
HAL Id: hal-00482747
https://hal.science/hal-00482747

Submitted on 11 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Maximum Margin Matrix Factorization
Markus Weimer, Alexandros Karatzoglou, Alex Smola

To cite this version:
Markus Weimer, Alexandros Karatzoglou, Alex Smola. Improving Maximum Margin Matrix Factor-
ization. Machine Learning, 2008, 72 (3), pp.263-276. �hal-00482747�

https://hal.science/hal-00482747
https://hal.archives-ouvertes.fr


Improving Maximum Margin Matrix

Factorization

Markus Weimer1, Alexandros Karatzoglou2, and Alex Smola3

1 Technische Universität Darmstadt, Germany, weimer@acm.org
2 INSA de Rouen, LITIS, France, alexis@ci.tuwien.ac.at
3 NICTA, Canberra 2601, Australia, alex.smola@gmail.com

Abstract. Collaborative filtering is a popular method for personaliz-
ing product recommendations. Maximum Margin Matrix Factorization
(MMMF) has been proposed as one successful learning approach to this
task and has been recently extended to structured ranking losses. In
this paper we discuss a number of extensions to MMMF by introducing
offset terms, item dependent regularization and a graph kernel on the rec-
ommender graph. We show equivalence between graph kernels and the
recent MMMF extensions by Mnih and Salakhutdinov [1]. Experimental
evaluation of the introduced extensions show improved performance over
the original MMMF formulation.

1 Introduction

Collaborative filtering has gained much attention in the machine learning com-
munity due to its applications in electronic commerce sites such as those of
Amazon, Apple and Netflix. Such sites typically offer personalized recommenda-
tions to their customers. The quality of these suggestions is crucial to the overall
success, since good recommendations will increase the propensity of a purchase.

However, suggesting the right items is a highly nontrivial task: (1) There
are many items to choose from. (2) Customers are willing to consider only a
small number of recommendations (typically in the order of ten). Collaborative
filtering addresses this problem by learning the suggestion function for a user
from ratings provided by this and other users on items.

The known data can be thought of a sparse n×m matrix Y of rating/purchase
information, where n denotes the number of users and m is the number of items.
In this context, Yij indicates the rating of item j given by user i. Typically, the
rating is given on a five star scale and thus Y ∈ {0, . . . , 5}n×m, where the value
0 indicates that a user did not rate an item. In this sense, 0 is special since it
does not indicate that a user dislikes an item but rather that data is missing.

Related Work A common approach to collaborative filtering is to fit a factor
model to the data. For example by extracting a feature vector for each user and
item in the data set such that the inner product of these features minimizes an
explicit or implicit loss functional (e.g. [2] following a probabilistic approach).



The underlying idea behind these methods is that both user preferences and
item properties can be modeled by a number of factors.

The basic idea of matrix factorization approaches is to fit the original Y

matrix with a low rank approximation F . More specifically, the goal is to find
such an approximation that minimizes the sum of the squared distances between
the known entries in Y and their predictions in F . One possibility of doing so
is by using a Singular Value Decomposition of Y and by using only a small
number of the vectors obtained by this procedure. In the information retrieval
community this numerical operation is commonly referred to as Latent Semantic
Indexing.

Note, however, that this method does not do justice to the way Y was formed.
An entry Yij = 0 indicates that we did not observe a (user,object) pair. It does,
however, not indicate that user i disliked object j. In [3], an alternative approach
is suggested which is the basis of the method described in this paper. We aim
to find two matrices U and M where U ∈ Rn×d and M ∈ Rd×m such that
F = UM with the goal to approximate the observed entries in Y rather than
approximating all entries at the same time.

