
HAL Id: hal-00482850
https://hal.science/hal-00482850v1

Submitted on 11 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding Common Structured Patterns in Linear Graphs
Guillaume Fertin, Danny Hermelin, Romeo Rizzi, Stéphane Vialette

To cite this version:
Guillaume Fertin, Danny Hermelin, Romeo Rizzi, Stéphane Vialette. Finding Common Struc-
tured Patterns in Linear Graphs. Theoretical Computer Science, 2010, 411 (26-28), pp.2475-2486.
�10.1016/j.tcs.2010.02.017�. �hal-00482850�

https://hal.science/hal-00482850v1
https://hal.archives-ouvertes.fr

Finding Common Structured Patterns

in Linear Graphs ⋆

Guillaume Fertin

LINA, CNRS UMR 6241, Université de Nantes,
2 rue de la Houssinière, 44322 Nantes, France

Danny Hermelin 1

Dpt. Comp. Science, University of Haifa,
Mount Carmel, Haifa 31905, Israel

Romeo Rizzi

DIMI, Università degli Studi di Udine,
Via delle Scienze, 208 I-33100 Udine (UD), Italy

Stéphane Vialette

LIGM, CNRS UMR 8049, Université Paris-Est Marne-la-Vallée,
5 Bd Descartes 77454 Marne-la-Vallée, France

Abstract

A linear graph is a graph whose vertices are linearly ordered. This linear ordering
allows pairs of disjoint edges to be either preceding (<), nesting (⊏) or crossing
(≬). Given a family of linear graphs, and a non-empty subset R ⊆ {<,⊏, ≬}, we are
interested in the Maximum Common Structured Pattern (MCSP) problem:
find a maximum size edge-disjoint graph, with edge-pairs all comparable by one of
the relations in R, that occurs as a subgraph in each of the linear graphs of the
family. The MCSP problem generalizes many structure-comparison and structure-
prediction problems that arise in computational molecular biology.

We give tight hardness results for the MCSP problem for {<, ≬}-structured pat-
terns and {⊏, ≬}-structured patterns. Furthermore, we prove that the problem is
approximable within ratios: (i) 2H (k) for {<, ≬}-structured patterns, (ii) k1/2 for
{⊏, ≬}-structured patterns, and (iii) O(

√
k log k) for {<,⊏, ≬}-structured patterns,

where k is the size of the optimal solution and H (k) =
∑k

i=1 1/i is the k-th har-
monic number. Also, we provide combinatorial results concerning the different types
of structured patterns that are of independent interest in their own right.

Preprint submitted to Elsevier Science May 10, 2010

1 Introduction

Many biological molecules such as RNA and proteins exhibit a three-dimensional
structure that determines most of their functionality. This three dimensional
structure can be modeled in two dimensions by an edge-disjoint linear graph,
i.e., a graph with linearly ordered vertices that are incident to exactly one
edge. The corresponding structure-similarity or structure-prediction problems
that arise in such contexts usually translate to finding common edge-disjoint
subgraphs, or common structured patterns, that occur in a family of gen-
eral linear graphs. Examples of such problems are the Longest Common

Subsequence [21,22] problem, the Maximum Common Ordered Tree

Inclusion [1,8,23] problem, the Arc-Preserving Subsequence [3,16,19]
problem, and the Maximum Contact Map Overlap [17] problem. In this
paper, we study a general framework for such problems which we call the
Maximum Common Structured Pattern (MCSP) problem.

The MCSP problem was originally introduced (under a different name) by
Davydov and Batzoglou [10] in the context of (non-coding) RNA secondary
structure prediction via multiple structural alignment. There, an RNA se-
quence of n nucleotides is represented by a linear graph with n vertices, and
an edge connects two vertices if and only if their corresponding nucleotides
are complementary. A family of linear graphs is then used to represent a fam-
ily of functionally-related RNAs, and a common structured pattern in such a
family is considered to be a putative common secondary structure element of
the family.

The ordering amongst the vertices of a linear graph allows a pair of disjoint
edges in the graph to be either preceding (<), nesting (⊏), or crossing (≬).
Since most RNA secondary structures translate to linear graphs with non-
crossing edges, Davydov and Batzoglou [10] focused on the variant of the
MCSP problem where the common structured pattern is required to be non-
crossing. In other words, they focus on finding maximum common {<,⊏}-
structured patterns. However, there are known RNAs which have secondary
structures that translate to linear graphs with a few edge-crossings (pseudo-

⋆ A preliminary version of the paper appears in Combinatorial Pattern Matching,
18th Annual Symposium, CPM 2007, London, Canada, July 9-11, 2007, Proceed-
ings. Lecture Notes in Computer Science 4580 Springer 2007, ISBN 978-3-540-73436-
9.

Email addresses: Guillaume.Fertin@lina.univ-nantes.fr (Guillaume
Fertin), danny@cri.haifa.ac.il (Danny Hermelin),
Romeo.Rizzi@dimi.uniud.it (Romeo Rizzi), vialette@univ-mlv.fr (Stéphane
Vialette).
1 Supported by the Adams Fellowship of the Israel Academy of Sciences and Hu-
manities.

2

knotted RNA secondary structures). Also, when predicting proteins rather
than RNA structures, the non-crossing restriction becomes an even bigger
limitation since the folding structures of proteins are often more complex than
those of RNAs. In [18], it is argued that many important protein secondary
structure elements like alpha helices and anti-parallel beta sheets exhibit {<
, ≬}-structured patterns, i.e., patterns which are non-nesting rather than non-
crossing.

In the following, we present a framework which extends the work of Davy-
dov and Batzoglou [10] by considering different types of common structured
patterns. Following [34], we consider structured patterns that are allowed to
have crossing edges, and which might also be restricted to be non-nesting or
non-preceding. More specifically, the MCSP problem receives as input a fam-
ily of linear graphs and a non-empty subset R ⊆ {<,⊏, ≬}, and the goal is to
find a maximum common R-structured pattern (see Figure 1). We study the
combinatorics behind the structures of these different types of patterns, with
a focus on approximation algorithms for the MCSP problem.

(a) G1 (b) G2

(c) G3 (d) G4

e1e2e3 e4 e5

(e) Gsol

Figure 1. Four linear graphs G1, G2, G3 and G4 and a {<,⊏, ≬}-comparable common
structured pattern (depicted also as Gsol in the bottom part). The occurrence of the
structured pattern Gsol in each graph is emphasized in bold. Edges e2, e3, e4 and
e5 are nested in edge e1 ; edges e2 and e3 precede edge e5 ; edge e2 precedes edge e4

and crosses edge e3, while edge e3 crosses both edges e2 and e4.

The paper is organized as follows. In the remaining part of this section we
briefly review related work and notations that will be used throughout the pa-
per. In Section 2, we discuss simple structured patterns, i.e., R-structured pat-
terns, where R ∈ {<,⊏, ≬}, and {<,⊏}-structured patterns. Following this,
we discuss the more complex {<, ≬}-structured patterns and {⊏, ≬}-structured
patterns in Section 3 and Section 4, respectively. In Section 5, we deal with
general structured patterns, i.e., {<,⊏, ≬}-structured patterns. An overview
of the paper, along with some open problems, is given in Section 6.

