 2 is an (m2 +4m−4)-approximation of AOG-Subset-
FVS, where m is the number of gene maps used to create the input graph.

Proof. Correctness of Algorithm 2 follows from Corollary 6, since Algorithm 2
removes at least one vertex from each conflict-cycle. Let W o = {wo

1, . . . , w
o
k}

be an optimal solution of size k. For each wo
i , Algorithm 2 deletes at most

m2 + 4m − 4 adjacencies of W (by Lemma 8). Since every cycle considered by
the algorithm goes through some wo

i , the total size of the output solution is at
most k(m2 + 4m − 4). ⊓⊔

Corollary 10 Using Algorithm 2 as an approximation for AOG-Subset-FVS
in Algorithm 1 yields an (m2 + 4m − 4)-approximation for the MBL problem.

6 Conclusion

In this paper, we revisited the MBL problem with the aim of providing correct
algorithms in replacement of those proposed in [5,3], which were based on an
inaccurate statement. We proposed a new graph GΠ to represent the conflicts
between the given partial order Π and the reference genome Idn, we charac-
terized the cycles containing these conflicts, we showed how the MBL problem
reduces to solving the AOG-Subset-FVS problem in GΠ , and we proposed
three approximation algorithms. These algorithms allow us to approach a given,
practical instance of MBL from different viewpoints, by choosing the appropriate
algorithm depending on the data at hand (i.e., whether the instance is created
from few gene maps) and on the parameter evaluation (k and |X |). We also
pointed out that MBL is APX-hard ; following this line, it would be interesting
to know whether there exists a constant-ratio approximation algorithm for MBL
(which would classify MBL as APX-complete). Another challenging question
is whether MBL is Fixed-Parameter Tractable, notably when the parameter is
the number m of gene maps that were used to construct the partial order Π .

References

1. P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In
G. C. Bongiovanni, D. P. Bovet, and G. Di Battista, editors, CIAC, volume 1203 of
LNCS, pages 288–298. Springer, 1997.

2. G. Blin, E. Blais, D. Hermelin, P. Guillon, M. Blanchette, and N. El-Mabrouk.
Gene maps linearization using genomic rearrangement distances. Journal of Com-
putational Biology, 14(4):394–407, 2007.

3. X. Chen and Y. Cui. An approximation algorithm for the minimum breakpoint
linearization problem. IEEE/ACM Trans. Comput. Biology Bioinform., 6(3):401–
409, 2009.

4. G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback
sets and multi-cuts in directed graphs. In E. Balas and J. Clausen, editors, IPCO,
volume 920 of Lecture Notes in Computer Science, pages 14–28. Springer, 1995.

5. Z. Fu and T. Jiang. Computing the breakpoint distance between partially ordered
genomes. J. Bioinformatics and Computational Biology, 5(5):1087–1101, 2007.

6. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

7. I.V. Yap, D. Schneider, J. Kleinberg, D. Matthews, S. Cartinhourb, and S.R. Mc-
Couch. A graph-theoretic approach to comparing and integrating genetic, physical
and sequence-based maps. Genetics, 165(4):2235–2247, 2003.

8. C. Zheng, A. Lenert, and D. Sankoff. Reversal distance for partially ordered
genomes. In ISMB (Supplement of Bioinformatics), pages 502–508, 2005.

9. C. Zheng and D. Sankoff. Genome rearrangements with partially ordered chromo-
somes. In L. Wang, editor, COCOON, volume 3595 of Lecture Notes in Computer
Science, pages 52–62. Springer, 2005.

Appendix for the Referees

6.1 Proof details for Theorem 1 (APX-hardness)

Theorem 1 The MBL problem is APX-hard.

Proof. In [2], Blin et al. show the NP-hardness of MBL by reducing it from the
Maximum Independent Set problem. The polynomial reduction they use,
which they called PO-construction, leads them to the following theorem.

Theorem [2] A connected graph G = (V, E) admits an independent set V ′ ⊆ V
such that |V ′| ≥ k iff there exists a linearization π′ of Π such that dB(π′, π) ≤
(3n + 2) − k, where π and Π result from a PO-construction of G.

