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1 Introduction and notation

1.1 Introduction

There are two natural Orlicz spaces of analytic functions on the unit disk
D of the complex plane: the Hardy-Orlicz space HΨ and the Bergman-Orlicz
space B

Ψ. It is well-known that in the classical case Ψ(x) = xp, Hp ⊆ B
p and

the canonical injection Jp from Hp to B
p is bounded, and even compact. In

fact, for any Orlicz function Ψ, one has HΨ ⊆ B
Ψ and the canonical injection

JΨ : HΨ → B
Ψ is bounded, but we shall see in this paper that its compactness

requires that Ψ does not grow too fast. We actually characterize in Section 2
the compactness: JΨ is compact if and only if limx→+∞ Ψ(Ax)/[Ψ(x)]2 = 0 for
every A > 1, and the weak compactness: JΨ is weakly compact if and only if
lim supx→+∞ Ψ(Ax)/[Ψ(x)]2 < +∞ for every A > 1 . We show that, if these
two properties are “often” equivalent (this happens for example if Ψ(x)/x is
non-decreasing for x large enough), it is not always the case. We actually show
a stronger result in Section 4: there is an Orlicz function Ψ such that JΨ is
weakly compact and is Dunford-Pettis, but such that JΨ is not compact.

1.2 Notation

An Orlicz function is a non-decreasing convex function Ψ: [0,+∞[→ [0,+∞[
such that Ψ(0) = 0 and Ψ(∞) = ∞. One says that the Orlicz function Ψ has
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property ∆2 (Ψ ∈ ∆2) if Ψ(2x) ≤ C Ψ(x) for some constant C > 0 and x large
enough. It is equivalent to say that, for every β > 1, Ψ(βx) ≤ CβΨ(x). It
is known that if Ψ ∈ ∆2, then Ψ(x) = O (xp) for some 1 ≤ p < +∞. One
says (see [6], [7]) that Ψ satisfies the condition ∆0 if, for some β > 1, one
has lim

x→∞
Ψ(βx)/Ψ(x) = +∞. If Ψ ∈ ∆0, then Ψ(x)/xp −→

x→∞
+∞ for every

1 ≤ p < ∞. Indeed, let 1 ≤ p < ∞. For every β > 1 one can find x0 > 0 such
that Ψ(βx)/Ψ(x) ≥ βp for x ≥ x0; then Ψ(βnx0) ≥ βnpΨ(x0) for every n ≥ 1.
That implies that Ψ(x) ≥ Cp x

p for every x > 0 large enough. Since p ≥ 1 is
arbitrary, we get xp = o [Ψ(x)].

We say that Ψ ∈ ∇0(1) if, for every A > 1, Ψ(Ax)/Ψ(x) is non-decreasing
for x large enough. This is equivalent to say (see [7], Proposition 4.7) that
logΨ(ex) is convex. When Ψ ∈ ∇0(1), one has either Ψ ∈ ∆2, or Ψ ∈ ∆0.

If (S,S, µ) is a finite measure space, one defines the Orlicz space LΨ(µ) as
the set of all (classes of) measurable functions f : S → C for which there is a
C > 0 such that

∫
S Ψ(|f |/C) dµ is finite. The norm ‖f‖Ψ is the infimum of all

C > 0 for which the above integral is ≤ 1. The Morse-Transue space MΨ(µ) is
the subspace of f ∈ LΨ(µ) for which

∫
S
Ψ(|f |/C) dµ is finite for all C > 0; it is

the closure of L∞(µ) in LΨ(µ). One has MΨ(µ) = LΨ(µ) if and only if Ψ ∈ ∆2.
If Ψ(x)/x −→

x→+∞
+∞, the conjugate function Φ of Ψ is defined by Φ(y) =

supx>0

(
xy−Ψ(x)

)
. It is an Orlicz function and [MΨ(µ)]∗ = LΦ(µ), isomorphi-

cally.
We may note that if Ψ(x)/x does not converges to infinity, we must have

Ψ(x) ≤ ax for some a ≥ 1 and x large enough. Then LΨ(µ) = L1(µ) isomorphi-
cally and then Φ(y) = +∞ for y > a (giving LΦ(µ) = L∞(µ) isomorphically).

We denote by D the open unit disk of C and by T = ∂D the unit circle. The
normalized area-measure on D is denoted by A and the normalized Lebesgue
measure on T is denoted by m.

The Hardy-Orlicz space HΨ is defined as {f ∈ H1 ; f∗ ∈ LΨ(m)}, where
f∗ is the boundary values function of f , and HMΨ = HΨ ∩ MΨ(m) is the
closure of H∞ in HΨ. The Bergman-Orlicz space BΨ is the subspace of analytic
f ∈ LΨ(A), and BMΨ = B

Ψ ∩MΨ(A) is the closure of H∞ in B
Ψ. Since, for

f ∈ HΨ, ‖f‖HΨ = sup0<r<1 ‖fr‖HΨ (see [7], Proposition 3.1), where fr(z) =
f(rz), one has:

∫ 2π

0

Ψ

( |f(reit)|
‖f‖HΨ

)
dt

2π
≤

∫ 2π

0

Ψ

( |f(reit)|
‖fr‖HΨ

)
dt

2π
≤ 1 ;

hence:

∫

D

Ψ

( |f(reit)|
‖f‖HΨ

)
dA =

∫ 1

0

[ ∫ 2π

0

Ψ

( |f(reit)|
‖f‖HΨ

)
dt

2π

]
2r dr ≤ 1 ,

so f ∈ B
Ψ and ‖f‖BΨ ≤ ‖f‖HΨ . It follows that HΨ ⊆ B

Ψ and the canonical
injection JΨ : HΨ → B

Ψ is bounded, and has norm 1. Let us point out that
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the boundedness also follows from [7], Theorem 4.10, 2), since JΨ is a Carleson
embedding JΨ : HΨ → B

Ψ ⊆ LΨ(A).
This injection is not onto, since there are functions f ∈ B

Ψ with no radial
limit on a subset of T of positive measure (the proof is the same as in B

p: see
[4], § 3.2, Lemma 2, page 81). Note that JΨ is not an into-isomorphism: take
fn(z) = zn, for every n ∈ N; it is easy to see that {fn}n tends to 0 in B

Ψ, but
not in HΨ.

Acknowledgment. This work is partially supported by a Spanish research
project MTM 2009-08934. Part of this paper was made during an invitation
of the second-named author by the Departamento de Análisis Matemático of
the Universidad de Sevilla. It is a pleasure to thanks the members of this
department for their warm hospitality.

2 Compactness and weak-compactness

In order to characterize the compactness and the weak-compactness of JΨ,
we introduce the following quantity QA, A > 1:

(2.1) QA = lim sup
x→+∞

Ψ(Ax)

[Ψ(x)]2
,

which will turn out to be essential.

We are going to start with the compactness.

Theorem 2.1 The canonical injection JΨ : HΨ → B
Ψ is compact if and only

if

(2.2) lim
x→+∞

Ψ(Ax)

[Ψ(x)]2
= 0 for every A > 1 .

Remarks. 1) Condition (2.2) means that QA = 0 for every A > 1. It is
equivalent to say that:

(2.3) sup
A>1

QA < +∞.