3

1.1 Related work

There are many structural comparison problems that are closely related to
the MCSP problem. First, as mentioned previously, the MCSP problem for
{<,⊏}-structured patterns has been studied by Davydov and Batzoglou in [10]
(coined as the Maximum Common Nested Subgraph problem). Recently,
new results concerning this problem appeared in [27]. We discuss the results
of both these works in Section 2. Below we list other related problems.

Closely related to the MCSP problem are the Arc-Preserving Subse-

quence [3,16,19], and Maximum Contact Map Overlap [17] problems.
Both are concerned with finding maximum common subgraphs in a pair of lin-
ear graphs, except that in the Arc-Preserving Subsequence problem the
vertices of the linear graphs are assigned letters from some given alphabet, and
an occurrence of a common subgraph in each of the linear graphs is required
to preserve the letters, as well as their arc structure. Another closely related
problem is the Pattern Matching over 2-Interval Set problem [34],
where one asks whether a given structured pattern occurs in a given 2-interval
set, which is a generalization of a linear graph. The 2-Interval Pattern

problem [4,9,34] asks to find the maximum R-structured pattern, for some
given R ⊆ {<,⊏, ≬}, in a single family of 2-interval sets. Also, note that
an extensive literature is devoted to combinatorial investigations of complete
matchings of {1, . . . , 2n} [32,7].

There is a well-known bijective correspondence between {<,⊏}-structured
patterns and ordered forests – the nesting relation corresponds to the ances-
tor/predecessor relationship between the nodes, and the precedence relation
corresponds to their order. Hence, the MCSP problem for {<,⊏}-structured
patterns can be viewed as the problem of finding a tree which is included in
all trees of a given tree family, the Maximum Common Ordered Tree

Inclusion problem. Determining whether a tree is included in another is
studied in [1,8,23]. Finding the maximum common tree included in a pair of
trees can be done using the algorithms given in [11,24,31]. The MCSP prob-
lem for {<,⊏}-structured patterns has been studied in [10,27]. We discuss the
results there in Section 2.

Like {<,⊏}-structured patterns, {⊏, ≬}-structured patterns also correspond
to natural combinatorial objects, namely permutations (see Section 4). In [6],
the authors studied the problem of determining whether a permutation occurs
in another permutation as a pattern, the so called Pattern Matching for

Permutations problem. This problem corresponds to determining whether
a {⊏, ≬}-structured pattern is a subpattern of another {⊏, ≬}-structured pat-
tern. Bose, Buss, and Lubiw proved that Pattern Matching for Permu-

tations is NP-complete [6].

4

Determining whether a given {<, ≬}-structured pattern occurs in a general
linear graph has been studied in [18,28]. Gramm [18] gave a polynomial-time
algorithm for this problem. Recently, Li and Li [28] proved that this algorithm
was incorrect and showed the problem was in fact NP-complete. Prior to this,
Blin et al. [4] proved that a generalization of this problem, where the linear
graph is replaced by a 2-interval set, is NP-complete.

Finally, probably the oldest and most famous problem related to the MCSP

problem is the Longest Common Subsequence (LCS) problem [21,22],
where one wishes to find the longest common subsequence in two or more
sequences. Important developments of the initial algorithms of [21,22] can
be found in [2,14,30]. Maier [29] proved that the LCS problem for multiple
sequences is NP-hard.

1.2 Terminology and basic definitions

For a graph G, we denote V (G) as the set of vertices and E(G) as the set of
edges. The order and the size of G stand for |V (G)| and |E(G)|, respectively.
A linear graph of order n is a vertex-labeled graph where each vertex is labeled
by a distinct label from {1, 2, . . . , n}. Thus, it can be viewed as a graph with
vertices embedded on the integral line, yielding a total order amongst them.
In case of linear graphs, we write an edge between vertices i and j, i < j, as
the pair (i, j). Two edges of a linear graph are disjoint if they do not share a
common vertex. A linear graph G is said to be edge-disjoint if it is composed
of disjoint edges, i.e., G is a matching. Of particular interest are the relations
between pairs of disjoint edges [34]. Let e = (i, j) and e′ = (i′, j′) be two
disjoint edges in a linear graph G ; we write:

• e < e′ (e precedes e′) if i < j < i′ < j′,
• e ⊏ e′ (e is nested in e′) if i′ < i < j < j′, and
• e ≬ e′ (e and e′ cross) if i < i′ < j < j′.

Two edges e and e′ are R-comparable, for some R ∈ {<,⊏, ≬}, if eRe′ or e′Re.
For a subset R ⊆ {<,⊏, ≬}, R 6= ∅, e and e′ are said to be R-comparable if e
and e′ are R-comparable for some R ∈ R. A set of edges E (or a linear graph
G with E(G) = E) is R-comparable if any pair of distinct edges e, e′ ∈ E are
R-comparable. A subgraph of a linear graph G is a linear graph H which can
be obtained from G by a series of vertex and edge deletions, where a deletion
of vertex i results in removing vertex i and all edges incident to it from the
graph, and then relabeling all vertices j with j > i to j − 1. An edge-disjoint
subgraph of a linear graph is called a structured pattern. For a vertex subset
V ⊆ V (G) (resp. edge subset E ⊆ E(G)), we let G[V] (resp. G[E]) denote the
subgraph induced by V (resp. E), i.e. the subgraph obtained by deleting all

5

vertices V (G) \ V (resp. all edges E(G) \E). By convention, we let G[i . . . j],
1 ≤ i ≤ j ≤ |V (G)|, denote the subgraph induced by all vertices labeled k with
i ≤ k ≤ j. For a family of linear graphs G = G1, . . . , Gn, a common structured
pattern of G is an edge-disjoint linear graph H that is a subgraph of Gi, for all
1 ≤ i ≤ n. Following the above notation, H is called an R-structured pattern,
for some non-empty R ⊆ {<,⊏, ≬}, if E(H) is R-comparable. We are now in
position to formally define the MCSP problem.

Definition 1 Given a family of linear graphs G = G1, . . . , Gn and a subset
R ⊆ {<,⊏, ≬}, R 6= ∅, the Maximum Common Structured Pattern

(MCSP) problem asks to find a maximum-size common R-structured pattern
of G.

We will use the following terminology to describe special edge-disjoint linear
graphs. A linear graph is called a sequence if it is {<}-comparable, a tower
if it is {⊏}-comparable, and a staircase if it is {≬}-comparable. We define
the width (resp. height and depth) of a linear graph to be the size of the
maximum cardinality sequence (resp. tower and staircase) subgraph of the
graph. A {<,⊏}-comparable linear graph with the additional property that
any two maximal towers in it do not share an edge is called a sequence of
towers. Similarly, a {<, ≬}-comparable linear graph is a sequence of staircases
if any two maximal staircases do not share an edge. A tower of staircases is a
{⊏, ≬}-comparable linear graph where any pair of maximal staircases do not
share an edge, and a staircase of towers is a {⊏, ≬}-comparable linear graph
where any pair of maximal towers do not share an edge. A sequence of towers
(resp. sequence of staircases, tower of staircases, and staircase of towers) is
balanced if all of its maximal towers (resp. staircases, staircases, and towers)
are of equal size. Figure 2 illustrates an example of the above types of linear
graphs.