In general, finding a globally optimal solution of the low rank approximation
problem is unrealistic: in particular the aproach proposed by [3] for computing
the a weighted factorization, which is relavant in collaborative filtering settings,
requires semidefinite programming which is feasible only for hundreds, at most,
thousands of terms. Departing from the goal of minimizing the rank, Maximum
Margin Matrix Factorization (MMMF) aims at minimizing the Froebenius norms
of U and M , resulting in a set of convex problems when taken in isolation
and thus tractable by current optimization techniques. It was shown in [4, 5]
that optimizing the Froebenius norm is a good proxy for optimizing the rank
in its application to model complexity control. Similar ideas based on matrix
factorization have been also proposed in [1, 6].

Recently [7] proposed to extend the general MMMF framework in order to
minimize structured (ranking) losses instead of the sum of squared errors on the
known ratings. Key in the reasoning is that collaborative filtering is often at
the heart of recommender systems. For those, only the ranking of unrated items
in terms of the user preferences matter. To enable effective optimization of the
structured ranking loss, a novel optimization technique [8] was used to minimize
the loss in terms of the Normalized Discounted Cumulative Gain (NDCG).

Our Contribution Building upon the results outlined above, we introduce a
number of extensions to the these MMMF models.

– An efficient means of computing the gradient in multiclass ordinal regression.
– A bias for movies and users to deal with heterogeneity of movies and users.
– An automatic adaptive regularization scheme which can deal with the vary-

ing number of movies per user and likewise users per movie.
– A graph kernel that captures similarities between users and items in the

recommender graph in the spirit of [1, 9]. We prove that both methods are
essentially equivalent and equal to a graph kernel on the recommender graph.



For each of these extensions, we show how they can be integrated into the MMMF
framework such that structured estimation as proposed in [7] is still feasible.

The paper is organized as follows: Section 2 describes the general MMMF
model, its generalization to structured estimation and the use of state-of-the-art
optimization methods to train the model. Section 3 describes our extensions to
that model. In section 4, we discuss our experimental evaluation and section 5
concludes the paper with remarks on future work.

2 Maximum Margin Matrix Factorization

2.1 Optimization Problem

MMMF computes a dense approximation F of the sparse matrix Y which forms
the training data. The approximation is based on the modeling assumption that
any particular rating of item j by user i is a linear combination of item and
user features. Thus, the approximation can be written as F = UM . Here, Ui∗

represents the feature vector for user i and M∗j is the feature vector for item j.
The predicted rating of item j by user i is then the inner product between these
feature vectors:

Fij = 〈Ui∗, M∗j〉

Finding the appropriate matrices U and M is achieved by minimizing the reg-
ularized loss functional where the Froebenius norm (‖U‖

2

F = trUU⊤) of the U

and M matrices is used for capacity control and thus overfitting prevention. The
Froebenius norm has been introduced to the MMMF framework and shown to
be a proper norm on F [5]. This leads us to the following optimization problem:

minimize
U,M

L(F, Y ) +
λm

2
‖M‖2

F +
λu

2
‖U‖2

F (1)

Here λm, λu are the regularization parameters for the M and U matrix respec-
tively and F = UM . Moreover, L(F, Y ) is a loss measuring the discrepancy
between Y and F .

The optimization problem can be solved exactly by using a semi definite
reformulation [4]. However, this dramatically limits the size of the problem to
several thousand users / movies. Instead, we exploit the fact that the problem
is convex in U and M respectively when the other variables are fixed to perform
subspace descent [10].

2.2 The Loss

Squared Loss In the original MMMF formulation, L(F, Y ) was chosen to be the
sum of the squared errors [4]:

L(F, Y ) =
1

2

n
∑

i=0

m
∑

j=0

Sij(Fij −Yij)
2 where Sij =

{

1 if user i rated item j

0 otherwise
(2)



This loss decomposes for the non zero elements of Y and consequently it is
amenable to efficient minimization by repeatedly solving a linear system of equa-
tions for each row / column of U and M separately (i.e. in parallel) — the ob-
jective function in (1) is convex quadratic in U and M respectively whenever
the other term is fixed.

The gradient of L(F, Y ) with respect to F can be computed efficiently, since
∂Fij

L(F, Y ) = SijFij − Yij . This means that we have

∂F L(F, Y ) = S.∗(F − Y ) (3)

where .∗ implies element-wise multiplication of S with F − Y . In other words,
the gradient of the loss is a sparse matrix.