Indeed, assume that M := supA>1 QA < +∞. Let 0 < ε ≤ 1 and A > 1; we
can find xA = xA(ε) > 0 such that Ψ(Ax/ε)/[Ψ(x)]2 ≤ 2M for x ≥ xA. By
convexity, one has Ψ(Ax) ≤ εΨ(Ax/ε), and hence Ψ(Ax)/[Ψ(x)]2 ≤ 2εM for
x ≥ xA. We get QA = 0.

2) It is clear that condition (2.2) is satisfied whenever Ψ ∈ ∆2, but Ψ(x) =

e[log(x+1)]2 − 1 satisfies (2.2) without being in ∆2. However, condition (2.2)
implies that Ψ cannot grow too fast. More precisely, we must have

Ψ(x) = o (ex
α

) for every α > 0 .
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Indeed, one has Ψ(At) ≤ [Ψ(t)]2 for t ≥ tA, and, by iteration, Ψ(AntA) ≤
[Ψ(tA)]

2n for every n ≥ 1. For every x > 0 large enough, taking n ≥ 1 such
that AntA ≤ x < An+1tA, we get Ψ(x) ≤ C1 e

C2x
α

, with α = log 2/ logA. Since
A > 1 is arbitrary, α may be any positive number. The little-oh condition
follows from the fact that the inequality is true for all α > 0.

Proof of Theorem 2.1. By definition, BΨ is a subspace of LΨ(D,A); hence
we can see JΨ as a Carleson embedding JΨ : HΨ → LΨ(D,A). If S(ξ, h) = {z ∈
D ; |z − ξ| < h}, the compactness of JΨ implies, by [7], Theorem 4.11, that, for
every A > 1, every ε > 0, and h > 0 small enough:

h2 ≤ 4A[S(ξ, h)] ≤ 4ε

Ψ[AΨ−1(1/h)]
,

that is, setting x = Ψ−1(1/h), Ψ(Ax) ≤ 4ε [Ψ(x)]2, and (2.2) is satisfied.
Conversely, one has:

sup
0<t≤h

sup
|ξ|=1

A[S(ξ, t)]

t
≤ sup

0<t≤h

t2

t
= h ,

which is o
(
(1/h)/Ψ[AΨ−1(1/h)]

)
for every A > 1, if (2.2) holds; hence, by [7],

Theorem 4.11, again, JΨ is compact. �

We now turn ourself to the weak compactness.

Theorem 2.2 The following assertions are equivalent:
(a) JΨ : HΨ → B

Ψ is weakly compact;
(b) JΨ fixes no copy of c0;
(c) JΨ fixes no copy of ℓ∞;
(d) QA < +∞, for every A > 1;
(e) HΨ ⊆ BMΨ;
(f) JΨ is strictly singular.

Recall that an operator T : X → Y between two Banach spaces is said to be
strictly singular if there is no infinite-dimensional subspace X0 of X on which
T is an into-isomorphism.

The proof will be somewhat long, and before beginning it, we shall remark
that if Ψ ∈ ∆0, then condition

(2.4) QA < +∞ for every A > 1

implies condition (2.2). Indeed, if lim
x→+∞

Ψ(βx)
Ψ(x) = +∞, we get, for every A > 1:

lim sup
x→+∞

Ψ(Ax)

[Ψ(x)]2
= lim sup

x→+∞

Ψ(Ax)

Ψ(βAx)

Ψ(βAx)

[Ψ(x)]2
≤ lim sup

x→+∞

Ψ(Ax)

Ψ(βAx)
QβA = 0 .

Now, if, for some A > 1, Ψ(Ax)/Ψ(x) is non-decreasing for x large enough (in
particular if Ψ ∈ ∇0(1)), one has the dichotomy: either Ψ ∈ ∆2, and then JΨ
is compact; or Ψ ∈ ∆0 and hence the weak compactness of JΨ implies, by the
two above theorems, its compactness. Hence:
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Proposition 2.3 If, for some A > 1, Ψ(Ax)/Ψ(x) is non-decreasing, for x
large enough, then the weak compactness of JΨ is equivalent to its compactness.

However, it is easy to construct an Orlicz function Ψ which satisfies condi-
tion (2.4), but not condition (2.2). We do not give an axample here because we
have a stronger result in Section 4.

In order to prove Theorem 2.2, we shall need several lemmas.

Lemma 2.4 Let Ψ be any Orlicz function. If we define Ψ1(t) = [Ψ(t)]2, t ≥ 0,
then Ψ1 is an Orlicz function for which HΨ ⊆ B

Ψ1 and the canonical injection
of HΨ into B

Ψ1 is continuous.

Proof. It is enough to see that HΨ continuously embeds into LΨ1(A), and for
this we can use Theorem 4.10 in [7]. Following the notation of that theorem
for the measure µ = A, it is easy to see that, as h → 0+, ρA(h) ≈ h2, and
KA(h) ≈ h. Observe that, for t > 1, we have Ψ1[Ψ

−1(t)] = t2, and so, for
h ∈ (0, 1),

1/h

Ψ1[Ψ−1(1/h)]
=

1/h

1/h2
= h � KA(h).

Using part 2) of Theorem 4.10 in [7], the lemma follows. �

Lemma 2.5 Let M > δ > 0 and {fn}n be a sequence in HΨ∩BMΨ such that:
(a) {fn}n tends to 0 uniformly on compact subsets of D;
(b) ‖fn‖BΨ ≥ δ, for every n ≥ 1;
(c) ‖fn‖HΨ ≤ M , for every n ≥ 1.

Then there exists a subsequence {fnk
}k such that

∑
k |fnk

(z)| < +∞, for
every z ∈ D, and for every α = (αk)k ∈ ℓ∞, one has, writing Tα(z) =∑∞
k=1 αkfnk

(z):

(2.5) Tα ∈ B
Ψ and (δ/2)‖α‖∞ ≤ ‖Tα‖BΨ ≤ 2M‖α‖∞.

Remark. It is clear that, by (2.5), we are defining an operator T from ℓ∞
into B

Ψ which is an isomorphism between ℓ∞ and its image. In particular, the
subsequence {fnk

}k is equivalent, in B
Ψ, to the canonical basis of c0.

Proof. First we are going to construct, inductively, a subsequence {fnk
}k of

{fn}, and an increasing sequence {rk}k in (0, 1), such that limk→∞ rk = 1 and,
setting

Dk = {z ∈ D ; |z| ≤ rk} , for k ≥ 1,

and

C1 = D1 , Ck = Dk \Dk−1 = {z ∈ D ; rk−1 < |z| ≤ rk}, k ≥ 2,

we have:

(2.6) |fnk
(z)| ≤ 2−k, for every z ∈ Dk−1, and every k ≥ 2 ;
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and

(2.7) ‖fnk
1ID\Ck

‖LΨ < δ2−k−2 , for every k ≥ 1.

Start the construction by taking n1 = 1. It is a known fact that, for every
function f in the Morse-Transue space MΨ(A), we have

(2.8) lim
A(A)→0

‖f 1IA‖LΨ = 0.

Now, using (2.8), with f = fn1
and considering sets A of the form A = {z ∈

D ; r < |z| < 1}, we get r1 ∈ (0, 1) so that, for C1 = D1 = {z ∈ D ; |z| ≤ r1},
we have

‖f11ID\C1
‖LΨ < δ2−3 .