1.3 Our results

The results presented in this paper are as follows: We give tight hardness
results for the MCSP problem for {<, ≬}-structured patterns and {⊏, ≬}-
structured patterns, extending the hardness result given in [27] for {<,⊏}-
structured patterns. Furthermore, we provide approximation algorithms that
prove that the problem is approximable within ratios:

• 2H (k) for {<, ≬}-structured patterns,
• k1/2 for {⊏, ≬}-structured patterns, and
• O(

√
k log k) for {<,⊏, ≬}-structured patterns,

where k denotes the size of an optimal solution, and H (k) =
∑k

i=1 1/i is the
k-th harmonic number. The respective running times of these algorithms are

6

(a) A {<,⊏}-structured pattern of
width 4 and height 4

(b) A {<, ≬}-structured pattern of
width 4 and depth 4.

(c) A {⊏, ≬}-structured pattern of
height 6 and depth 3

(d) A sequence of towers of width 5 and
height 3.

(e) A sequence of balanced towers of
width 3 and height 3.

(f) A sequence of staircases of width 4
and depth 4.

(g) A sequence of balanced staircases of
width 3 and depth 3.

(h) A tower of staircases of height 4 and
depth 3.

(i) A tower of balanced staircases of
height 3 and depth 3.

(j) A staircase of towers of height 3 and
depth 4.

(k) A staircase of balanced towers of
height 3 and depth 3.

Figure 2. Some restricted structured patterns. Edges are drawn above or below the
vertices with no particular signification.

7

O(nm3.5 log m), O(nm1.5), and O(nm3.5 log m), where n denotes the number
of input linear graphs, and m denotes the maximum number of edges in any
graph of the input. Along the way, we provide some combinatorial results
concerning the different types of structured patterns that are of independent
interest in their own right.

2 Simple and {<,⊏}-Structured Patterns

We begin our study by considering the MCSP problem for simple structured
patterns (R-structured pattern for a single relation R ∈ {<,⊏, ≬}), and for
{<,⊏}-structured patterns. We first discuss the analogy between the relations
we defined for disjoint edges in a linear graph and well-studied relations defined
for families of intervals. We show that known algorithms on interval families
can be used to solve the MCSP problem for simple structured patterns in
polynomial-time. Following this, we discuss results presented in [10,27] for the
MCSP problem for {<,⊏}-structured patterns. Most of the results in this
section are known, and are presented here for sake of completeness.

For a given linear graph G of size m, let I(G) = {[i, j] | (i, j) ∈ E(G)} be
the family of intervals obtained by considering each edge of G as an inter-
val of the line, closed between both its endpoints. A pair of {<}-comparable
edges in E(G) correspond to a pair of disjoint intervals in I(G), a pair of
{⊏}-comparable edges correspond to a pair of nesting intervals, and a pair of
{≬}-comparable edges correspond to a pair of overlapping intervals. Note that
this correspondence is bi-directional only if G is edge-disjoint, since a pair of
edges sharing a vertex can correspond to a pair of nesting or overlapping inter-
vals. Nevertheless, we can always modify I(G) in such a way that all intervals
have unique endpoints, and so that any pair of intervals who were sharing an
endpoint now become non-nesting (resp. non-overlapping). A maximum pair-
wise disjoint subset of intervals can be computed in linear time using standard
dynamic-programming, assuming the interval family is given in a sorted man-
ner [20] (which we can provide in linear time in our case using bucket sorting).
A maximum pairwise nesting subset can be computed in O(m log log m) time
in an interval family of m intervals (see for example the algorithm in [35]),
and a maximum pairwise overlapping subset in O(m1.5) time [33].

Lemma 2 ([20], [35] and [33]) Let G be a linear graph of size m. Then
there exists

(1) an O(m) time algorithm for finding the largest {<}-comparable subgraph
of G,

(2) an O(m log log m) time algorithm for finding the largest {⊏}-comparable
subgraph of G, and

8

(3) an O(m1.5) time algorithm for finding the largest {≬}-comparable subgraph
of G.

For any R ∈ {<,⊏, ≬}, finding the largest R-comparable subgraph in each
input linear graph and returning the smallest found yields the following.

Corollary 3 The MCSP problem for {<}-structured patterns (resp. {⊏}-
structured patterns and {≬}-structured patterns) is solvable in O(nm) (resp.
O(nm log log m) and O(nm1.5)) time, where n = |G| and m = maxG∈G |E(G)|.

We next consider {<,⊏}-structured patterns. The MCSP problem for this
type of patterns was considered in [10,27], in the context of multiple RNA
structural alignment.

Theorem 4 ([27]) The MCSP problem for {<,⊏}-structured patterns is
NP-hard even if each input linear graph is a sequence of towers of height
at most 2.

Note, however, that the MCSP problem is polynomial-time solvable in case
the number of input linear graphs is a constant [27]. The MCSP problem
for {<,⊏}-structured patterns was proved to be approximable with ratio
O(log2 k) [10], where k is the size of the optimal solution. The approxima-
tion ratio was later improved to log k + 1 [27].

Theorem 5 ([27]) The MCSP problem for {<,⊏}-structured patterns is ap-
proximable within ratio O(log k) in O(nm2) time, where k is the size of an
optimal solution, n = |G|, and m is the maximum size of any graph in G.

3 {<, ≬}-Structured Patterns

We now turn to considering the MCSP problem for {<, ≬}-structured pat-
terns. We begin by proving a tight hardness result for the problem. Following
this, we present an approximation algorithm for the problem which achieves
an approximation ratio of 2H (k) in O(nm3.5 log m) time, where k is the size
of an optimal solution, H (k) =

∑k
i=1 1/i, n = |G|, and m is the maximum

size of any graph in G.

Theorem 6 The MCSP problem for {<, ≬}-structured patterns is NP-hard
even if each input linear graph is a sequence of staircases of depth at most 2.

PROOF. We reduce from the MCSP problem for {<,⊏}-structured pat-
terns, which is NP-hard even if each input graph is a sequence of towers
of height at most 2 (Theorem 4). Let an arbitrary instance of MCSP for

9

{<,⊏}-structured patterns be given by a family G = {G1, G2, . . . , Gn} of
n sequences of towers with height at most 2. The corresponding instance
of the MCSP problem for {<, ≬}-structured patterns consists of a family
G ′ = {G′

1, G
′
2, . . . , G

′
n} of n sequences of staircases of depth at most 2, where

for each i, 1 ≤ i ≤ n, the graph G′
i is obtained from Gi by transforming each

pair of {⊏}-comparable edges into a pair of {≬}-comparable edges. Below is
an example of such a transformation.