Non separable Loss This decomposition into losses, depending on Yij and Fij

alone, fails when dealing with structured losses that take an entire row of predic-
tions, i.e. all predictions for a given user into account. Such losses are closer to
what is needed in recommender systems, since users typically want to get good
recommendations about which movies they are interested in. A fairly accurate
description of which movies they hate is probably less desirable. The recent pa-
per [7] describe an optimization procedure which is capable of dealing with such
problems. In general, a non separable loss takes on the following form:

L(F, Y ) :=
n

∑

i=1

l(Fi∗, Yi∗) (4)

Gradients of L(F, Y ) decompose immediately into ∂Fi∗
l(Fi∗, Yi∗). This allows for

efficient gradient computation.

Ordinal Loss We now discuss an extension of a common ranking loss, namely
the ordinal regression score, as suggested in [11]. For simplicity of notation we
only study a row-wise loss l(f, y), where we assume that f := Fi∗ and y := Yi∗

have already been compressed to contain only nonzero entries in Yi∗ with the
corresponding entries of Fi∗ having been selected accordingly.

Assume that y is of length m containing mj movies of score j, that is
∑

j mj =
m. For a given pair of movies (u, v) we consider them to be ranked correctly
whenever yu > yv implies that also fu > fv. A loss of 1 is incurred whenever
this implication does not hold. That is, we count

∑

yu>yv

C(yu, yv) {fu ≤ fv} . (5)

Here C(yu, yv) denotes the cost of confusing a movie with score yu with one

of score yv. Since there are n = 1

2

[

m2 −
∑

j m2
j

]

terms in the sum we need

to renormalize the error by n in order to render losses among different users
comparable. Moreover, we need to impose a soft-margin loss on the comparator



Algorithm 1.1. (l, g) = l(f, y, C)

input Vectors f and y, score matrix C
output Loss l and gradient g

initialize l = 0 (loss) and g = 0 (gradient)
for i = 1 to n do

bi = 0 (lower counter) and ui = mi (upper counter)
end for

Let c = [f − 1

2
, f + 1

2
] ∈ R

2m

Rescale C ← 2C/(m2 − ‖u‖2
2
)

index = Argsort(c) (find overlaps between pairs)
for i = 1 to 2m do

j = index(i) mod m and z = yj

if index(i) ≤ m (from the first half) then

for k = 1 to z − 1 (we should be better than those) do

l← l − C(k, z)ukcj and gj ← gj − C(k, z)uk

end for

bz ← bz + 1 (there are now bz + 1 elements below us)
else

for (they should be better than us) k = z + 1 to n do

r ← r + C(z, k)bkcj+m and gj ← gj + C(z, k)bk

end for

uz ← uz − 1 (we’ve just seen one more term from above)
end if

end for

{fu ≤ fv} to obtain a convex differentiable loss. This yields the loss

l(f, y) = 2
[

m2 −
∑

j

m2
j

]−1 ∑

yu>yv

C(yu, yv) max(0, 1 − fu + fv). (6)

The gradient ∂f l(f, y) can be computed in a straightforward fashion via

∂f l(f, y) = −2

∑

yu>yv
C(yu, yv)

m2 −
∑

j m2
j

(7)

In general, computing losses using preferences such as (6) is an O(m2) operation.
However, we may extend the reasoning of [12] to more than binary scores to
obtain an O(m log m) algorithm instead. Algorithm 1.1 relies on sorting f before
taking sums. It uses the decomposition of the soft margin loss via

max(0, 1 − fu + fv) = max(0, (fv + 0.5) − (fu − 0.5)) = max(0, cv+m − cv)

where c = [f − 0.5, f + 0.5] to disentangle upper and lower bounds. It then
traverses the sorted list of c to check for how many terms an upper or lower
bound is violated by means of auxiliary counters b and u.