By the uniform convergence of {fn}n to 0 on D1, we can find n2 > n1 such that

|fn2
(z)| ≤ 1/4, for every z ∈ D1, and ‖fn2

1ID1
‖LΨ < δ2−5 .

Using this last inequality and (2.8) again (for f = fn2
), we get r2 ∈ (r1, 1),

r2 > 1− 1/2, such that, setting C2 = {z ∈ D ; r1 < |z| ≤ r2}, we have

‖fn2
1ID\C2

‖LΨ < δ2−4 .

Now that we have (2.6) and (2.7) for k = 1 and k = 2, it is clear how we must
iterate the inductive construction. At the time of choosing rk ∈ (rk−1, 1), we
also impose the condition rk > 1− 1/k in order to get limk→∞ rk = 1.

Once the construction is achieved, let us see why the subsequence {fnk
}k

works. The condition (2.6) and the fact that limk→∞ rk = 1 imply that, for
every compact set K in D and z ∈ D, there exists lK ∈ N such that:

|fnk
(z)| ≤ 2−k, for every z ∈ K, and every k ≥ lK .

This yields two facts. First,
∑

k |fnk
(z)| < +∞, for every z ∈ D, and secondly:

for every bounded complex sequence α = (αk)k ∈ ℓ∞, the series
∑
k αkfnk

converges uniformly on compact subsets of D, and its sum, the function Tα, is
analytic on D.

It remains to prove the estimates in (2.5) about the norm of Tα in LΨ(A).
By homogeneity, we may assume that ‖α‖∞ = 1. Let us write gk = fnk

1ICk
and

hk = fnk
1ID\Ck

, for every k ≥ 1,

g =

∞∑

k=1

αkgk and h =

∞∑

k=1

αkhk .

We have Tα = g + h. By (2.7) and the fact that |αk| ≤ 1, we have that
h ∈ LΨ(A) and ‖h‖LΨ ≤ δ/4.

By the condition (c) in the statement and the definition of the norm in HΨ

we have, for every n and every r ∈ (0, 1):

(2.9)
1

2π

∫ 2π

0

Ψ
(
|fn(reit)|/M

)
dt ≤ 1 .
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The function gk is 0 outside of Ck, and the sequence {Ck}k is a partition of D.
Therefore:

∫

D

Ψ(|g|/M) dA =

∞∑

k=1

∫

Ck

Ψ(|g|/M) dA =

∞∑

k=1

∫

Ck

Ψ(|αk| |fnk
|/M) dA

≤
∞∑

k=1

∫

Ck

Ψ(|fnk
|/M) dA .

Integrating in polar coordinates, setting r0 = 0, and using (2.9), we get:

∫

D

Ψ(|g|/M) dA ≤
∞∑

k=1

∫ rk

rk−1

2r
1

2π

∫ 2π

0

Ψ(|fnk
(reit)|/M) dt dr

≤
∞∑

k=1

∫ rk

rk−1

2r dr = 1 ,

and therefore ‖g‖LΨ ≤ M , and ‖Tα‖LΨ ≤ δ/4 +M ≤ 2M .

On the other hand, for every k, we have:

‖g‖LΨ ≥ ‖g 1ICk
‖LΨ = |αk|‖fnk

− hk‖LΨ ≥ |αk| (δ − δ/22+k) ≥ 3δ

4
|αk| .

Taking the supremum on k, we get ‖g‖LΨ ≥ (3δ/4) ‖α‖∞ = 3δ/4. Consequently,

‖Tα‖LΨ ≥ ‖g‖LΨ − ‖h‖LΨ ≥ (3δ/4)− δ/4 ≥ δ/2 ,

and Lemma 2.5 is fully proved. �

In the following lemma we isolate the proof of the implication (c) =⇒ (d)
in the statement of Theorem 2.2.

Lemma 2.6 Assume that the Orlicz function Ψ is such that, for some A > 1,

(2.10) lim sup
x→+∞

Ψ(Ax)

[Ψ(x)]2
= +∞

Then the injection JΨ : HΨ → B
Ψ fixes a copy of ℓ∞.

Proof. Let us take a sequence of positive numbers {dn}n, and a sequence {ξn}n
in T, such that the disks {D(ξn, dn)}n are pairwise disjoint in D. In particular,
we should have limn→∞ dn = 0.

The convexity of Ψ implies the existence of some c > 0 such that Ψ(x) ≥ cx
for every x ≥ 1. Given a sequence {βn}n in (4,+∞) to be fixed later, we can
find, thanks to (2.10), an increasing sequence {xn} satisfying:

(2.11) xn > 1, Ψ(xn) > 1, Ψ(Axn) > βn[Ψ(xn)]
2, for every n ∈ N .
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Define yn as the point in the interval (xn, Axn) such that

(2.12) [Ψ(yn)]
2 = Ψ(Axn) .

Put now hn = 1/Ψ(yn) and rn = 1 − hn. By (2.11) and (2.12), we have
[Ψ(yn)]

2 > βn > 4, and therefore hn ∈ (0, 1/2). Define

un(z) =
( hn

1− rn ξnz

)2

, and fn(z) = yn un(z) .

It is easy to see that ‖un‖∞ = 1, and that ‖un‖H1 ≤ hn.

The first condition imposed to βn is βn > 16/d2n. That gives [Ψ(yn)]
2 >

16/d2n and hn < dn/4. Let us write Dn for the disk D(ξn, dn). Observe that,
for z ∈ D \Dn, we have

|1−rn ξnz| = |1−rn+rn ξnξn−rn ξnz| ≥ rn|ξn−z|−hn ≥ (1/2)dn−hn ≥ dn/4 ,

and therefore, since [Ψ(xn)]
2 ≥ Ψ(xn) ≥ c xn,

|fn(z)| ≤ yn

(4hn
dn

)2

=
16yn

d2n[Ψ(yn)]2
≤ 16Axn

d2nβn[Ψ(xn)]2
≤ 16A

c d2nβn
·

We also impose the condition βn > 16An2/cd2n, and so we have:

(2.13) |fn(z)| ≤
1

n2
, for z ∈ D \Dn .

From (2.13) we deduce that {fn}n converges to 0 uniformly on compact
subsets of D. Moreover (2.13) yields that, for every bounded sequence {αn}n
of complex numbers, the series

∑
n≥1 αnfn is uniformly convergent on compact

subsets of D. Let us write f∗
n for the boundary value (on T = ∂D) of the function

fn. We claim that :

(2.14) S =

∞∑

n=1

|f∗
n| ∈ LΨ(T,m).

From this, it is not difficult to deduce that, for every bounded sequence {αn}n
of complex numbers, the function

∑∞
n=1 αnfn is in HΨ and, for M = ‖S‖LΨ(T),

(2.15)
∥∥∥

∞∑

n=1

αnfn

∥∥∥
HΨ

≤ M‖{αn}n‖∞ .

On the other hand, taking An = {z ∈ D ; |z − ξn| ≤ hn}, there exists a
constant γ ∈ (0, 1) such that A(An) ≥ γh2

n, and, for every z ∈ An, we have:

|1− rn ξnz| ≤ |1− rn|+ |rn ξnξn − rn ξnz| = hn + rn |z − ξn| ≤ 2hn ,
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and consequently |un(z)| ≥ 1/4. If δ = γ/4A, we have, for every n,

∫

D

Ψ
( |fn|

δ

)
dA ≥

∫

An

Ψ
(yn
4δ

)
dA ≥ γh2

nΨ
(1
γ
Ayn

)

≥ h2
nΨ(Ayn) > h2

nΨ(Axn) = 1 .