The PO-construction given in [2] is in fact an L-reduction [6], if we consider
the restriction of Maximum Independent Set on cubic graphs, i.e. graphs
for which every vertex has degree 3. We write α(G) the maximum value of
an independent set of G, and OPTMBL(Π, π) the optimal value for MBL, with
input π and Π . It is known that, for all cubic graphs G with n vertices, α(G) ≥ n

4
.

So OPTMBL(Π, π), where π and Π result from the PO-construction of a cubic
graph G, is at most 3n + 2 − α(G) ≤ 11α(G) + 2: this gives the first inequality
of the L-reduction. Concerning the second inequality, we again assume that π
and Π are obtained from a PO-construction of a cubic graph G. If we have a
linearization π′ of Π such that dB(π′, π) = k′, then we can find an independent
set of G of size k with k ≥ 3n+2−k′. Then |k−α(G)| ≤ −(3n+2−k′)+α(G) =
|k′−OPTMBL(Π, π)|. Finally, since the restriction of Maximum Independent
Set on cubic graphs is an APX-hard problem [1], we conclude that MBL is
APX-hard as well. ⊓⊔

6.2 Proof of Property 3

The proof of this property makes uses of the following lemma, which will also
be used in the analysis of algorithm 2.

Lemma 11 Let C be a (not necessarily simple) cycle of GΠ . Let c ∈ Σ, such that
there exists a, b ∈ Σ(C) with a ≤ c < b. Then one of the following propositions
is true:

(i) C contains an arc u →X v with v ≤ c < u
(ii) C contains both arcs c + 1 →F c· (c + 1) and c· (c + 1) →F c

Proof. Define c+ = {d | d > c} ∪ {d· (d + 1) | d > c} and c− = {d | d ≤
c}∪ {d· (d + 1) | d < c}. Then c+ ∪ {c· (c + 1)}∪ c− is a partition of V . We show
that when proposition (i) is false, proposition (ii) is necessarily true. Assume
that proposition (i) is false. Since C contains vertices in both c+ ∪ {c· (c + 1)}
and c− (resp. b and a), it thus contains an arc u → v with u ∈ c+ ∪ {c· (c + 1)}
and v ∈ c−. We must have u → v ∈ F , otherwise u → v ∈ D implies u → v ∈ X
(since u > v), and proposition (i) would be true, a contradiction. Necessarily

u = c· (c + 1) and v = c (there is no arc in F going out of c+ into c−). So C
contains the arc c· (c+1) → c. Using the same argument, we can show that there
is an arc u′ → v′ in C with u′ ∈ c+ and v′ ∈ {c· (c + 1)} ∪ c−. Since u′ → v′

cannot be in X (since proposition (i) is false) nor in D − X (these arcs go from
c− to c+), then it is in F , and we can only have u′ = c + 1 and v′ = c· (c + 1).
So C also uses the arc c· (c + 1) →F c, and thus proposition (ii) is true. ⊓⊔

Property 3 Let C be a simple cycle with |D(C)| ≥ 2. Then C is a conflict-cycle.

Proof. Let a = min(Σ(C)), b = max(Σ(C)), and u →D v and u′ →D v′ two arcs
of D appearing in C. By contradiction, we suppose C is not a conflict-cycle (i.e.,
C contains no arc of X). For each c ∈ Σ with a ≤ c < b, we can use Lemma 11:
only proposition (ii) can be true for each c, and there is an arc of F going out of
c+1 and another going into c appearing in cycle C. Since this cycle is simple, we
have u 6= c + 1 and v 6= c for all a ≤ c < b (and similarly, u′ 6= c + 1 and v′ 6= c).
By definition of a and b, u, u′, v, v′ cannot be out of the interval {a, . . . , b}, so
u = u′ = a and v = v′ = b. It implies that the simple cycle C uses twice the
same arc a →D b, a contradiction. ⊓⊔

6.3 Proof of Lemma 5

Lemma 5 Let P = v1 → v2 → . . . → vℓ be a path with vertices in W ′ ∪ Σ such
that (H1) the vertices vi are pairwise distinct, (H2) ℓ ≥ 2, (H3) v1, vℓ ∈ Σ, and
(H4) for any 1 ≤ i < ℓ, vi → vi+1 ∈ F .
Let a = min(v1, vℓ) and b = max(v1, vℓ). Then the sequence a· (a + 1)· (a +
2)· . . . · b is an interval of π. Moreover, Σ(P) = {a, . . . , b} and W (P) = {c· (c +
1) | a ≤ c < b}.