Fig. 1. A convex function (solid) is bounded from below by Taylor approximations of
first order (dashed). Adding more terms improves the bound.

2.3 Optimization

Although (1) is not jointly convex in U and M , it is still convex in U if M

is kept fixed and convex in M if U is kept fixed. We thus resort to alternat-
ing subspace descent as proposed by [10] by keeping U fixed and minimizing
over M and repeating the process for M with U fixed. We have the following
procedure:

repeat

For fixed M minimize (1) with respect to U .
For fixed U minimize (1) with respect to M .

until no more progress is made or a maximum iteration count is reached.

While this approach does not ensure that a global minimum is reached, it proves
to be rather efficient and scalable for problems of up to 108 nonzero entries in
Y (Netflix)[7].

Our implementation uses a bundle method solver for the two optimization
steps over U and M . Recently, bundle methods have been introduced with
promising results for optimizing regularized risk functions in supervised machine
learning[8]. Bundle methods are especially suited to structured output estima-
tion problems as they require relatively few function and gradient computations
which can be costly in the structured estimation setting [13], while they can be
also used to minimize non-smooth loss functions where only subdifferentials are
available.

The key idea behind bundle methods is to compute successively improving
linear lower bounds of an objective function through first order Taylor approx-
imations as shown in Figure 1. Several lower bounds from previous iterations
are bundled in order to gain more information on the global behavior of the
function. The minimum of these lower bounds is then used as a new location
where to compute the next approximation, which leads to increasingly tighter
bounds and convergence.

The main computational cost in using the bundle method solver is the com-
putation of the gradients with respect to M and U . Using the chain rule yields

∂ML(F, Y ) = U⊤∂F L(F, Y ) and ∂UL(F, Y ) = [∂F L(F, Y )]
⊤

M. (8)



Algorithm 1.2. Optimization over U

input Matrix U and M , data Y
output Matrix U
for i = 1 to n do

Select idx as the nonzero set of Yi∗

Initialize w = Ui∗

Ui,idx = argminw l(wMidx,∗, Yi,idx) + λu

2
‖w‖2

end for

Algorithm 1.3. Computation of ∂ML

input Matrix U and M , data Y
output ∂ML = D⊤M
for i = 1 to n do

Update w ← Ui∗

Find index ind where Yi∗ 6= 0
X ←M [ind, :]
Update Di∗ ← ∂F L(wX, Yi∗[ind])

end for∂ML = D⊤M

This computation is easily parallelizable, since terms in ∂F L(F, Y ) with re-
spect to each user can be computed separately.

We assume that the loss decomposes per user. Thus, we can optimize U by
optimizing each row of U on its own as shown in algorithm 1.2. Note that we
effectively construct and solve a regularized risk model for each user for a dense
data matrix X and parameters w. On the other hand, when minimizing with
respect to M we need to deal with the entire loss jointly. The main issue to solve
is to compute the loss and its gradient with respect to M . Algorithm 1.3 shows
an efficient way to compute the gradient which decomposes again for all users
besides the final multiplication.

3 Extensions

So far we described a number of practical implementation details and extensions
in the context of the loss function. We now discuss extensions of the model to
take prior knowledge about the function class into account.

Offset Individual users may have different standards when it comes to rating
movies. For instance, some users may rarely award a 5 while others are quite
generous with it. Likewise, movies have an inherent quality bias. For instance,
’Plan 9 from Outer Space’ will probably not garner high ratings with any movie
buff while other movies may prove universally popular. This can be taken into
account by means of an offset per movie. This can be incorporated via

Fij = 〈Ui∗, Mj∗〉 + ui + mj . (9)



Here u and m are bias vectors for movies and users alike. In practice, we
simply extend the dimensionalities of U and M by one for each bias while pinning
the corresponding coordinate of the other matrix to assume the value of 1. In
this form no algorithmic modification for the U and M optimization is needed.
The computational cost of this extension is near zero, as the feature vectors of
the convex optimization problem are extended by only one or two dimensions.