Thus ‖fn‖BΨ ≥ δ, for every n ∈ N. We can apply Lemma 2.5. Using this lemma
and (2.15), we get a subsequence {fnk

}k such that, for every α = (αk)k ∈ ℓ∞,
we have:

(δ/2) ‖{αk}k‖∞ ≤
∥∥∥

∞∑

k=1

αkfnk

∥∥∥
BΨ

≤
∥∥∥

∞∑

k=1

αkfnk

∥∥∥
HΨ

≤ M‖{αk}k‖∞ .

This clearly says that JΨ fixes a copy of ℓ∞.

It remains to prove (2.14). For obtaining this we impose the last condition
to the sequence {βn}n. We shall need:

(2.16)

∞∑

n=1

1/
√
βn ≤ 1 .

Let us set gn = |f∗
n| 1IDn

. Thanks to (2.13), S −
∑∞

n=1 gn is a bounded
function. Thus we just need to prove that G =

∑∞
n=1 gn is in LΨ(T). We have

‖G‖LΨ(T) ≤ A. Indeed, recalling that the Dn’s are pairwise disjoint, and that
each gn is 0 out of Dn, we have:

∫

T

Ψ
(G
A

)
dm =

∞∑

n=1

∫

Dn∩T

Ψ
(G
A

)
dm =

∞∑

n=1

∫

Dn∩T

Ψ
( |f∗

n|
A

)
dm

≤
∞∑

n=1

∫

T

Ψ
(yn|u∗

n|
A

)
dm

and by the convexity of Ψ, and the fact that |un| ≤ 1,

≤
∞∑

n=1

∫

T

|u∗
n|Ψ

(yn
A

)
dm =

∞∑

n=1

‖un‖H1
Ψ
(yn
A

)

≤
∞∑

n=1

Ψ(yn/A)

Ψ(yn)
≤

∞∑

n=1

Ψ(xn)

Ψ(yn)
=

∞∑

n=1

Ψ(xn)√
Ψ(Axn)

≤
∞∑

n=1

1√
βn

≤ 1 ,

by the required condition (2.16), and that ends the proof of Lemma 2.6. �

We are now in position to prove Theorem 2.2.

Proof of Theorem 2.2. We shall prove that:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a) ,

and that (b) ⇐⇒ (f).
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The implications (a) =⇒ (b) =⇒ (c) and (f) =⇒ (b) are trivial, and we have
seen in Lemma 2.6 that (c) =⇒ (d).

(d) =⇒ (e). By Lemma 2.4, there exists a constant C > 0 such that, for
every f in the unit ball of HΨ, we have:

(2.17)

∫

D

[Ψ(|f |/C)]2 dA ≤ 1 .

For every A > 0, there exist xA, such that Ψ(Ax) ≤ (QA + 1)[Ψ(x)]2, for every
x ≥ xA. Thus for every x ≥ 0 we have Ψ(Ax) ≤ (QA + 1)[Ψ(x)]2 + Ψ(AxA).
Then, by (2.17), we have

∫

D

Ψ(A|f |/C) dA < +∞ , for every A > 0 .

Therefore f ∈ BMΨ, for every f in the unit ball of HΨ, and thus for every f
in HΨ.

(e) =⇒ (a). Let {fn}n be in the unit ball of HΨ. We have to prove that
{fn}n has a subsequence which converges in the weak topology of B

Ψ. By
Montel’s Theorem {fn}n has a subsequence converging uniformly on compact
subsets of D, to a function g which, by Fatou’s lemma, also belongs to the unit
ball of HΨ. If this subsequence converges to g in the norm of BΨ we are done.
If not, after perhaps a new extraction of subsequence, there exist δ > 0 and a
subsequence {fnk

}k, such that

‖fnk
− g‖BΨ ≥ δ, and ‖fnk

− g‖HΨ ≤ 2 .

Since moreover {fnk
− g}k converges to 0 uniformly on compact subsets of D

and, by condition (e), fnk
− g ∈ BMΨ, we may apply Lemma 2.5 and we get

that {fnk
− g}k has a subsequence equivalent to the canonical basis of c0 in

B
Ψ, and is therefore weakly null. This yields that {fn}n has a subsequence

converging to g in the weak topology of BΨ.

(b) =⇒ (f). Suppose there exists an infinite-dimensional subspace X of HΨ

on which the norms ‖ · ‖BΨ and ‖ · ‖HΨ are equivalent. We shall have finished
if we prove that X contains a subspace isomorphic to c0 because then JΨ will
fix a copy of c0.

We can assume that X is contained in BMΨ because we already know that
(b) implies (e). X being infinite-dimensional, there exists, for every n ∈ N,

fn ∈ X , such that ‖fn‖HΨ = 1, and f̂n(k) = 0, for k = 0, 1, . . . , n. By the
equivalence of the norms in X , there exists δ > 0 such that ‖fn‖BΨ ≥ δ, for
every n. The unit ball of HΨ is compact in the topology of H(D). Since

lim
n→∞

f̂n(k) = 0 , for every k ≥ 0 ,

the only possible limit of a subsequence of {fn}n is the function 0. So {fn}n
converges to 0 uniformly on compact subsets of D. As fn ∈ X ⊆ BMΨ, for

10



every n, we can apply Lemma 2.5, and we get that {fn}n has a subsequence
generating an space Y isomorphic to c0 in B

Ψ. This space Y is contained in X ,
where the norms are equivalent, so Y is also isomorphic to c0 for the norm of
HΨ. �

3 Other properties

3.1 Dunford-Pettis

Recall that an operator T : X → Y between two Banach spaces X and Y
is said to be Dunford-Pettis if {Txn}n converges in norm whenever {xn}n con-
verges weakly. Every compact operator is Dunford-Pettis. The next proposition
shows that, in “most” of the cases, these two properties are equivalent for JΨ.

Proposition 3.1 If the conjugate function of Ψ satisfies condition ∆2, then
JΨ : HΨ → B

Ψ is Dunford-Pettis if and only if it is compact.

We shall see in Section 4 that without condition ∆2 for the conjugate func-
tion, Jψ may be Dunford-Pettis without being compact.

Proof. Remark first that speaking of the conjugate function of Ψ implicitly
assume that Ψ(x)/x tends to +∞ as x goes to +∞.

Assume that JΨ is not compact. By Theorem 2.1, there are some A > 1
and a sequence {xj}j going to +∞ such that Ψ(Axj) ≥ [Ψ(xj)]

2. Setting rj =
1−1/Ψ(xj), this is equivalent to say that AΨ−1

(
1/(1−rj)

)
≥ Ψ−1

(
1/(1−rj)

2
)
.

Define:

fj(z) = xj

(
1− rj
1− rjz

)2

·

One has fj ∈ HMΨ and ‖fj‖HΨ ≤ 1 (see [7], Corollary 3.10). Since {fj}j
converges to 0 uniformly on compact subsets of D, {fj}j converges to 0 in the
weak-star topology of HΨ ([7], Proposition 3.7). But, since the conjugate func-
tion of Ψ satisfies condition ∆2, H

Ψ is the bidual of HMΨ ([7], Corollary 3.3);
hence {fj}j converges weakly to 0 in HMΨ.