Proof. Using H4, we can consider only the bipartite graph (W ′ ∪ Σ, F). With
H3 we obtain that ℓ is odd, and v2i−1 ∈ Σ (1 ≤ i ≤ ℓ+1

2
) whereas v2i ∈ W ′

(1 ≤ i ≤ ℓ−1

2
). Moreover, H2 implies that ℓ ≥ 3. The proof is by induction on ℓ:

For ℓ = 3: Since v1 →F v2 and v1 ∈ Σ, there are two possible cases: (i) v2 =
v1· (v1 + 1) and (ii) v2 = (v1 − 1)· v1.

(i) v2 = v1· (v1 + 1). Then v3 = v1 + 1 (since v2 →F v3 and v3 6= v1, due
to H1). In this case, a = v1, b = a + 1 and a· b is an interval of π (indeed, it
corresponds to the adjacency v2 which belongs to W ′).

(ii) v2 = (v1 − 1)· v1. Likewise, v3 = v1 − 1, a = v3, b = a + 1, and a· b is an
interval of π.

Finally, in both cases we have Σ(P) = {v1, v3} = {a, b} and W (P) = {v2} =
{a· (a + 1)}: the lemma is true for ℓ = 3.

For ℓ = ℓ′ +2, ℓ′ ≥ 3 : By induction, the lemma is true for the path P ′ = v1 →
. . . → vℓ′ . Again, we need to consider two different cases (see Fig. 4a and 4b):
(i) v1 < vℓ′ and (ii) v1 > vℓ′ .

(i) In this case, vℓ′−1 = (vℓ′ − 1)· vℓ′ , and by H1, vℓ−1 = vℓ′+1 = vℓ′ · (vℓ′ +1),
and vℓ = vℓ′+2 = vℓ′ + 1. If we write a′ = v1 and b′ = vℓ′ , then by induction

v1

v3

vℓ′

vℓ

= a

= a + 1

= b − 1

= b

v2

vℓ−1
(a)

v1

v3

vℓ′

vℓ
= a

= a + 1

= b − 1

= b
v2

vℓ−1

......
(b)

Fig. 4: Two types of paths are possible in (W ′ ∪Σ, F).

the sequence a′· a′ + 1 . . . b′ is an interval of π. And the sequence b′· b′ + 1 is also
an interval of π, since it corresponds to vertex vℓ′+1 ∈ W ′. So the full sequence
a′· a′ + 1 . . . b′· b′ + 1 is an interval of π. This proves the first part of the lemma,
since a = v1 = a′ and b = vℓ = b′ + 1. The second part is also true with
Σ(P) = Σ(P ′) ∪ {b} and W (P) = W (P ′) ∪ {(b − 1)· b}.

(ii) This case is symmetric to the previous one, with a = a′−1 = vℓ′ −1, b =
b′ = v1 and vℓ = a. We link together the sequences (a′−1)· a′ and a′· (a′+1) . . . b′

to prove that a′· (a′ +1) . . . b′ is an interval of π. Moreover, Σ(P) = Σ(P ′)∪{a}
and W (P) = W (P ′) ∪ {a· (a + 1)}.

⊓⊔

6.4 Examples for comparing approximation ratios for Algorithm 1

p + 1 p + 2 . . . 2p

Π1 :

1 2 . . . p

(a) With Π1: |X| = p2 >> k = 1

Π2 : 1 → 3 → . . . → (2p − 1) → 2 → 4 → . . . → (2p)

(b) With Π2: |X| = 1 << k = 2p− 1

Fig. 5: Comparing |X| (number of arcs u → v with v < u) to k (optimal breakpoint
distance to the identity)

6.5 Properties on minimal conflict-cycles

Property 12 A minimal conflict-cycle is necessarily simple.

Proof. By contradiction, if a conflict-cycle C is not simple, then there exists a

vertex u used twice in it: C = u
P
→+u

Q
→+u, and one of P and Q, say P , uses at

least one arc from X . We can assume that u ∈ Σ (if u = i· (i + 1) ∈ F , C uses
twice at least one vertex in {i, i + 1}). Then the empty path R from u to u is a

shortcut of C: the cycle u
P
→+u is a conflict-cycle, and W (Q) 6= ∅ (since (Σ, D)

is acyclic, and Q is a cycle, Q contains an arc of F , hence a vertex of W). So C
is not minimal. ⊓⊔

Property 7 If an adjacency-order graph contains a conflict-cycle, it also con-
tains a minimal conflict-cycle.