Gi

G′
i

Clearly, our construction can be carried out in polynomial-time. Furthermore,
there exists a common {<,⊏}-structured pattern of size k in G if and only if
there exists a common {<, ≬}-structured pattern of size k in G ′. ✷

A recent result [28] implies that the MCSP problem for {<, ≬}-structured
patterns is hard even if G consists of only two linear graphs. However, the
input linear graphs used in [28] are of unlimited structure, unlike in the lemma
above. The case |G| = 1 has been recently proved to be NP-hard [28].

We now show that the MCSP problem for {<, ≬}-structured is approximable
within ratio 2H (k). The first ingredient of our proof is to observe that any
{<, ≬}-structured pattern contains a sequence of staircases of substantial size.

Lemma 7 Let G be a {<, ≬}-comparable linear graph. There exists a partition
E(G) = ERED ∪ EBLUE such that both G[ERED] and G[EBLUE] are sequences of
staircases.

PROOF. The proof is constructive and uses the following edge-coloring al-
gorithm: first, sort the edges of G by ascending left vertex. Let E(G) =
(e1, e2, . . . , em) be the edges of G according to that order. Next, start coloring
the edges one at a time, proceeding from e1 to em, in the following manner:
start by initializing e1 to be the current leading edge, and RED to be the current
color. Color the current leading edge with the current color, and proceed to
color all following edges with the current color, as long as they are crossing
with the current leading edge. As soon as an edge cannot be colored with the
current color (this edge and the current leading edge are not crossing), change
the current color (RED to BLUE or BLUE to RED), set this edge as the current
leading edge, and continue in a similar fashion.

10

Let us say that two edges ei and ej are colored during the same run if there does
not exist a leading edge eℓ with i < ℓ < j. The following facts are immediate
consequences of the algorithm: (i) each edge is colored either RED or BLUE, (ii)
any two edges in the same run are colored by the same color and are {≬}-
comparable, and (iii) any two edges colored in different runs with the same
color are {<}-comparable. Let ERED and EBLUE be the set of edges colored RED

and BLUE respectively. By the above, it follows that ERED ∪EBLUE is a partition
of E(G), and G[ERED] and G[EBLUE] are both sequences of staircases. ✷

The second ingredient of our approach consists in showing that any sequence
of staircases contains a balanced subgraph of substantial size.

Lemma 8 Let G be a sequence of staircases of size k. Then G contains a
balanced sequence of staircases with at least k

H (k)
edges.

PROOF. Let G1, G2, . . . , Gp be the (maximal) staircases of G. For each 1 ≤
i ≤ k, define ni = |{Gj : 1 ≤ j ≤ p ∧ |E(Gj)| ≥ i}|. According to this
notation, k =

∑k
i=1 ni since the contribution of each staircase Gj ,1 ≤ j ≤ p,

to the sum
∑k

i=1 ni is distributed over all ni’s such that 1 ≤ i ≤ |E(Gj)|.

Let k′ be the size of the largest balanced sequence of staircases that occurs
in G. We now make the crucial observation that G does contain a balanced
sequence of staircases of size i ni for each 1 ≤ i ≤ k (by definition of the ni’s).
Moreover, no balanced sequence of staircases of G can have more than k′ edges
since k′ is the size of an optimal solution. Then it follows that i ni ≤ k′ for
each 1 ≤ i ≤ k. Therefore, k =

∑k
i=1 ni ≤

∑k
i=1

k′

i
= k′∑k

i=1
1
i

= k′H (k), and
the lemma is proved. ✷

Note that H (k) is bounded by ln k + O(1). Combining Lemmas 7 and 8, we
obtain the following.

Corollary 9 Any {<, ≬}-comparable linear graph of size k contains as a sub-
graph a balanced sequence of staircases of size at least k

2H (k)
.

What is left is to show that, given a set of linear graphs, one can find in
polynomial-time the size of the largest balanced sequence of staircases that
occurs in each input linear graph. Devoted to this particular purpose is Algo-
rithm Bal-Seq-Staircase for finding a balanced sequence of staircases of width w
and depth d in a linear graph G. For a linear graph G ∈ G, and two integers
i and j with 1 ≤ i < j ≤ |V (G)|, we use G[i, . . . , j] to denote the subgraph of
G obtained by deleting all vertices labeled k with k < i or j < k.

11

Bal-Seq-Staircase(G, d, w)

Input: A linear graph G of size m, and two positive integers d and w.

Result: true if and only if G contains a balanced sequence of staircases
of width w and depth d.

(1) E ′ ← ∅.
(2) for i = 1, 2, . . . ,m− 1 do

(a) Let j be the smallest integer such that G[i . . . j] contains as
a subgraph a staircase of size d (set j =∞ if no such integer
exists).

(b) if j 6=∞ then E ′ ← E ′ ∪ {(i, j)}.
(3) Compute H, the maximum {<}-comparable subgraph of the lin-

ear graph G′ = (V (G), E ′).
(4) if |E(H)| ≥ w then return true else return false.

Lemma 10 Algorithm Bal-Seq-Staircase(G, w, d) runs in O(m2.5 log m) time
and returns true if and only if G contains a balanced sequence of staircases of
width w and depth d.

PROOF. We first prove correctness of Algorithm Bal-Seq-Staircase. Clearly,
G′ is a linear graph. We now observe that each edge (i, j) ∈ E ′ denotes the
presence in G of a staircase of size d starting at vertex i′, i ≤ i′ < j, and
ending at vertex j. Then it follows that, for any two {<}-comparable edges
(i, j) and (i′, j′), j < i′, of E ′, no edge of G can occur both in a staircase of
size d denoted by edge (i, j) in E ′ and in a staircase (of size d) denoted by
edge (i′, j′) in E ′. Therefore, according to Step 4, Algorithm Bal-Seq-Staircase

returns true if and only if G contains a balanced sequence of staircases of
width w and depth d.

We now turn to evaluating the time complexity. Steps 2 and 3 are the only non-
trivial steps of the algorithm. Checking whether subgraph G[i . . . j] contains
a staircase of size d can be done in O(m1.5) time (Lemma 2). Hence, using a
simple binary search strategy, one can find for any i the smallest j such that
G[i . . . j] contains a staircase of size d in O(m1.5 log m) time. It follows that
Step 2 in total requires O(m2.5 log m) time. Step 3 can be computed in O(m)
time (Lemma 2), the whole algorithm requires O(m2.5 log m) time. ✷

For a set G of n linear graphs, each of size at most m, one can find the
largest balanced sequence of staircases that occurs in each linear graph in G
with O(nm2) calls to Algorithm Bal-Seq-Staircase. We show how to reduce to
O(nm) calls. The following straightforward property is crucial to this aim.

Property 11 Let G be a linear graph. For a given w (resp. w′), let d (resp.

12

d′) be the largest integer such that G contains a balanced sequence of staircases
of width w (resp. w′) and depth d (resp. d′). If w′ ≥ w then d′ ≤ d.

Lemma 12 Let G be a set of n linear graphs, each of size at most m. The
largest balanced sequence of staircases that occurs in each G ∈ G can be found
in O(nm3.5 log m) time.