On the other hand, if Sj = D(1, 1 − rj) ∩ D, one has |1 − rjz| ≤ 2(1 − rj)
for z ∈ Sj; hence, writing K = ‖fj‖BΨ , one has:

1 =

∫

D

Ψ(|fj|/K) dA ≥
∫

Sj

Ψ(|fj|/K) dA ≥ A(Sj)Ψ(xj/4K) .

Since A(Sj) ≥ α(1 − rj)
2, with 0 < α < 1, we get (since Ψ(αxj/4K) ≤

αΨ(xj/4K), by convexity):

‖fj‖BΨ ≥ (α/4)
xj

Ψ−1
(
1/(1− rj)2

) = (α/4)
Ψ−1

(
1/(1− rj)

)

Ψ−1
(
1/(1− rj)2

) ≥ α

4A
·

Therefore JΨ is not Dunford-Pettis. �

On the other hand, one has:

11



Proposition 3.2 If JΨ is Dunford-Pettis, then JΨ is weakly compact.

Proof. By Theorem 2.2, if JΨ is not weakly compact, there is a subspace X0

of HΨ isomorphic to c0 on which JΨ is an into-isomorphism; hence JΨ cannot
be Dunford-Pettis. �

We shall see in the next section that JΨ may be weakly compact without
being Dunford-Pettis.

3.2 Absolutely summing

Every p-summing operator is weakly compact and Dunford-Pettis; so it may
be expected that JΨ is p-summing for some p < ∞. The next results show that
this is never the case as soon as Ψ grows faster than all the power functions.

Recall that an operator T : X → Y between two Banach spaces X and Y is
called (p, q)-summing if there is a constant C > 0 such that

( n∑

k=1

‖Txk‖p
)1/p

≤ C sup
‖x∗‖X∗≤1

( n∑

k=1

|x∗(xk)|q
)1/q

,

for every finite sequence (x1, . . . , xn) in X . If q = p, it is said p-summing. Every
p-summing operator is (p, q)-summing for q ≤ p.

Theorem 3.3 If JΨ : HΨ → B
Ψ is p-summing, then, for every q > p, Ψ(x) =

O (xq) for x large enough. Moreover, if p < 2, then JΨ is compact.

In order to prove this, we need two lemmas.

Lemma 3.4 If the canonical injection IΨ : A → B
Ψ is (p, 1)-summing, where

A = A(D) is the disk algebra, then Ψ(x) = O (x2p) for x large enough.
In particular, Jr : H

r → B
r is (p, 1)-summing for no p < r/2, and, if Ψ ∈

∆0, then JΨ is (p, 1)-summing for no p < ∞.

Recall that the disk algebra is the space of continuous functions on D which
are analytic in D.

We refer to [9] for a detailed study of r-summing Carleson embeddingsHr →
Lr(µ). In particular, it follows from these results that Jr : H

r → B
r is 1-

summing for 1 ≤ r < 2. On the other hand, it is easy to see that J2 : H
2 → B

2

is not Hilbert-Schmidt (i.e. not 2-summing): for the canonical orthonormal
basis {zn}n and {

√
n+ 1 zn}n of H2 and B

2, J2 is the diagonal operator of
multiplication by {1/

√
n+ 1}n. It also follows from [9] that, for r ≥ 2, Jr is

p-summing for no finite p.

Proof. Assume that we do not have Ψ(x) = O (x2p) for x large enough. Then
lim supx→+∞ Ψ(x)/x2p = +∞. Given any K > 0, take y > 0 such that

Ψ(y)/y2p ≥ K and such that h = 1/
√
Ψ(y) ≤ 1/2. Let N be the integer

part of (1/h) + 1. Writing ξj = e2πij/N , we set:

uj(z) =
h2

[1− (1− h) ξjz]2
·

12



We have uj ∈ A(D). By [7], Lemma 5.6, one has, since h ≥ 1/N :

N−1∑

j=0

|uj(eit)| ≤ N h2 1− (1 − h)2N

[1− (1 − h)2][1− (1− h)N ]2
≤ e2

(1 − e)2
:= C .

Hence:

sup
‖x∗‖A∗≤1

N−1∑

j=0

|x∗(uj)| ≤ C .

On the other hand, it is easy to see that |uj(z)| ≥ 1/9 when |z−(1−h)ξj| < h;
hence, if Sj = {z ∈ D ; |z − (1− h)ξj | < h}, one has, since A(Sj) = h2:

1 =

∫

D

Ψ
( |uj(z)|
‖uj‖BΨ

)
dA(z) ≥

∫

Sj

Ψ
( 1/9

‖uj‖BΨ

)
dA ≥ h2Ψ

( 1/9

‖uj‖BΨ

)
,

so ‖uj‖BΨ ≥ 1/9Ψ−1(1/h2). Since y = Ψ−1(1/h2), one gets:

N−1∑

j=0

‖uj‖pBΨ ≥ (1/9)p
N

yp
≥ (1/9)p

[
Ψ(y)

y2p

]1/2
≥ K1/2

9p
·

This yields that the (p, 1)-summing norm of IΨ should be greater than
K1/2p/9C, and, as K is arbitrary, that IΨ is not (p, 1)-summing. �

Remark. When IΨ : A →֒ B
Ψ is p-summing, we have this shorter argument.

By Pietsch’s factorization theorem, this IΨ factors through Hp. It follows from
[7], Theorem 4.10, that αh2 ≤ ρA(h) ≤ 1/Ψ−1(A/h1/p), for some constants
0 < α < 1 and A > 0, and h small enough. That means that Ψ(x) ≤ C x2p for
x large enough.

Lemma 3.5 If the canonical injection IΨ : A → B
Ψ is 1-summing, then JΨ is

compact.

Proof. The canonical injection J1 : H
1 → B

1 (as well as JΨ whenever Ψ ∈ ∆2)
is compact. Hence we may assume that HΨ is not H1 and hence that Ψ(x)/x
tends to +∞ as x tends to +∞.

Assume that JΨ is not compact. Then, as in the proof of Proposition 3.1,
there are some A > 1 and a sequence {xk}k going to +∞ such that Ψ(Axk) ≥
[Ψ(xk)]

2. Setting hk = 1/Ψ(xk), we define, as in the proof of Proposition 3.4:

uk,j(z) =
h2
k

[1− (1 − hk)ξk,jz]2
,

where ξk,j = e2πij/Nk , with Nk the integer part of (1/hk)+ 1. One has uk,j ∈ A
and (see the proofs of the two quoted propositions):

Nk−1∑

j=0

|uk,j(eit)| ≤ C and ‖uk,j‖BΨ ≥ δα

A

1

Ψ−1(1/hk)
·
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It follows that:

Nk−1∑

j=0

‖uk,j‖BΨ ≥ δα

A

Nk

Ψ−1(1/hk)
≥ δα

A

1/hk
Ψ−1(1/hk)

=
δα

A

Ψ(xk)

xk
−→
k→∞

+∞.