Please note that this offset is different from a simple normalization of the
input data: It is learned for each user and for each movie, while a normalization
cannot cater for both appropriately at the same time.

Adaptive regularization Fixing a single regularization parameter for movies and
users respectively is not a very effective choice. For instance, estimation for a user
who has seen very few movies will likely suffer from overfitting unless heavily
regularized. On the other hand, for users who have rated lots of movies, we should
be more gentle in terms of regularization. Likewise, the number of ratings per
movie varies widely and the regularization should take this into account.

Those issues can be dealt with by sample-size adaptive regularization for
both movies and users. Denote by Du and Dm diagonal matrices corresponding
to movies and users. Setting Du

ii = n−α
i and DM

jj = m−α
j where ni denotes the

number of movies user i has rated and mj denotes the number of users which
have rated movie j, we obtain a sample size dependent regularizer as follows:

minimize
U,M

L(UM,Y ) +
λm

2
trM⊤DmM +

λu

2
trU⊤DuU.

In our experiments we found that α = 0.5 provides best generalization perfor-
mance. This is equivalent to the regularization scales provided in a maximum a
posteriori setting where the log-prior is fixed whereas the evidence scales linearly
with the number of observations.

As the computation for this scaling can be done in advance, the computa-
tional cost of the adaptive regularizer is not important when compared to the
overall runtime. The needed statistics can even be pre-computed and reused in
many experiments.

Graph kernels So far we ignored a crucial piece of information, namely the fact
that the ratings themselves are not random. For instance, knowing that a user
rated ’Die Hard’, ’Die Hard 2’, and ’Top Gun’ makes it likely that this user
is interested in action movies. This information can be gained without even
looking at the score matrix Y . One would expect that we should be able to take
advantage of this structural information in addition to the actual scores.

One possibility, proposed by [9] is to use the inner product between the
movies two users rent as a kernel for comparing two different users. Denote by
Sij = {Cij > 0}. In this case they define the kernel between users i and i′ to
be 〈Si∗, Si′∗〉. It is well known that such a model is equivalent to using a linear
model with user-features given by S. We can use this to improve the user matrix
U to U + SA for a suitably chosen feature matrix A.



Independently, [1] recently developed a related line of thought by assuming
that the user matrix is given by U +S̄A, where U and A are normally distributed
and S̄ is a row-normalized version of S, that is S̄i∗ = ‖Si∗‖

−1

1
Si∗. While their

optimization strategy is very different (they use Markov Chain Monte Carlo
sampling), it should already be clear at this point that the outcome is very
similar to that of [9].

We now show that both approaches, which are approximately equivalent
(barring the normalization of S to S̄), are also equivalent to the use of graph
kernels on the bipartite ranking graph defined between users and movies. For
this purpose we require the following lemma:

Lemma 1. Denote by f : R
n → R some function and let A ∈ R

n×d. Moreover,
let U ∈ R

n×d and S ∈ R
n×m. Then the following problems are equivalent:

minimize
U,A

f(V ) + ‖U‖2 + ‖A‖2 (10)

minimize
V

f(V ) + U⊤(1 + SS⊤)−1U (11)

Proof. Denote by (U∗, A∗) the optimal solution of (10). Clearly in this case for
V := U∗ + SA∗ the optimization problem

minimize
A

f(V ) + ‖V − SA‖
2

+ ‖A‖
2

(12)

needs to have A∗ as its solution. What remains is to express A as a function of
V and to show that in this case (10) and (11) are equivalent. Taking derivatives
of (11) with respect to A yields

∂A

[

‖V − SA‖
2

+ ‖A‖
2
]

= 2S⊤(SA − V ) + 2A.