PROOF. The algorithm is as follows. Let d1 be the largest integer such that
each linear graph in G contains a staircase of depth d1 (a staircase is by
definition a balanced sequence of staircases of width 1). The integer d1 can
be certainly computed using at most nm calls to Algorithm Bal-Seq-Staircase

(for practical considerations, a simple binary search would actually reduce this
first step to O(n log m) calls). Next, for w ranging from 2 to m, let dw be the
largest integer such that each linear graph in G contains a balanced sequence
of staircases of width w and depth dw. Finally, the algorithm returns as a
result max{w dw : 1 ≤ w ≤ m}.

Now observe that, according to Property 11, dw+1 ≤ dw for 1 ≤ w < m, i.e.,
the integers dw’s, 1 ≤ w ≤ m, form a non-increasing sequence of integers.
Therefore, assuming dw, 1 ≤ w < m, has just been computed, dw+1 can be
computed as follows:

(1) Initialize dw+1 to dw.
(2) While dw+1 > 0 and G does not contain a balanced sequence of staircases

of width w + 1 and depth dw+1, decrease dw+1 by one.

Since one can check whether G contains a balanced sequence of staircases of
width w + 1 and depth dw+1 with n calls to Algorithm Bal-Seq-Staircase, our
algorithm, as a whole, uses O(nm) calls to Algorithm Bal-Seq-Staircase. The
time complexity now follows from Lemma 10. ✷

Theorem 13 The MCSP problem for {<, ≬}-structured patterns is approx-
imable within ratio 2H (k) in O(nm3.5 log m) time, where k is the size of an
optimal solution, n = |G|, and m is the maximum size of any linear graph in
G.

PROOF. Corollary 9 and Lemma 12. ✷

4 {⊏, ≬}-Structured Patterns

We now consider {⊏, ≬}-structured patterns. We begin by proving a hardness
result, analogous to Theorem 6, which states that the MCSP problem for

13

{⊏, ≬}-structured patterns is NP-hard even if the input consists of towers of
staircases of depth at most 2. However, contrarily to the general approach
we used for {<, ≬}-structured patterns, we cannot use towers of staircases to
obtain a good approximation ratio. Indeed, we show that there exists a {⊏, ≬}-
comparable linear graph of size k which does not contain a tower of staircases
of size ε

√
k for some constant ε. On the other hand, such a graph must contain

either a tower or a staircase with at least
√

k edges.

Theorem 14 The MCSP problem for {⊏, ≬}-structured patterns is NP-hard
even if each input linear graph is a tower of staircases of depth at most 2.

PROOF. As in proof of Theorem 6, we reduce from the MCSP problem for
{<,⊏}-structured patterns which is NP-hard even if the input consists only of
sequences of staircases, each of height at most 2 (Theorem 4). Let an arbitrary
instance of the MCSP problem for {<,⊏}-structured patterns be given by a
set G = {G1, G2, . . . , Gn} of n sequences of towers with height at most 2. The
corresponding instance of the MCSP problem for {<, ≬}-structured patterns
consists of a set G ′ = {G′

1, G
′
2, . . . , G

′
n} of n towers of staircases of depth at

most 2, where for each i = 1, 2, . . . , n, the graph G′
i is obtained from Gi by

taking all the vertices which are right endpoints, reversing the order amongst
them, and then placing them to the left of all left endpoints. Below is an
example of such a transformation (labels are added for the sake of clarity).

Gi
a b b a c c d e e d

G′
i

a b c d e d e c a b

It is easily seen that any linear graph G′
i is a tower of staircases of depth at

most 2. Indeed, each tower is transformed into a staircase. Furthermore, any
pair of edges in Gi are {<}-comparable (resp. {⊏}-comparable) if and only if
their corresponding edges in G′

i are {⊏}-comparable (resp. {≬}-comparable).
Then it follows that there exists a common {<,⊏}-structured pattern of size
k in G if and only if there exists a common {⊏, ≬}-structured pattern of size
k in G ′. ✷

Note that the same theorem applies for staircases of towers, since if G is a
tower of staircases then G′ (as defined in the proof above) is a staircase of
towers.

14

We next consider approximating the MCSP problem for {⊏, ≬}-structured
patterns. First, let us observe the one-to-one correspondence between {⊏, ≬}-
structured patterns and permutations. Let G be a {⊏, ≬}-comparable linear
graph of size k. Then the vertices in G which are left endpoints of edges are
labeled {1, . . . , k} and the right endpoints are labeled {k + 1, . . . , 2k}. The
permutation πG corresponding to G is defined by πG(j − k) = i if and only if
(i, j) ∈ E(G). Clearly, all {⊏, ≬}-comparable linear graphs have corresponding
permutations, and vice versa. It follows from this bijective correspondence that
the number of different {⊏, ≬}-comparable linear graphs of size k is exactly
k!. Moreover, notice that increasing subsequences in πG correspond to {≬}-
comparable subgraphs of G, while decreasing subsequences correspond to {⊏}-
comparable subgraphs (see Figure 3). More generally, a permutation σ ∈ Sk

is said to be a pattern (or to occur) within a permutation π ∈ Sn if π has
a subsequence that is order-isomorphic to σ [5], i.e., there exist indices 1 ≤
i1 ≤ i2 ≤ . . . ≤ ik ≤ n such that, for 1 ≤ x ≤ y ≤ k, πix < πiy if and only
if σx < σy. If π does not contain σ, we say that π avoids σ, or that it is
σ-avoiding. For example, π = 2 4 5 3 1 contains 1 3 2 because the subsequence
π1 π3 π4 = 2 5 3 has the same relative order as 1 3 2. However, π = 4 2 3 5 1 is
1 3 2-avoiding. In the light of the above bijection it is now clear that a linear
graph H does not occur in another linear graph G if and only if πG avoids πH .

The well-known Erdős-Szekeres Theorem [15] states that any permutation
on 1, . . . , k contains either an increasing or a decreasing subsequence of size
at least

√
k. It is worth noticing that extremal Erdős-Szekeres (EES) per-

mutations, i.e., permutations that do not contain monotone subsequences
longer than

√
k, are known to exist (for example, there are 4 EES permu-

tations of length 4: 2 1 4 3, 2 4 1 3, 3 1 4 2 and 3 4 1 2). Hence, using the algo-
rithms in Lemma 2 for finding the maximum common {⊏}-structured and
{≬}-structured patterns, we obtain the following theorem.

Theorem 15 The MCSP problem for model M = {⊏, ≬} is approximable
within ratio

√
k in O(nm1.5) time, where k is the size of an optimal solution

n = |G|, and m = maxG∈G |E(G)|.

For k ∈ N and R ⊆ {<,⊏, ≬}, let Gk be a set of R-comparable linear graphs of
size k. Notice that the approximation algorithms we have offered and analyzed
within this paper are all based on the key idea of identifying a family Gk, k ∈ N,
of R-comparable linear graphs with |Gk| ≤ poly(k) and such that every R-
comparable linear graph of size at least f(k) contains at least one member of
Gk. Clearly, this leads to a poly-time k

f(k)
-approximation algorithm whenever

the function poly(·) is polynomial. We now want to first address the inherent
limitations of this approach.