Hence IΨ is not 1-summing. �

Proof of Theorem 3.3. Since JΨ : HΨ → B
Ψ is p-summing and the canon-

ical injection IΨ : A → B
Ψ factors as IΨ : A → HΨ → B

Ψ, this injection is
p-summing. By Lemma 3.4, Ψ(x) = O (x2p) for x large enough. Hence we
have the factorization A → H2p → HΨ → B

Ψ. Since the first injection is 2p-
summing and the last one is p-summing, the composition is max(1, p1)-summing,
with 1

p1
= 1

2p + 1
p (see [2], Theorem 2.22), i. e. p1 = 2

3 p. If p1 > 1, we can use

again Lemma 3.4 with p1 instead of 2p; we get that Ψ(x) = O (x2p1 ), for x large
enough, and that the factorization IΨ : A → H2p1 → HΨ → B

Ψ is max(1, p2)-
summing, with 1

p2
= 1

2p1
+ 1

p . Going on the same way, we get a decreas-

ing sequence {pn}n such that the canonical injection A → B
Ψ is max(1, pn)-

summing and 1
pn+1

= 1
2pn

+ 1
p · Writing pn = αnp, we get αn+1 = 2αn

2αn+1 ; hence

pn −→
n→∞

p/2. In particular, Ψ(x) = O (xq) for every q > p.

If p < 2, one has max(1, pn) = 1 for n large enough, and Lemma 3.4 implies
that JΨ is compact. �

Remark 1. It is not clear whether JΨ p-summing, with p ≥ 2, implies that JΨ
is compact. However, when r ≥ 2, Jr : H

r → B
r is p-summing for no p < ∞

(see [9]).

Remark 2. An operator T : X → Y between two Banach spaces is said to be
finitely strictly singular (or superstrictly singular) if for every ε > 0, there is an
integer Nε ≥ 1 such that, for every subspace X0 of X of dimension ≥ Nε, there
is an x ∈ X0 such that ‖Tx‖ ≤ ε ‖x‖. Every finitely strictly singular operator is
strictly singular. It is not difficult to see that every compact operator is finitely
strictly singular and it is shown in [10] (see also [5], Corollary 2.3) that every
p-summing operator is finitely strictly singular. We do not know when JΨ is
finitely strictly singular.

3.3 Order boundedness

Recall that an operator T : X → Y from a Banach space X into a Banach
lattice Y is said to be order bounded if there is y ∈ Y+ such that |Tx| ≤ y for
every x in the unit ball of X . Since the Bergman-Orlicz space BΨ is a subspace
of the Banach lattice LΨ(D,A), we may study the order boundedness of JΨ.
Actually, we are going to see that the natural space for the order boundedness
of JΨ is not LΨ(D,A), but the weak Orlicz space LΨ,∞(D,A), the definition of
which we are recalling below (see [7], Definition 3.16).
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Definition 3.6 Let (S,S, µ) be a measure space; the weak-LΨ space LΨ,∞ is
the set of the (classes of) measurable functions f : S → C such that, for some
constant c > 0, one has, for every t > 0:

µ(|f | > t) ≤ 1

Ψ(ct)
·

One has LΨ ⊆ LΨ,∞ and ([7], Proposition 3.18) the equality LΨ = LΨ,∞

implies that Ψ ∈ ∆0. On the other hand, this equality holds when Ψ grows
sufficiently; for example, if Ψ satisfies the condition ∆1: xΨ(x) ≤ Ψ(αx), for
some constant α > 1 and x large enough.

Proposition 3.7 JΨ : HΨ → B
Ψ is always order bounded into LΨ,∞(D,A).

Proof. Since (see [7], Lemma 3.11):

(3.1)
1

4
Ψ−1

( 1

1− |z|
)
≤ sup

‖f‖
HΨ≤1

|f(z)| ≤ 4Ψ−1
( 1

1− |z|
)
,

one has, denoting by S(z) the supremum in (3.1), for t large enough:

A(|S| > t) ≤ A
(
{z ∈ D ; |z| > 1− 1/Ψ(t/4)}

)
≤ 2

Ψ(t/4)
≤ 1

Ψ(t/8)
,

and the result follows. �

Since we also have, for t large enough:

A(|S| > t) ≥ A
(
{z ∈ D ; |z| > 1− 1/Ψ(4t)}

)
≥ 1

Ψ(4t)
,

we get:

Corollary 3.8 JΨ is order bounded into LΨ(D,A) if and only if LΨ = LΨ,∞.
This is the case if Ψ ∈ ∆1.

Remark. Contrary to the compactness, or the weak compactness, which re-
quires that Ψ does not grow too fast, the order boundedness of JΨ into LΨ(D,A)

holds when Ψ grows fast enough. Nevertheless, for Ψ(x) = exp[
(
log(x+1)

)2
]−1,

JΨ is compact and order bounded into LΨ(D,A).

When JΨ is weakly compact, JΨ maps HΨ into BMΨ (Theorem 2.2); hence,
we may ask whether JΨ may be order bounded into MΨ(D,A); however, we
have:

Proposition 3.9 JΨ is never order bounded into MΨ(D,A).

Proof. If it were the case, we should have S ∈ MΨ(D,A), and hence
∫

D

Ψ

[
4× 1

4
Ψ−1

( 1

1− |z|
)]

dA(z) < +∞ ,

which is false. �
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4 An example

Theorem 4.1 There exists an Orlicz function Ψ such that JΨ is weakly compact
and Dunford-Pettis, but which is not compact.

Note that such an Orlicz function is very irregular: Ψ /∈ ∆2, Ψ /∈ ∆0, so,
for every A > 1, Ψ(Ax)/Ψ(x) is not non-decreasing for x large enough, and the
conjugate function of Ψ does not satisfies condition ∆2.

The following lemma is undoubtedly well-known, but we have found no ref-
erence, so we shall give a proof. Recall that a sublattice X of L0(µ) is solid if
|f | ≤ |g| and g ∈ X implies f ∈ X and ‖f‖ ≤ ‖g‖.

Lemma 4.2 Let (S,S, µ) be a measure space, and let X be a solid Banach
sublattice of L0(µ), the space of all measurable functions. Then, for every weakly
null sequence {fn}n in X and every sequence {An}n of disjoint measurables sets,
the sequence {fn1IAn

}n converges weakly to 0 in X.

Proof. If the conclusion does not hold, there are a continuous linear functional
σ : X → C and some δ > 0 such that, up to taking a subsequence, |σ(fn1IAn

)| ≥
δ. Set, for every measurable set A ∈ S:

µn(A) = σ(fn1IA) .

Then µn is a finitely additive measure with bounded variation. By Rosenthal’s
lemma (see [3], Lemma I.4.1, page 18, or [1], Chapter VII, page 82), there is an
increasing sequence of integers {nk}k such that:

∣∣∣µnk

( ⋃

l 6=k

Anl

)∣∣∣ ≤ |µnk
|
( ⋃

l 6=k

Anl

)
≤ δ/2 .

