Markus Weimer
email: weimer@acm.org

Alexandros Karatzoglou

Alex Smola
email: alexis@ci.tuwien.ac.at

Improving Maximum Margin Matrix Factorization

Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of extensions to MMMF by introducing offset terms, item dependent regularization and a graph kernel on the recommender graph. We show equivalence between graph kernels and the recent MMMF extensions by Mnih and Salakhutdinov [1]. Experimental evaluation of the introduced extensions show improved performance over the original MMMF formulation.

Introduction

Collaborative filtering has gained much attention in the machine learning community due to its applications in electronic commerce sites such as those of Amazon, Apple and Netflix. Such sites typically offer personalized recommendations to their customers. The quality of these suggestions is crucial to the overall success, since good recommendations will increase the propensity of a purchase.

However, suggesting the right items is a highly nontrivial task: (1) There are many items to choose from. [START_REF] Hoffman | Latent semantic models for collaborative filtering[END_REF] Customers are willing to consider only a small number of recommendations (typically in the order of ten). Collaborative filtering addresses this problem by learning the suggestion function for a user from ratings provided by this and other users on items.

The known data can be thought of a sparse n×m matrix Y of rating/purchase information, where n denotes the number of users and m is the number of items. In this context, Y ij indicates the rating of item j given by user i. Typically, the rating is given on a five star scale and thus Y ∈ {0, . . . , 5} n×m , where the value 0 indicates that a user did not rate an item. In this sense, 0 is special since it does not indicate that a user dislikes an item but rather that data is missing.

Related Work A common approach to collaborative filtering is to fit a factor model to the data. For example by extracting a feature vector for each user and item in the data set such that the inner product of these features minimizes an explicit or implicit loss functional (e.g. [START_REF] Hoffman | Latent semantic models for collaborative filtering[END_REF] following a probabilistic approach).

The underlying idea behind these methods is that both user preferences and item properties can be modeled by a number of factors.

The basic idea of matrix factorization approaches is to fit the original Y matrix with a low rank approximation F . More specifically, the goal is to find such an approximation that minimizes the sum of the squared distances between the known entries in Y and their predictions in F . One possibility of doing so is by using a Singular Value Decomposition of Y and by using only a small number of the vectors obtained by this procedure. In the information retrieval community this numerical operation is commonly referred to as Latent Semantic Indexing.

Note, however, that this method does not do justice to the way Y was formed. An entry Y ij = 0 indicates that we did not observe a (user,object) pair. It does, however, not indicate that user i disliked object j. In [START_REF] Srebro | Weighted low-rank approximations[END_REF], an alternative approach is suggested which is the basis of the method described in this paper. We aim to find two matrices U and M where U ∈ R n×d and M ∈ R d×m such that F = U M with the goal to approximate the observed entries in Y rather than approximating all entries at the same time.

In general, finding a globally optimal solution of the low rank approximation problem is unrealistic: in particular the aproach proposed by [START_REF] Srebro | Weighted low-rank approximations[END_REF] for computing the a weighted factorization, which is relavant in collaborative filtering settings, requires semidefinite programming which is feasible only for hundreds, at most, thousands of terms. Departing from the goal of minimizing the rank, Maximum Margin Matrix Factorization (MMMF) aims at minimizing the Froebenius norms of U and M , resulting in a set of convex problems when taken in isolation and thus tractable by current optimization techniques. It was shown in [START_REF] Srebro | Maximum-margin matrix factorization[END_REF][START_REF] Srebro | Rank, trace-norm and max-norm[END_REF] that optimizing the Froebenius norm is a good proxy for optimizing the rank in its application to model complexity control. Similar ideas based on matrix factorization have been also proposed in [START_REF] Salakhutdinov | Probabilistic matrix factorization[END_REF][START_REF] Takács | Major components of the gravity recommendation system[END_REF].

Recently [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF] proposed to extend the general MMMF framework in order to minimize structured (ranking) losses instead of the sum of squared errors on the known ratings. Key in the reasoning is that collaborative filtering is often at the heart of recommender systems. For those, only the ranking of unrated items in terms of the user preferences matter. To enable effective optimization of the structured ranking loss, a novel optimization technique [START_REF] Smola | Bundle methods for machine learning[END_REF] was used to minimize the loss in terms of the Normalized Discounted Cumulative Gain (NDCG).