For k ∈ N, let Πk ⊆ Sk be a set of |Πk| permutations on k elements. From
what said above, each permutation in Πk can be equivalently regarded as a

15

G
1 2 3 4 5 6 7 8 9 5 9 4 7 6 3 2 1 8

πG = 5 9 4 7 6 3 2 1 8

1 2 3 6 7 94 5 8 9 6 3 2 15 4 7 8

Decreasing subsequence 9 6 3 2 1

1 2 3 4 6 95 7 8 9 4 6 3 2 15 7 8

Increasing subsequence 5 7 8

Figure 3. A {⊏, ≬}-structured pattern G and the corresponding permutation
πG = 5 9 4 7 6 3 2 1 8. Also illustrated is the bijective correspondence between de-
creasing subsequences (resp. increasing subsequences) of πG and {⊏}-structured
(resp. {≬}-structured) patterns of G.

{⊏, ≬}-comparable linear graph. Alon [?] recently communicated us a proof of
essentially the following lemma.

Lemma 16 ([?]) For every family of permutations Πk ⊆ Sk, k ∈ N and
|Πk| ≤ 2k, there exists a permutation π ∈ SK, K = Ω(k2), which avoids all
permutations in Πk.

PROOF. The probability that a random (uniform) permutation in Sk is one
of the permutations in Πk is at most 2k/k!. Consider a random (uniform)

permutation π̃K ∈ SK and notice that there are at most
(

K
k

)

distinct permu-
tations in Sk which are subpermutations of π̃K . Moreover, each of these sub-
permutations of π̃K is a random (uniform) permutation in Sk, though these
subpermutations are not mutually independent.

Therefore, by the linearity of expectation (which does not require indepen-
dence to hold), the expected number of permutations in Πk which are subper-

mutations of π̃K is bounded by
(

K
k

)

2k/k!. Using Stirling’s formula to estimate

16

this expression, we get

(

K

k

)

2k

k!
=

2kK!

(k!)2(K − k)!

≈ 2k

(√
2πK

KK

eK

)(

1√
2πk

ek

kk

)2

1
√

2π(K − k)

eK−k

(K − k)K−k

=
1

2π

ek2kKK

k2k(K − k)K−k

√

K

k2(K − k)

=
1

2π

(

2eK

k2

)k
(

1 +
k

K − k

)
K−k

k
·k √

K

k2(K − k)

≈ 1

2π

(

2e2K

k2

)k √

K

k2(K − k)
.

It is now easy to see that if K = εk2, for some positive constant ε < (2e2)−1,

then
(

K
k

)

2k

k!
< 1. It follows that the expected number of permutations in Πk

which are subpermutations of a random permutation π̃K on K = εk2 elements
is strictly less than 1. Thus there must exist a permutation πK ∈ SK which
avoids all permutations in Πk, and so the lemma is proved. ✷

Note that the above lemma shows the tightness of the positive approximability
result offered in this section, at least within the general approach pursued
within this paper. In particular, it shows that there exists a {⊏, ≬}-comparable
linear graph of size K = Ω(k2) which does not contain any {⊏, ≬}-comparable
linear graph out of a family of at most 2k such graphs. Hence, even using more
involved or interesting families of {⊏, ≬}-comparable linear graphs to be used
to probe our input graphs, no approximation guarantee better than O(

√
k)

for maximum common {⊏, ≬}-structured patterns can be possibly achieved.

5 General Structured Patterns

In this section we consider the MCSP problem for general patterns, i.e., {<,⊏
, ≬}-structured patterns. First, since {<,⊏, ≬}-structured patterns generalize
all other types of patterns, all hardness results presented in previous sections
apply for general structured patterns as well. We present three approximation
algorithms with increasing time complexities but decreasing approximation
ratios. The first one achieves an approximation ratio of O(k2/3) in O(nm1.5)

time while the second one achieves an approximation ratio of O(
√

k log2 k)

17

in O(nm2) time. The third one is an O(
√

k log k)-approximation algorithm
which runs in O(nm3.5 log m) time. All algorithms rely on sufficiently large
sub-patterns that occur in any {<,⊏, ≬}-structured pattern, and the fact that
finding maximum common structured patterns of these types is polynomial-
time solvable.

We first observe that both relations < and ⊏ induce partial orders on the
edges of a given linear graph. Recall now that a chain (resp. anti-chain) in a
partial order is a subset of pairwise comparable (resp. incomparable) elements.
Dilworth’s Theorem [12], which is a generalization of the Erdős-Szekeres The-
orem [15], states that in any partial order, the size of the maximum chain
equals the size of the minimum anti-chain partitioning. Therefore, in any par-
tial order on k elements, the size of the maximum chain multiplied by the
size of the maximum anti-chain is at least k. The following lemma states this
property in our terms.

Lemma 17 Let H be a {<,⊏, ≬}-comparable linear graph of size k, width
w(H), and height h(H). Also, let hd(H) and wd(H) be the sizes of the max-
imum {⊏, ≬}-comparable and {<, ≬}-comparable subsets of E(H). Then k ≤
w(H) · hd(H) and k ≤ h(H) · wd(H).

An immediate consequence of Lemma 17 is as follows.

Lemma 18 Let H be a {<,⊏, ≬}-comparable linear graph of size k. Then H
contains a simple structured pattern of size at least k1/3.

PROOF. If the width of H is at least k1/3 we are done. Otherwise, according
to Lemma 17, H has a subgraph H ′ with at least k2/3 edges which is {⊏, ≬}-
comparable. Applying Lemma 17 on H ′, we obtain that H ′ has a subgraph
with at least (k2/3)1/2 = k1/3 edges which is either {⊏}-comparable or {≬}-
comparable. ✷

Combining the above lemma with the fact that a maximum common simple
structured pattern of G can be found in O(nm1.5) time (Corollary 3), we obtain
our first approximation algorithm for general structured patterns.

Theorem 19 The MCSP problem for {<,⊏, ≬}-structured patterns is ap-
proximable within ratio O(k2/3) in O(nm1.5) time, where k is the size of an
optimal solution, n = |G|, and m = maxG∈G |E(G)|.

It is easily seen, however, that Lemma 18 is tight. One way to obtain an
extremal example of this is as follows: take k1/3 balanced towers of staircases,
each one of depth k1/3 and height k1/3, and concatenate them one next to the
other into one supergraph of size k, reassigning labels accordingly.

18

k1/3 balanced towers of staircases, each of width k1/3 and depth k1/3

Lemma 20 Let k be an integer such that k1/3 is also integer. Then there
exists a {<,⊏, ≬}-comparable linear graph of size k that does not contain a
simple structured pattern of size ε k1/3 for any ε > 1.