Hence the gradient of the objective function vanishes for A∗ = (1+S⊤S)−1S⊤V .
Plugging this back into (11) yields the objective function

f(V ) +
∥

∥

[

1 − S(1 + S⊤S)−1S⊤
]

V
∥

∥

2
+

∥

∥(1 + S⊤S)−1S⊤V
∥

∥

2

= f(V ) +
∥

∥(1 + SS⊤)−1V
∥

∥

2
+

∥

∥S⊤(1 + SS⊤)−1V
∥

∥

2

= f(V ) + V ⊤(1 + SS⊤)−1V

Here we used the Sherman-Morrison-Woodbury identity to transform the second
term in the second line. The third term follows from the fact that left and right
singular vectors associated with S constitute the eigenvectors of (1 + SS⊤) and
(1 + S⊤S) respectively. Hence we may “push” S to the left in the third term.
The last equality follows by direct calculation. *

This lemma shows that the parameterization U + SA (or U + S̄A respectively)
is equivalent to using a kernel (1 + SS⊤)−1 as regularization. The latter is well
known as the inverse Laplacian kernel, since SS⊤ encodes the undirected graph
obtained by connecting all users which watched the same movie. The connection
strength in SS⊤ denotes the number of movies both users shared.



The net result of this reparameterization is that (10) is a computationally
more efficient way of dealing with such symmetries rather than computing the
inverse of (1 + SS⊤). Since we may have millions of users the latter would be
computationally infeasible.

Note also the connection to the spectral theory of graphs [14]: the eigenvalues
and eigenvectors of 1 + S̄S̄⊤ are close to those of the bipartite graph Laplacian,
which can be used for clustering between movies and users respectively. This
means that for similar users and movies we end up using similar parameters
respectively.

4 Experiments

To evaluate the the extension described in section 3 we performed experiments
on the eachmovie and movielens data sets. The data sets are summarized in
table 1.

Data set Users Movies Ratings

EachMovie 61265 1623 2811717
MovieLens 983 1682 100000

Table 1. Data set statistics

In order to compare the results to those in the literature, we evaluate our
system using the Normalized Discounted Cumulative Gain (NDCG) measure:

DCG(Yi∗, π)@k =

m
∑

j=0

2Yiπ[j] − 1

log2(j + 1)
, NDCG(Yi∗, π)@k =

DCG(Yi∗, π)@k

DCG(Yi∗, πs)@k

(13)

The permutation π is computed as the argsort of the predicted values: π =
argsort(Fi∗). The perfect permutation πs is the argsort of the true ratings given
by the user: πs = argsort(Yi∗). A NDCG of 1.0 indicates that the model sorts
the movies in the same order as the user. The parameter k is a cut-off beyond
which the actual ranking does no longer matter. This follows the intuition that
typical recommender systems can only present a limited amount of items to the
user. In all our experiments, we evaluated using NDCG@10.

Following [15] and [7] , we distinguish two different evaluation scenarios:
strong and weak generalization.

Weak generalization: The train set is built by sampling 10,20 or 50 movies
randomly from the seen movies of each user. The ranking performance is
than evaluated using the NDCG@10 score on the remaining movies.



Strong generalization: The model is evaluated on users that were not present
at training time. We follow the procedure described in [15]: Movies with less
than 50 ratings are discarded. The 100 users with the most rated movies
are selected as the test set and the methods are trained on the remaining
users. In evaluation, 10, 20 or 50 ratings from those of the 100 test users are
selected. For those ratings, the user training procedure is applied to optimize
U . M is kept fixed in this process to the values obtained during training.
The remaining ratings are tested using the same procedure as for the weak
generalization.

It is important to note that in both cases, the system is evaluated on the vast
majority of movies. This mimics the true situation of a recommender system
which always has more unrated items to recommend than already rated items
at its disposal. However, these evaluation schemes cannot show the usefulness of
the per user offset, as the number of items in the train set is fixed for all users.
To evaluate the influence of this extension, we performed experiments following
the weak evaluation scheme with exchanged train and test sets: The system is
tested on 10, 20 or 50 items per user and trained on the remaining items.