Now, if A =
⋃
l≥1 Anl

, {fnk
1IA}k is weakly null, but:

|σ(fnk
1IA)| ≥ |σ(fnk

1IAnk
)| − |µnk

|
( ⋃

l 6=k

Anl

)
≥ δ − δ

2
=

δ

2
,

so we get a contradiction. �

Proof of Theorem 4.1. We begin by defining a sequence {xn}n of positive
numbers in the following way: set x1 = 4 and, for every n ≥ 1, xn+1 > 2xn is
the abscissa of the second intersection point of the parabola y = x2 with the
straight line containing (xn, x

2
n) and (2xn, x

4
n); we have xn+1 = x3

n − 2xn (for
example, x2 = 56). Define Ψ: [0,+∞) → [0,+∞) by Ψ(x) = 4x for 0 ≤ x ≤ 4,
and, for n ≥ 1:

(4.1) Ψ(xn) = x2
n , Ψ(2xn) = x4

n , Ψ affine between xn and xn+1 .

Then Ψ is an Orlicz function and

(4.2) x2 ≤ Ψ(x) ≤ x4 for x ≥ 4.
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For this Orlicz function Ψ, JΨ is not compact, since Ψ(2x)/[Ψ(x)]2 does not
tend to 0. However, JΨ is weakly compact, because one has the factorization
HΨ →֒ H2 →֒ B

4 →֒ B
Ψ (by (4.2) and Lemma 2.4).

Assume that JΨ is not Dunford-Pettis: there exists a weakly null sequence
{fn}n in the unit ball of HΨ which does not converges for the norm in B

Ψ.
Then {fn}n converges uniformly to 0 on the compact subsets of D (since it is
weakly null) and we may assume that ‖fn‖BΨ ≥ δ for some δ > 0. We may
also assume that ‖fn‖∞ −→

n→∞
+∞ because if {fn}n were uniformly bounded, we

should have ‖fn‖BΨ −→
n→∞

0, by dominated convergence.

We are going to show that there exist a subsequence {fnk
}k and pairwise dis-

joint measurable sets Ak ⊆ T such that the sequence {fnk
1IAk

}k ⊆ LΨ(T,m) is
equivalent to the canonical basis of ℓ1, whence a contradiction with Lemma 4.2.

It is worth to note from now that the Poisson integral P maps boundedly
L2(T) into L4(D). Indeed, L2(T) = H2 ⊕ H2

0 and the canonical injection is
bounded from H2 into B

4, by Lemma 2.4.

We have seen in the proof of Lemma 2.5 that there exist a subsequence
{fnk

}k and disjoint measurable annuli C1 = {z ∈ D ; |z| ≤ r1} and Ck =
{z ∈ D ; rk−1 < |z| ≤ rk}, k ≥ 2, with 0 < r1 < r2 < · · · < rn < · · · < 1,
such that ‖fnk

1ICk
‖LΨ(D) ≥ δ/2. The assumptions of that lemma are satisfied

here: ‖fn‖HΨ ≤ 1, ‖fn‖BΨ ≥ δ, {fn}n converges uniformly to 0 on the compact
subsets of D, and fn ∈ BMΨ because HΨ ⊆ BMΨ, since JΨ is weakly compact.
Then:

Fact 1. There exist two sequences {αk}k and {βk}k, with βn > αn −→
n→∞

+∞
such that, if gk = f∗

nk
1I{αk≤|f∗

nk
|≤βk}, then:

‖P(gk)‖LΨ(D) ≥ δ/3 ,

where f∗
nk

is the boundary value of fnk
on T.

Proof. 1) Let αk = δ
12 Ψ

−1
(
1/A(Ck)

)
and vk = P

(
f∗
nk

1I{|f∗

nk
|<αk}

)
1ICk

. One

has:
∫

D

Ψ
(
|vk|/(δ/12)

)
dA =

∫

Ck

Ψ
(
|vk|/(δ/12)

)
dA ≤ Ψ

(
αk/(δ/12)

)
A(Ck) = 1 ,

so ‖vk‖LΨ(D) ≤ δ/12. Since P(f∗
nk
) = fnk

, we have ‖P(f∗
nk
) 1ICk

‖LΨ(D) =
‖fnk

1ICk
‖LΨ(D) ≥ δ/2, and we get:

‖P(f∗
nk
1I{|f∗

nk
≥αk}) 1ICk

‖LΨ(D) ≥ ‖fnk
1ICk

‖LΨ(D) − ‖vk‖LΨ(D) ≥
δ

2
− δ

12
=

5δ

12
·

2) Let wk = f∗
nk
1I{|f∗

nk
|≥αk}. Since P(wk 1I{|wk|>β}) tends to 0 uniformly on

Ck when β goes to infinity, Lebesgue’s dominated convergence theorem gives:

‖P(wk 1I{|wk|>β}) 1ICk
‖LΨ(D) ≤ ‖P(wk 1I{|wk|>β}) 1ICk

‖L4(D) −→
β→+∞

0 ,
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so there is some βk > αk such that ‖P(wk 1I{|wk|>β}) 1ICk
‖LΨ(D) ≤ δ/12.

We then have, with gk = f∗
nk

1I{αk≤|f∗

nk
|≤βk}:

‖P(gk)‖LΨ(D) ≥ ‖P(gk) 1ICk
‖LΨ(D) ≥

5δ

12
− δ

12
=

δ

3
,

and that ends the proof of Fact 1. �

Fact 2. There are a further subsequence, denoted yet by {fnk
}k, and pairwise

disjoint measurable subsets Ek ⊆ {αk ≤ |f∗
nk
| ≤ βk}, such that, if hk = f∗

nk
1IEk

,
then:

‖P(hk)‖LΨ(D) ≥ δ/4 .

Proof. First, since gk ∈ L∞(T) ⊆ MΨ(T), there exists εk > 0 such that
m(A) ≤ εk implies ‖gk 1IA‖LΨ(T) ≤ δ/(12 ‖P‖) (where ‖P‖ stands for the norm

of P : L2(T) → L4(D)). Now, P : LΨ(T) → LΨ(D) is bounded and its norm is
≤ ‖P‖, thanks to the factorization LΨ(T) →֒ L2(T) →֒ L4(D) →֒ LΨ(D). Hence
‖P(gk 1IA)‖LΨ(D) ≤ δ/12 for m(A) ≤ εk.

Let Bk = {αk ≤ |f∗
nk
| ≤ βk}. Up to taking a subsequence, we may assume

that
∑
l>km(Bl) ≤ εk. Let

Ek = Bk \
⋃

l>k

Bl .

The sets Ek, k ≥ 1, are pairwise disjoint, and

‖P(gk 1IEk
)‖LΨ(D) ≥ ‖P(gk 1IBk

)‖LΨ(D) − ‖P
(
gk 1I⋃

l>k Bl

)
‖LΨ(D) ≥

δ

3
− δ

12
=

δ

4
;

so we get the Fact 2 with hk = gk 1IEk
= f∗

nk
1IEk

. �

Set
Fk = {z ∈ Ek ; Ψ

(
|f∗
nk
(z)

)
| ≤ M |f∗

nk
(z)|2} .