Dilworth’s Theorem does not apply on the crossing relation since it is not tran-
sitive. However, an analogous result proven in [25] (see also [26]) implies that
for any {<,⊏, ≬}-comparable linear graph H, |E(H)| = O(d·wh log wh), where
d and wh are sizes of the maximum {≬}-comparable and {<,⊏}-comparable
subsets of E(H), respectively. This yields the following analogue of Lemma 17.

Lemma 21 Let H be a {<,⊏, ≬}-comparable linear graph of size k. Then H

contains a subgraph of size Ω(
√

k/ log k) which is either {<,⊏}-comparable or

{≬}-comparable.

Using Lemma 21, the algorithm for finding a maximum {≬}-structured pattern
given in Corollary 3, and the O(log k)-approximation algorithm for {<,⊏}-
structured patterns given in Theorem 5, we obtain our second approximation
algorithm.

Theorem 22 The MCSP problem for {<,⊏, ≬}-structured patterns is ap-

proximable within ratio O(
√

k log2 k) in O(nm2) time, where k is the size of
an optimal solution, n = |G|, and m = maxG∈G |E(G)|.

For our third algorithm, we show that any {<,⊏, ≬}-comparable linear graph
contains a subgraph of sufficient size that is either a tower or a balanced
sequence of staircases.

Lemma 23 Let H be a {<,⊏, ≬}-comparable linear graph of size k. Then H

contains either a tower or a balanced sequence of staircases of size Ω(
√

k/ log k).

PROOF. Let k1 and k2 denote the sizes of the maximum {⊏}-comparable
and {<, ≬}-comparable subgraphs of H, respectively.

According to Lemma 17, we have k ≤ k1k2. If k1 = Ω(
√

k/ log k), we are done.

Otherwise, k1 = o(
√

k/ log k) and so k2 = Ω(
√

k log k). From Corollary 9 it

19

follows that H contains a balanced sequence of staircases of size

k2

2H (k2)
= Ω

(√
k log k

log
√

k log k

)

= Ω(
√

k/ log k),

and the lemma follows. ✷

Applying Lemma 23 and the algorithms for finding the maximum common
tower and balanced sequence of staircases in G given in Corollary 3 and The-
orem 13, respectively, we obtain the following theorem.

Theorem 24 The MCSP problem for {<,⊏, ≬}-structured patterns is ap-
proximable within ratio O(

√
k log k) in O(nm3.5 log m) time, where k is the

size of an optimal solution, n = |G|, and m = maxG∈G |E(G)|.

We next consider subgraphs of {<,⊏, ≬}-comparable linear graphs that are
comparable by pairs of relations, i.e., by R ⊆ {<,⊏, ≬} with |R| = 2. We
show that any {<,⊏, ≬}-comparable linear graph of size k contains such a
subgraph of size at least 0.39 k2/3, and that this lower bound is relatively tight.
Unfortunately, this result cannot be applied for approximation purposes (ap-
proximating the MCSP problem for {⊏, ≬}-patterns remains the bottleneck).
Nevertheless, we present this result on account of independent interest.

Lemma 25 Let H be a {<,⊏, ≬}-comparable graph of size k. Then H has

a subgraph of size ε k2/3, where ε =
√

17−1
8
≈ 0.39, which is either {<,⊏}-

comparable, {<, ≬}-comparable, or {⊏, ≬}-comparable.

PROOF. For simplicity, assume that both k1/3 and k2/3 are integers. Since H
is {<,⊏, ≬}-comparable, we may assume that V (H) = {1, 2, . . . , 2k}. For each
x = 1, 2, . . . , 2k − 1, let Ex ⊆ E(H) be the set of edges (i, j) with i ≤ x < j.
Note that for all x = 1, 2, . . . , 2k − 1, H[Ex], the subgraph of H obtained by
deleting all edges E \Ex, is a {⊏, ≬}-comparable subgraph of H. Therefore, if
|Ex| > εk2/3 for some x = 1, 2, . . . , 2k − 1, we are done.

Otherwise, for y = 1, 2, . . . , k1/3, let py be the smallest integer in {1, 2, . . . , 2k}
such that there are at least k2/3 edges (i, j) ∈ E(H) with py−1 ≤ i < py,
where p0 = 1. Also, for each y = 1, 2, . . . , k1/3, let Hy be the subgraph of
H made of edges (i, j) with py−1 ≤ i < j < py. Since |Ex| ≤ ε k2/3 for all
x = 1, . . . , 2k − 1, then Hy contains at least k2/3 − ε k2/3 = (1− ε)k2/3 edges.
According to Lemma 17, for each y = 1, 2, . . . , k1/3, Hy contains either (i) a
{<, ≬}-comparable subgraph H ′

y or (ii) a {⊏}-comparable subgraph H ′′
y of size

at least ((1−ε)k2/3)1/2 = (1−ε)1/2k1/3. Let Y be the set of those y’s for which
case (i) occurs. Then H ′ = ∪y∈Y H ′

y is a {<, ≬}-comparable subgraph of H and
H ′′ = ∪y/∈Y H ′′

y is a {<,⊏}-comparable subgraph of H. Furthermore, at least

20

one of H ′ and H ′′ has at least 2−1(1− ε)1/2k1/3k1/3 = 2−1(1− ε)1/2k2/3 edges.

But 2−1(1− ε)1/2 = ε for ε =
√

17−1
8
≈ 0.39, which proves the lemma. ✷

We believe the bound of Lemma 25 to be not the best possible. However,
combining Lemmas 17 and 20, we show that the above lemma is relatively
tight.

Lemma 26 Let k be an integer such that k1/3 is an integer. Then there
exists a {<,⊏, ≬}-comparable linear graph of size k that contains neither a
{<,⊏}-comparable subgraph, nor a {<, ≬}-comparable subgraph, nor a {⊏, ≬}-
comparable subgraph of size least ε k2/3 for any ε > 1.

PROOF. Suppose, aiming at a contradiction, that the lemma is false. Then
any {<,⊏, ≬}-comparable linear graph of size k contains a subgraph of size
at least ε k2/3, ε > 1, which is either {<,⊏}-comparable, {<, ≬}-comparable,
or {⊏, ≬}-comparable. Therefore, by Lemma 17, any {<,⊏, ≬}-comparable

linear graph of size k contains a subgraph with at least
√

ε k2/3 = ε1/2 k1/3

edges which is either {<}-comparable, {⊏}-comparable, or {≬}-comparable.
According to Lemma 20, this is the desired contradiction. ✷

6 Discussion and Open Problems

In this paper, we introduced the MCSP problem as a general framework
for many structure-comparison and structure-prediction problems, that occur
mainly in computational molecular biology. Our framework followed the ap-
proach in [34] by analyzing all types of R-structured patterns, R ⊆ {<,⊏
, ≬}. We gave tight hardness results for finding maximum common {<, ≬}-
structured patterns and maximum common {<, ≬}-structured patterns. We
also proved that the MCSP problem is approximable within ratios: (i) 2H (k)
for {<, ≬}-structured patterns, (ii) k1/2 for {⊏, ≬}-structured patterns, and
(iii) O(

√
k log k) for {<,⊏, ≬}-structured patterns.