Proof. Take a non-minimal conflict-cycle C. If C is not simple, there exists
a conflict-cycle C’ such that ℓ(C′) < ℓ(C) and |W (C′)| ≤ |W (C)| (see Prop-
erty 12). If C is simple, we use the shortcut to create a conflict-cycle C’ with
|W (C′)| < |W (C′)|. Applied recursively, this process necessarily ends with a
minimal conflict-cycle (ℓ(C) and |W (C)| must remain positive integers). ⊓⊔

6.6 Analysis of Algorithm 2: definitions and first properties

For this approximation algorithm, we assume that Π is created from a limited
number m of gene maps (see Section 1). From these gene maps, we can deduce
two properties: (1) if there is an arc between u and v in Π , then u and v appear
in consecutive blocks of the same gene map, and (2) if u and v appear in the
same gene map, but in different blocks, then there exists a path u → +v or
v →+u in Π .

In a cycle C, we call joint a vertex e ∈ Σ whose incident arcs in C belong to
D(C) and to F (C). Alternatively, there exist vertices eD and eF such that

i. either both arcs eD →D e, e →F eF appear in C, or
ii. both arcs eF →F e, e →D eD appear in C.

Consequently, two types of joints are identified: a joint is of type (i.) (resp.
(ii.)) if it marks the end of a subpath with arcs from D (resp. from F) and
the beginning of a subpath with arcs from F (resp. from D). In both cases,
eF = e· (e + 1) or eF = (e − 1)· e. Hence, e is a low joint if eF = e· (e + 1)
(intuitively, eF is at the bottom of a subpath with arcs from F).

Given a vertex w ∈ W (C), we say that e is the low joint associated to w in
C, if the cycle C uses one of the paths w → ∗

F e or e → ∗
F w (e is either the first

low joint after w in C, or the last one before w).
For each u ∈ Σ, we denote I(u) ⊂ {1, . . . , m} the numbers of the gene maps

in which u appears (I(u) 6= ∅). For each arc u →D v of D, we denote η(u →D v)
the number of a gene map in which u and v appear in consecutive blocks. Then

η(u →D v) ∈ I(u) ∩ I(v). Given a cycle C, we extend the notation η to each of
its joints e: η(e) = η(eD → e) if e is of type (i); and η(e) = η(e → eD) otherwise.

We also extend I to paths: given a path P = u0 → u1 → . . . → uℓ, we write

I(P) =
⋃

0≤i≤ℓ

ui∈Σ

I(ui)

Lemma 13 Let e → f be an arc of D, and let u ∈ Σ such that η(e → f) ∈ I(u).
Then one of the paths e →∗u or u →∗f appears in the graph (Σ, D).

Proof. The three markers u, e and f appear in the same gene map numbered
η(e → f). If u appears in a block strictly following e, then there exists a path
e → ∗u in Π , and thus in the graph (Σ, D). Else, since the block of e strictly
precedes the block of f , u also appears strictly before f in this gene map, so
there exists a path u →∗f in Π(and thus in the graph (Σ, D)). ⊓⊔

6.7 Bounding the number of joints in a minimal conflict-circle

Lemma 14 Let C be a minimal conflict-cycle where three vertices u, e, f ∈ Σ(C)
are such that (see Fig. 6):

– C = u
P1→+e →D f

P2→+u
– Each of the paths P1 and P2 uses at least one vertex from W and at least

one arc from D.

Then η(e →D f) /∈ I(u).

e

W

u

f

W

P1 P2

C

D D

Fig. 6: A cycle satisfying the conditions of Lemma 14 (dotted lines represent paths)

Proof. By contradiction, assume that η(e →D f) ∈ I(u). Then (by Lemma 13)
there exists a path R in D connecting either e to u or u to f . In the first case,

we write P = P1 and Q = e →D f
P2→ +u, and in the second, P = P2 and

Q = u
P1→ +e →D f , so that there exists a cycle C′ = u

P
→ +e

R
→ ∗u (resp.,

C′ = f
P
→ +u

R
→ ∗f). Since C is a minimal conflict-cycle then R cannot be a

shortcut, and with W (Q) not being empty, cycle C′ cannot be a conflict-cycle.
Hence, no arc in D(C′) appears in X .