In all experiments, the regularization parameters were fixed and not formally
tuned. The dimension of U and M is fixed to d = 10 in all experiments. We did
not observe significant performance drop when compared to a value of d = 100
in [7] or d = 30 in [1]. Additionally, we present results only for the least squares
regression loss, as the emphasis is on the evaluation of the extensions to the
original model. All experiments were performed ten times with different random
draws of the train and test set from the data set. In total, we report results on
960 experiments.

4.1 Results

Weak generalization Table 2 shows the results for the weak generalization set-
ting. Overall we can see that adding the offset term does improve the perfor-
mance while enabling just the Graph kernel does not seem to yield significant
gains in performance. This can be attributed to the fact that the impact of the
graph kernel will be most profound in cases where users have rated relatively few
movies compared to the average user. An additional factor to take into account is
that due to computational time constraints we did not adjust the regularization
parameter for each configuration. This is particularly significant in the graph
kernel phase where we optimize over an additional set of parameters. Neverthe-
less we observe that in some cases the graph kernel seems to bring significant
performance particularly when combined with the offset term. This leads us to
believe that with proper parameter tuning, the graph kernel can add significant
performance increases.

Inverted weak generalization The results of this set of experiments table 3, again
confirm our observations in the previous setting. The offset term along often



Method N=10 N=20 N=50

EachMovie Plain 0.625± 0.000 0.639± 0.000 0.641± 0.000
Offset 0.646± 0.000 0.653± 0.000 0.647± 0.000

GraphKernel 0.583± 0.000 0.585± 0.000 0.590± 0.001
OffsetGK 0.576± 0.000 0.597± 0.000 0.580± 0.001

MovieLens Plain 0.657± 0.000 0.658± 0.000 0.686± 0.000
Offset 0.678± 0.000 0.680± 0.000 0.701± 0.000

GraphKernel 0.624± 0.001 0.644± 0.000 0.682± 0.000
OffsetGK 0.670± 0.001 0.681± 0.000 0.682± 0.000

Table 2. The NGDC@10 accuracy over ten runs and the standard deviation for the
weak generalization evaluation.

combined with the graph kernel or the adaptive regularization brings signifi-
cant performance gains. Again we have to note that the overall regularization
parameters were not tuned for the individual configurations.

Method N=10 N=20 N=50

EachMovie Plain 0.859± 0.000 0.731± 0.000 0.627± 0.000
Offset 0.859± 0.000 0.734± 0.000 0.631± 0.000
GraphKernel 0.837± 0.000 0.693± 0.000 0.553± 0.001
AdaReg 0.858± 0.000 0.729± 0.000 0.635± 0.000
AdaRegGK 0.832± 0.000 0.692± 0.000 0.578± 0.000
OffsetGK 0.832± 0.000 0.689± 0.000 0.587± 0.001
OffsetAdareg 0.859± 0.000 0.728± 0.000 0.637± 0.000

All 0.836± 0.000 0.702± 0.000 0.585± 0.000

MovieLens Plain 0.875± 0.000 0.750± 0.000 0.673± 0.000
Offset 0.886± 0.000 0.764± 0.000 0.703± 0.001
GraphKernel 0.845± 0.000 0.720± 0.001 0.667± 0.000
AdaReg 0.873± 0.000 0.736± 0.000 0.652± 0.001
AdaRegGK 0.835± 0.000 0.694± 0.001 0.645± 0.001
OffsetGK 0.882± 0.000 0.773± 0.000 0.703± 0.000

OffsetAdareg 0.874± 0.000 0.750± 0.000 0.681± 0.000
All 0.869± 0.000 0.730± 0.002 0.645± 0.005

Table 3. The NGDC@10 accuracy over ten runs and the standard deviation for the
inverted weak generalization evaluation.

Strong generalization For the strong generalization setting, we compare our re-
sults to Gaussian Process Ordinal Regression (GPOR) [16] Gaussian Process
Regression (GPR), the collaborative extensions (CPR, CGPOR) as well as the
original MMMF implementation [15], [7]. Table 4 shows our results compared to
the ones from [15].