There are many questions left open by our study. Below we list some of them.
According to Lemma 25, we could substantially improve in terms of approxi-
mation ratio on all the algorithms suggested for general structured patterns,
if we had a better approximation algorithm for {⊏, ≬}-structured patterns.
Is there an approximation algorithm which achieves a better ratio than the
simple

√
k algorithm? On the same note, can lower bounds on the approxima-

tion factor of the MCSP problem for {<,⊏, ≬}-structured patterns or {⊏, ≬}-
structured patterns be proven ? How about {<,⊏}-structured patterns or
{<, ≬}-structured patterns ? Besides, the last decade has seen an increasing

21

development in the theory of parameterized complexity [13]. Can the MCSP

problem be tackled better by applying this theory? Last but not least, the
MCSP problem for {<, ≬}-structured patterns is still open in case |G| = 1,
i.e., the case where the input consists of one linear graph G and one wishes
to find the largest {<, ≬}-comparable subgraph of G (see [4,9,34]). Is there a
polynomial-time algorithm for this problem?

References

[1] N. Alon, 2006. Personal communication.

[2] L. Alonso and R. Schott. On the tree inclusion problem. In A.M. Borzyszkowski
and S. Sokolowski, editors, Proc. 18th Mathematical Foundations of Computer
Science (MFCS), Gdansk, Poland, volume 711 of Lecture Notes in Computer
Science, pages 211–221, 1993.

[3] A. Apostolico and C. Guerra. The longest common subsequence problem
revisited. Algorithmica, 2:315–336, 1987.

[4] G. Blin, G. Fertin, and S. Vialette. What makes the arc-preserving subsequence
problem hard ? LNCS Transactions on Computational Systems Biology, 2:1–36,
2005.

[5] G. Blin, G. Fertin, and S. Vialette. Extracting constrained 2-interval subsets
in 2-interval sets. Theoretical Computer Science, 385(1-3):241–263, 2007.

[6] M. Bóna. Combinatorics of permutations. Discrete Mathematics and its
Applications. Chapman & Hall/CRC, 2004.

[7] P. Bose, J.F.Buss, and A. Lubiw. Pattern matching for permutations.
Information Processing Letters, 65(5):277–283, 1998.

[8] W.Y.C. Chen, E.Y.P. Deng, R.P. Stanley R.R.X. Du, and C.H.F. Yan.
Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc.,
359(4):1555–1575, 2007.

[9] M.-J. Chung. More efficient algorithm for ordered tree inclusion. Journal of
Algorithms, 26(2):370–385, 1998.

[10] M. Crochemore, D. Hermelin, G. Landau, and S. Vialette. Approximating the
2-interval pattern problem. In Gerth.S. Brodal and S. Leonardi, editors, Proc.
13th European Symposium on Algorithms (ESA), Palma de Mallorca, Spain,
Lecture Notes in Computer Science, 2005.

[11] E. Davydov and S. Batzoglou. A computational model for rna multiple
structural alignment. Theoretical Computer Science, 368(3):205–216, 2006.

[12] E. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal
decomposition algorithm for tree edit distance. In L. Arge, C. Cachin,

22

T. Jurdzinski, and A. Tarlecki, editors, Proc. 34th International Colloquium on
Automata, Languages and Programming (ICALP), Wroclaw, Poland, volume
4596 of Lecture Notes in Computer Science, pages 146–157, 2007.

[13] R.P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math.,
51:161–166, 1950.

[14] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[15] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic
programming I: Linear cost functions. Journal of the ACM, 39(3):519–545,
1992.

[16] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935.

[17] P. Evans. Finding common subsequences with arcs and pseudoknots. In
M. Crochemore and M. Paterson, editors, Proc. 10th Annual Symposium
Combinatorial Pattern Matching (CPM), Warwick University, UK, volume
1645 of Lecture Notes in Computer Science, pages 270–280. Springer, 1999.

[18] D. Goldman, S. Istrail, and C.H. Papadimitriou. Algorithmic aspects of
protein structure similarity. In Proc. 40th Annual Symposium of Foundations
of Computer Science (FOCS), New York, NY, USA, pages 512–522. IEEE
Computer Society, 1999.

[19] J. Gramm. A polynomial-time algorithm for the matching of crossing contact-
map patterns. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1(4):171–180, 2004.

[20] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated
sequences. In M. Agrawal and A. Seth, editors, Proc. 22nd Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), Kanpur,
India, Lecture Notes in Computer Science, pages 182–193, 2002.

[21] U.I. Gupta, D.T. Lee, and J.Y.-T. Leung. Efficient algorithms for interval graph
and circular-arc graphs. Networks, 12:459–467, 1982.

[22] D.S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the ACM, 24(4):664–675, 1977.

[23] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20:350–353, 1977.

[24] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM
J. Comp., 24(2):340–356, 1995.

[25] P.N. Klein. Computing the edit-distance between unrooted ordered trees.
In G. Bilardi, G.F. Italiano, A. Pietracaprina, and G. Pucci, editors, Proc.
6th European Symposium on Algorithms (ESA), Venice, Italy, volume 1461 of
Lecture Notes in Computer Science, pages 91–102, 1998.

23

[26] A. Kostochka. On upper bounds on the chromatic numbers of graphs.
Transactions of the Institute of Mathematics (Siberian Branch of the Academy
of Sciences in USSR), 10:204–226, 1988.

[27] A. Kostochka and J. Kratocvil. Covering and coloring polygon-circle graphs.
Discrete Mathematics, 163:299–305, 1997.

[28] M. Kubica, R. Rizzi, S. Vialette, and T. Waleń. Approximation of RNA multiple
structural alignment. In M. Lewenstein and G. Valiente, editors, Proc. 17th
Annual Symposium on Combinatorial Pattern Matching (CPM),Barcelona,
Spain, volume 4009 of Lecture Notes in Computer Science. Springer, 2006.

[29] S.C. Li and M. Li. On two open problems of 2-interval patterns. Theoretical
Computer Science, 410(24-25):2410–2423, 2009.

[30] D. Maier. The complexity of some problems on subsequences and
supersequences. Journal of the ACM, 25(2):322–336, 1978.

[31] W.J. Masek and M.S. Paterson. A faster algorithm computing string edit
distances. J. Comp. and Syst. Sc., 20(1):18–31, 1980.

[32] D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262,
1989.

[33] R.P. Stanley. Enumerative combinatorics, volume 2. Cambridge University
Press, 1997. second edition.

[34] A. Tiskin. Longest common subsequences in permutations and maximum
cliques in circle graphs. In M. Lewenstein and G. Valiente, editors, Proc.
17th Combinatorial Pattern Matching (CPM), Barcelona, Spain, volume 4009
of Lecture Notes in Computer Science, pages 270–281, 2006.

[35] S. Vialette. On the computational complexity of 2-interval pattern matching
problems. Theoretical Computer Science, 312(2-3):223–249, 2004.

[36] M.-S Whang and G.-H Wang. Efficient algorithms for the maximum weight
clique and maximum weight independent set problems on permutation graphs.
Information Processing Letters, 43:293–295, 1992.

24