Let a = min(Σ(C′)) and b = max(Σ(C′)). For all c ∈ {a, . . . , b − 1}, we
can apply Lemma 11 on C’, where only proposition (ii) can be true. Hence, C’
contains every arc c+1 →F c· (c+1), c· (c+1) →F c between b and a. Moreover,
none of these arcs can appear in R, so they all come from path P .

But P also contains at least one arc from D: let a′ →D b′ be such an arc.
By definition of a and b, we have (a′, b′) ∈ {a, . . . , b}. The path P is part of
a simple cycle, so it can enter and leave only once each vertex. This implies
a′ /∈ {a + 1, . . . b} and b′ /∈ {a, . . . , b − 1}, so a′ = a and b′ = b. Thus P contains
every arc of the cycle a →D b →∗

F a, which contradicts the fact that C is simple.
⊓⊔

Lemma 15 Let C be a minimal conflict-cycle, with λ ≥ 5 joints. Let e and f be
two non consecutive joints of C. Then η(e) 6= η(f).

eD e

fDf

DFF D F
DDQ P

Fig. 7: Illustration of Lemma 15, with λ = 6. Here es = eD, et = e, fs = fD, ft = t.

Proof. We write es, et, fs, ft the four vertices of Σ such that {es, et} = {e, eD},
{fs, ft} = {f, fD}, and C uses both arcs es → et and fs → ft (see Fig. 7). We
write P and Q the paths such that:

C = es → et
P
→∗fs → ft

Q
→∗es.

Since e and f are not consecutive joints, both paths P and Q use an arc from
F (and a vertex from W). Moreover, since there are at least five joints, one of
P and Q has a joint as an inner vertex. Wlog, let this path be P . Thus P uses
an arc from D.

We denote by Q′ the path fs → ft
Q
→∗es, which also contains an arc from D.

Hence the cycle C = fs
Q′

→∗es → et
P
→∗fs satisfies the conditions of Lemma 14:

η(e) /∈ I(fs). This proves the lemma, since η(f) ∈ I(fs). ⊓⊔

Lemma 16 Let C be a minimal conflict-cycle with λ joints. Let P be a path in
F between two consecutive joints (e.g. e2 and e3) in C, and P ′ be the path P
where both ends are removed. Then λ ≤ 2(m − |I(P ′)|) + 4.

Proof. If λ ≤ 4, the lemma is proved, so we can assume there are at least five
joints.

Let u ∈ Σ(P ′). Vertex u appears between joints e2 and e3, so we can use
Lemma 14 with u, ei and eD

i for all i /∈ {1, 2, 3, 4}. Indeed, paths P1 and P2

contain respectively u →+

F e3 →+

De4 and e1 →+

De2 →+

F u, so they both use an
arc from D, an arc from F , and a vertex from W . Hence, for all i ∈ {5, . . . , λ},
we have ∀u ∈ Σ(P ′), η(ei) /∈ I(u), so η(ei) /∈ I(P ′).

By Lemma 15, the cycle C cannot have more than two joints with the same
value of η, since three joints cannot be pairwise consecutive when λ ≥ 5. Thus
we have λ − 4 ≤ 2|{1, . . . , m} − I(P ′)| = 2(m − |I(P ′)|). ⊓⊔

6.8 Bounding the number of cycles considered in Algorithm 2

Lemma 17 Let w = v· (v + 1) ∈ W , C1 and C2 two cycles being considered
during step 2. of Algorithm 2 (C1 being considered before C2), such that w ∈
W (C1) ∩ W (C2). Denote by a the low joint associated to w in C1, b the one
associated to w in C2. Then either η(a) 6= η(b), or η(a) = η(b), a is of type ii,
and aD and b appear in the same block of the gene map η(a).