For z ∈ Ek \ Fk, one has:
∫

Ek\Fk

|f∗
nk
|2 dm ≤ 1

M

∫

T

Ψ(|f∗
nk
)| dm ≤ 1

M
,

so ‖f∗
nk

1IEk\Fk
‖L2(T) ≤ 1/

√
M and:

‖P(f∗
nk

1IEk\Fk
)‖LΨ(D) ≤ ‖P(f∗

nk
1IEk\Fk

)‖L4(D)

≤ ‖P‖ ‖(f∗
nk

1IEk\Fk
)‖L2(T) ≤

‖P‖√
M

≤ δ

8
,

for M large enough. It follows that, for M large enough, ‖P(f∗
nk

1IFk
)‖LΨ(D) ≥

δ/8 and

(4.3) ‖f∗
nk

1IFk
‖LΨ(D) ≥ δ/(8 ‖P‖) .
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Now, we may assume that, for some α > 0,
∫

T

|f∗
nk
|2 1IFk

dm ≥ α ,

because, if not, there would be a subsequence {f∗
nkj

1IFkj
}j converging to 0 in

L2(T); but then {P
(
fnkj

1IFkj

)
}j would converge to 0 in B

4, and hence in B
Ψ,

contrary to (4.3). It follows, using (4.2), that:

(4.4)

∫

Fk

Ψ(|f∗
nk
|) dm ≥ α .

The following lemma is now the key of the proof.

Lemma 4.3 Let δn = 2xn−1/xn = 2/(x2
n−1 − 2). If Ψ(x) ≤ Mx2 and x ≥ xn,

then, for n large enough (n ≥ N), one has Ψ(εx) ≥ CM εΨ(x) for δn ≤ ε ≤ 1.

Proof. We may assume that xn ≤ x < xn+1, because if xk ≤ x < xk+1 with
k ≥ n, then ε ≥ δn implies ε ≥ δk.

Now, remark that:

(4.5)
Ψ(y)

Ψ(x)
≤ 4

y

x
, for 2xn ≤ x ≤ y ≤ xn+1 .

Indeed, on the one hand, Ψ(y)−Ψ(xn)
Ψ(x)−Ψ(xn)

= y−xn

x−xn
≤ y

x/2 = 2 y
x ; and, on the other

hand, Ψ(y) − Ψ(xn) ≥ Ψ(y) − Ψ(y/2) ≥ Ψ(y) − 1
2 Ψ(y) = 1

2 Ψ(y) , so Ψ(y)
Ψ(x) ≤

Ψ(y)
Ψ(x)−Ψ(xn)

≤ 2 Ψ(y)−Ψ(xn)
Ψ(x)−Ψ(xn)

≤ 4 y
x ·

We shall separate three cases:

1) εx ≤ xn ≤ x ≤ 2xn. Then εx ≥ εxn and hence Ψ(εx) ≥ Ψ(εxn).
But 2xn−1 ≤ εxn ≤ xn, since ε ≥ δn; hence (4.5) implies that Ψ(εx) ≥
(ε/4)Ψ(xn) = (ε/4)x2

n. On the other hand, one has, by hypothesis, Ψ(x) ≤
Mx2 ≤ M(2xn)

2, so we get Ψ(εx) ≥ (ε/16M)Ψ(x).

2) xn ≤ εx ≤ x ≤ 2xn. Then, since 1 ≤ 1/ε:

Ψ(x)

Ψ(εx)
≤ Mx2

Ψ(xn)
≤ M(2xn)

2

x2
n

= 4M ≤ 4M

ε
·

3) For x ≥ 2xn, remark that the conditions Ψ(x) ≤ Mx2 and x ≥ 2xn imply
that x ≥ x2

n/
√
M . Indeed, if x ≥ 2xn, then Ψ(x) ≥ Ψ(2xn) = x4

n, and the
condition Ψ(x) ≤ Mx2 implies x4

n ≤ Mx2, i.e. x ≥ x2
n/

√
M .

In this case, one has εx ≥ εx2
n/

√
M ≥ δnx

2
n/

√
M = 2(xn−1/xn)x

2
n/

√
M =

2xn−1xn/
√
M ≥ 2xn, if xn−1 ≥

√
M . Hence (4.5) gives, for 2xn ≤ x < xn+1

(since then 2xn ≤ εx ≤ x < xn+1):

Ψ(x)

Ψ(εx)
≤ 4

x

εx
=

4

ε
·

That ends the proof of Lemma 4.3. �
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Extract now a further subsequence of {fnk
}, yet denoted by {fnk

}, in order
that (see Fact 1) αk ≥ xN+k. Lemma 4.3 holds, with x = Ψ(|f∗

nk
(z)|), z ∈ Fk,

for every k ≥ 1; one has (since, by definition, Ψ(|fnk
|) ≤ M |fnk

|2 on Fk):

∫

Fk

Ψ(ε |f∗
nk
|) dm ≥ εC/α := c ε , for δN+k ≤ ε ≤ 1 .

The proof of Theorem 4.1 reaches now its end: put uk = f∗
nk

1IFk
, and

take an arbitrary sequence of complex numbers such that
∑

k≥1 |λk| = 1. Let
δ0 =

∑
k≥N δk. One has δ0 < 1, because we may assume that N had been taken

large enough. One gets:

∫

T

Ψ
(∣∣∣

∑

k≥1

λkuk

∣∣∣
)
dm =

∑

k≥1

∫

Fk

Ψ(|λkfnk
|) dm

≥
∑

|λk|≥δN+k

c |λk|+
∑

|λk|<δN+k

∫

Fk

Ψ(|λkfnk
|) dm

≥
∑

|λk|≥δN+k

c |λk| = c
(
1−

∑

|λk|<δN+k

|λk|
)

≥ c
(
1−

∑

k≥N

δk

)
= c (1− δ0) := c0 .

Since c0 < 1, this implies, by convexity, that

∥∥∥
∑

k≥1

λkuk

∥∥∥
LΨ(T)

≥ c0 .

Hence {uk}k is equivalent to the canonical basis of ℓ1, and that achieves the
proof of Theorem 4.1. �

Remarks. 1) It follows from Theorem 3.3 that, for this Ψ, JΨ is not p-summing

for p < 4. By modifying the definition of Ψ (taking Ψ(xn) = x
r/2
n and Ψ(2xn) =

xrn), we get, for every 4 ≤ r < ∞, an Orlicz function Ψ such that JΨ is Dunford-
Pettis and weakly compact, without being p-summing for p < r, and without
being compact. We do not know whether it is possible to have JΨ p-summing
for no finite p.

2) Let us point out that the fact that JΨ is Dunford-Pettis does not trivially
follows from its weak compactness: HΨ does not have the Dunford-Pettis prop-
erty. In fact, if it were the case, the weakly compact injection HΨ →֒ H2 would
be Dunford-Pettis, and hence also H4 →֒ H2 (since H4 →֒ HΨ →֒ H2). But
it is not the case: the sequence {zn}n converges weakly to 0 in H4, whereas it
does not converges in norm to 0 in H2.
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Proposition 4.4 There is an Orlicz function Ψ for which JΨ is weakly compact,
but not Dunford-Pettis.

Proof. Let us call Ψ0 the Orlicz function constructed in Theorem 4.1, and let
Ψ(x) = Ψ0(x

2). Then, with β = 2, Ψ(βx) = Ψ0(4x
2) ≥ 4Ψ0(x

2) = (2β)Ψ(x);
that means that the conjugate function of Ψ satisfies ∆2.

JΨ is weakly compact (since JΨ factors as HΨ →֒ H4 →֒ B
8 →֒ B

Ψ), but
is not compact, since [Ψ(

√
xn)]

2 = Ψ(
√
2
√
xn). Since the conjugate function

satisfies ∆2, JΨ is not Dunford-Pettis, by Proposition 3.1. �
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