For the Movielens data, our system with the offset and graph kernel exten-
sions outperforms the other systems we compare to. Additionally, the system



with both extensions performs consistently better than the ones with only one
extension. On the Eachmovie data, our system performs the best with the offset
parameters enabled. it appears that that the graph kernel in the Eachmovie data
set does not improve the performance but again this can be attributed to a poor
choice of the regularization parameters for this data set.

On both data sets, the results are very good in the strong generalization set-
ting. This is not as surprising as it may seem at first: In the strong generalization
phase, our system solves a convex problem for each test user in order to learn the
right Ui∗ for that user. If the system learned reasonable features for the items
in the weak generalization phase of this evaluation, good results for the strong
evaluation phase are to be expected. We believe that this is an important benefit
of our method in many applications, as it allows for fast accurate predictions for
new users without the need to retrain the whole system.

Method N=10 N=20 N=50

EachMovie Plain 0.615± 0.000 0.633± 0.000 0.636± 0.000
Offset 0.641± 0.000 0.647± 0.000 0.644± 0.000

GraphKernel 0.574± 0.000 0.581± 0.000 0.596± 0.000
OffsetGK 0.568± 0.000 0.594± 0.000 0.579± 0.000
GPR 0.4558± 0.015 0.4849± 0.0066 0.5375± 0.0089
CGPR 0.5734± 0.014 0.5989± 0.0118 0.6341± 0.0114
GPOR 0.3692± 0.002 0.3678± 0.0030 0.3663± 0.0024
CGPOR 0.3789± 0.011 0.3781± 0.0056 0.3774± 0.0041
MMMF 0.4746± 0.034 0.4786± 0.0139 0.5478± 0.0211

MovieLens Plain 0.587± 0.001 0.644± 0.001 0.630± 0.001
Offset 0.583± 0.000 0.444± 0.000 0.690± 0.000
GraphKernel 0.613± 0.000 0.634± 0.000 0.637± 0.001
OffsetGK 0.684± 0.000 0.691± 0.000 0.692± 0.000

GPR 0.4937± 0.0108 0.5020± 0.0089 0.5088± 0.0141
CGPR 0.5101± 0.0081 0.5249± 0.0073 0.5438± 0.0063
GPOR 0.4988± 0.0035 0.5004± 0.0046 0.5011± 0.0051
CGPOR 0.5053± 0.0047 0.5089± 0.0044 0.5049± 0.0035
MMMF 0.5521± 0.0183 0.6133± 0.0180 0.6651± 0.0190

Table 4. The NGDC@10 accuracy over ten runs and the standard deviation for the
strong generalization evaluation.

The variance over the ten runs on different data in all experiments is surpris-
ingly low, especially given the fact that we are optimizing a non convex function.
The same is true for the variance on the objective function. The low variance
may mean that we always reach the same local minimum or that this minimum
is indeed a global one.

Overall, the experiments show that the performance of the basic model can
be significantly increased by the extensions proposed in this paper. Please note
that we did not optimize the regularization parameters, which might improve



the performance even further. Additional improvements are to be expected when
applying other loss functions like ordinal regression or the ranking losses as
described in [7]. Both have shown to yield better ranking performance, yet we
could not evaluate them here as each loss function would have added another
960 experiments.

5 Conclusion

In this paper, we have shown several extensions to the original MMMF model
that add up to recent advances in the optimization procedure and the losses.
We introduced offset terms, item dependent regularization and a graph kernel
on the recommender graph. We also showed that recent extensions to MMMF
[1] as well as well known approaches [9] are both instances of our graph kernel
formulation.

The extensions have been introduced in a way that preserves recent exten-
sions of MMMF to structured loss [7]. Additionally, this still allows us to use
state of the art optimizers based on bundle methods which have recently been
proposed for the regularized risk minimization problem[8].

On all evaluated data sets in all evaluation settings, one combination of
the proposed extensions yielded significantly improved results, even though we
did not tune the parameters of the model. Thus, even better results are to be
expected in real world applications of this method.

The software developed to evaluate the methods described in this paper will
be available on http://www.cofirank.org.
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