Proof. Vertices a and b are low joints associated to w = v· (v + 1), so a ≤ v and
b ≤ v. Vertex aF = a· (a +1) when C1 is being considered so it cannot appear in
C2. Thus a < b, and consequently bF appears in the path a →∗

F w or w →∗
F a. In

C2, we write P the path linking w and b in F , and Q2 the path linking bD and
w in F ∪ D (see Fig. 8a). Depending on the type of b, we have

i C2 = w
Q2
→∗ bD →D b

P
→∗ w, or

ii C2 = w
P
→∗ b →D bD Q2

→∗ w.

In C1, we write P ′ the path linking b and a in F , and Q1 the path linking aD

and w in F ∪ D. Thus, depending on the type of a, we have

i C2 = w
Q1
→∗ aD →D a

P ′

→∗ b
P
→∗ w, or

ii C2 = w
P
→∗ b

P ′

→∗ a →D aD Q2
→∗ w.

Note that P can be followed in different ways in C1 and C2. We do not
distinguish this case in the notations, since paths in F can always be followed
in both ways.

We suppose, by contradiction, that η(a) = η(b).

v

bF

b bD

aF

a aD

P

P ′

Q2

Q1

C2

C1

(a) Decomposition of C1
and C2 into arc and paths.

v

bF

b bD

aF

a aD

P

P ′

Q2

Q1

C2

C1

(b) First case (joint a is of
type i)

v

bF

b bD

aF

a aD

P

P ′

Q2

Q1

C2

C1

(c) Second case (joint a is
of type ii)

Fig. 8: Path decomposition of C1 and C2 and case study for Lemma 17.

First case: a is a joint of type (i.) We use Lemma 13 with b and aD → a: there
exists a path R in (Σ, D) from b to a or from aD to b (see Fig. 8b). If R = b →∗ a,

we define C′ = a
P ′

→∗b
R
→∗a, then C’ is a conflict-cycle (by Lemma 11: C’ cannot

contain aF → a but visits the vertices a and a+1: hence it contains an arc from
X). Moreover, W (C′) (W (C1), hence C1 cannot be a minimal conflict-cycle.

Similarly, if R = aD →∗ b, then C′ = b
P
→∗w

Q1
→∗aD R

→∗b is a conflict-cycle and
C1 is not a minimal conflict-cycle. Thus this first case is a contradiction to the
fact that η(a) = η(b).

Second case: a is a joint of type (ii.) We distinguish three sub-cases 2.1, 2.2 and

2.3 where, respectively, the path b
R
→ ∗aD exists in (Σ, D), the path aD R

→ ∗b
exists in (Σ, D), and aD and b are incomparable in D (see Fig. 8b).

2.1 R = b → ∗aD. We consider C′ = b
R
→ ∗aD Q1

→ ∗w
P
→ ∗b. If Q1 contains an

arc from X , C’ is a conflict-cycle. Otherwise, the only marked arc is C1 is
necessarily a →X aD, so a > aD. Hence the path R in D uses at least one
marked arc (since b > a > aD), so C′ is again a conflict-cycle. In both cases,
it contradicts the fact that C1 is a minimal conflict-cycle.

2.2 R = aD →∗b. We consider C′ = b
P ′

→∗a → aD R
→∗b. If aD < a, then a → aD

is in X , so C’ is a conflict-cycle. Otherwise, since C1 is simple, aD > b > a,
R contains an arc from X , and C’ is also a conflict-cycle. Again, C1 cannot
be a minimal conflict-cycle.

2.3 aD and b are incomparable in (Σ, D). Since they appear in the same gene
map numbered η(a) = η(b), they appear in the same block of this map.

⊓⊔

Lemma 18 Let w = v· (v + 1) ∈ W , C1, C2 and C3 three cycles being considered
during step 2. of Algorithm 2 (in this order), such that w ∈ W (C1) ∩ W (C2) ∩
W (C3). Denote respectively by a, b and c the low joints associated to w in C1, C2

and C3. Then we cannot have η(a) = η(b) = η(c)

v

c cD

b bD

a aD

Fig. 9: Illustration of Proof of Lemma 18. Vertices appearing in the same block of the
gene map η are marked in gray.

Proof. Assume that η = η(a) = η(b) = η(c). Then we use Lemma 17 with
(C1, C2), (C1, C3) and (C2, C3) successively, thus (see Fig. 9) :

– aD and b appear in the same block of gene map η,

– aD and c appear in the same block of gene map η,

– bD and c appear in the same block of gene map η.

So, b and bD both come from the same block of gene map η, which contradicts
η(b) = η (in the gene map η(b), b and bD appear in consecutive blocks). ⊓⊔

6.9 Proof of Lemma 8

Lemma 8 Let w ∈ W and C the set of all cycles considered during step 2. of
Algorithm 2 going via w. Then the cardinality of the set of low joints in cycles
of C is bounded by m2 + 4m − 4.

Proof. We write w = v· (v+1) ∈ W , and C = {C1, . . . , Cq} the set of the q cycles
considered, in this order, by Algorithm 2. In each cycle Ch, w can be associated
to a low joint vh and to the corresponding deleted vertex wh = vF

h = vh· (vh +1).
We write Ph the path wh →∗

F w or w →∗
F wh in Ch, and λh the number of joints

of Ch. Thus λh

2
is the number of low joints (and the number of deleted vertices)

in this cycle.
Since wh is deleted while Ch is being considered, for all h′ > h, wh /∈ W (Ch′),

and vh < vh′ ≤ v (indeed, ∀u ∈ {vh′ , . . . , v}, the vertex u· (u + 1) belongs to
W (Ch′), and vh, vh′ ≤ v). Finally, the path Ph uses each vh′ , h′ > h.

Consider now the list (η(vh+1), η(vh+2), . . . , η(vq)). Using Lemma 18, the
same value cannot appear more than twice in this list, so it contains at least
⌈

q−h

2

⌉

different values. The first consequence is q ≤ 2m (with h = 0, all values

are in a set of size m). And since for all h′ ∈ {h + 1, . . . , q}, η(vh′) ∈ I(Ph), we

have |I(Ph)| ≥
⌈

q−h
2

⌉

.

Using Lemma 16 for all h, we obtain λh ≤ 2(m − |I(Ph)|) + 4. We can thus
bound the number of low joints in Ch:

λh

2
≤

2(m − |I(Ph)|) + 4

2
= m − |I(Ph)| + 2 ≤ m −

⌈

q − h

2

⌉

+ 2

By Lemma 15, we also have that, for m ≥ 2, λh ≤ 2m. Let Lw be the number
of low joints in the cycles going via w:

Lw =

q
∑

h=1

λh

2

≤

q
∑

h=1

min

(

m, m −

⌈

q − h

2

⌉

+ 2

)

≤

q−1
∑

d=0

min

(

m, m −

⌈

d

2

⌉

+ 2

)

≤

(

2m−1
∑

d=0

m −

⌈

d

2

⌉

+ 2

)

− 4

≤

(

m−1
∑

i=0

(m − i + 2) + (m − i + 1)

)

− 4

≤ 2m2 − m(m − 1) + 3m − 4

≤ m2 + 4m − 4

thus Lw ≤ m2 + 4m − 4, which proves Lemma 8. ⊓⊔

6.10 Complexity analysis of Algorithms 1 and 2

The running time of Algorithm 1 is O(n + |D|), plus the running time of the
AOG-Subset-FVS subroutine (each ‘sort’ operation in step 6 can in fact be

done in linear time, since each set Vi ∩ Σ can be written {a, a + 1, . . . , b}: we
only need to look for the minimum and maximum of this set).

Algorithm 2 can be executed in time O(n3). This can be done by first pre-
computing the transitive closure of (Σ, D) (while keeping a mark on paths using
an arc in X). Then we look for minimal conflict-cycles in the following way: for
each vertex u, temporarily join all vertices v such that u →X v into a single
vertex v0, and compute a shortest path from v0 to u (in time O(n2)): this gives

a conflict-cycle u →X v0

P
→ ∗u; or if there is no such path, continue with the

next vertex u. For all pairs of vertices (x, y) in the cycle, test if the conflict-cycle
can be reduced by using a path in (Σ, D) (the O(n2) tests can each be done in
constant time, using the precomputed transitive closure of (Σ, D)). If so, con-
tinue with the reduced cycle, until we reach a minimal conflict-cycle. Then, if
we write ℓ the number of minimal conflict-cycles considered by the algorithm,
the total complexity of Algorithm 2 is O(n3 + (ℓ + n)(n2 + n2)) = O(n3) since
ℓ < n (we delete at least one vertex in F for each cycle).