Our Contribution Building upon the results outlined above, we introduce a number of extensions to the these MMMF models.

-An efficient means of computing the gradient in multiclass ordinal regression.

-A bias for movies and users to deal with heterogeneity of movies and users.

-An automatic adaptive regularization scheme which can deal with the varying number of movies per user and likewise users per movie. -A graph kernel that captures similarities between users and items in the recommender graph in the spirit of [START_REF] Salakhutdinov | Probabilistic matrix factorization[END_REF][START_REF] Basilico | Unifying collaborative and content-based filtering[END_REF]. We prove that both methods are essentially equivalent and equal to a graph kernel on the recommender graph.

For each of these extensions, we show how they can be integrated into the MMMF framework such that structured estimation as proposed in [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF] is still feasible. The paper is organized as follows: Section 2 describes the general MMMF model, its generalization to structured estimation and the use of state-of-the-art optimization methods to train the model. Section 3 describes our extensions to that model. In section 4, we discuss our experimental evaluation and section 5 concludes the paper with remarks on future work.

Maximum Margin Matrix Factorization

Optimization Problem

MMMF computes a dense approximation F of the sparse matrix Y which forms the training data. The approximation is based on the modeling assumption that any particular rating of item j by user i is a linear combination of item and user features. Thus, the approximation can be written as F = U M . Here, U i * represents the feature vector for user i and M * j is the feature vector for item j. The predicted rating of item j by user i is then the inner product between these feature vectors:

F ij = U i * , M * j
Finding the appropriate matrices U and M is achieved by minimizing the regularized loss functional where the Froebenius norm (U 2 F = tr U U ⊤) of the U and M matrices is used for capacity control and thus overfitting prevention. The Froebenius norm has been introduced to the MMMF framework and shown to be a proper norm on F [START_REF] Srebro | Rank, trace-norm and max-norm[END_REF]. This leads us to the following optimization problem: minimize

U,M L(F, Y) + λ m 2 M 2 F + λ u 2 U 2 F (1
)
Here λ m , λ u are the regularization parameters for the M and U matrix respectively and F = U M . Moreover, L(F, Y) is a loss measuring the discrepancy between Y and F . The optimization problem can be solved exactly by using a semi definite reformulation [START_REF] Srebro | Maximum-margin matrix factorization[END_REF]. However, this dramatically limits the size of the problem to several thousand users / movies. Instead, we exploit the fact that the problem is convex in U and M respectively when the other variables are fixed to perform subspace descent [START_REF] Rennie | Fast maximum margin matrix factoriazation for collaborative prediction[END_REF].

The Loss

Squared Loss In the original MMMF formulation, L(F, Y) was chosen to be the sum of the squared errors [START_REF] Srebro | Maximum-margin matrix factorization[END_REF]:

L(F, Y) = 1 2 n i=0 m j=0 S ij (F ij -Y ij) 2 where S ij = 1 if user i rated item j 0 otherwise (2)
This loss decomposes for the non zero elements of Y and consequently it is amenable to efficient minimization by repeatedly solving a linear system of equations for each row / column of U and M separately (i.e. in parallel) -the objective function in (1) is convex quadratic in U and M respectively whenever the other term is fixed. The gradient of L(F, Y) with respect to F can be computed efficiently, since

∂ Fij L(F, Y) = S ij F ij -Y ij .
This means that we have

∂ F L(F, Y) = S. * (F -Y) (3)
where . * implies element-wise multiplication of S with F -Y . In other words, the gradient of the loss is a sparse matrix.

Non separable Loss This decomposition into losses, depending on Y ij and F ij alone, fails when dealing with structured losses that take an entire row of predictions, i.e. all predictions for a given user into account. Such losses are closer to what is needed in recommender systems, since users typically want to get good recommendations about which movies they are interested in. A fairly accurate description of which movies they hate is probably less desirable. The recent paper [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF] describe an optimization procedure which is capable of dealing with such problems. In general, a non separable loss takes on the following form:

L(F, Y) := n i=1 l(F i * , Y i *) (4)
Gradients of L(F, Y) decompose immediately into ∂ Fi * l(F i * , Y i *). This allows for efficient gradient computation.

Ordinal Loss We now discuss an extension of a common ranking loss, namely the ordinal regression score, as suggested in [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF]. For simplicity of notation we only study a row-wise loss l(f, y), where we assume that f := F i * and y := Y i * have already been compressed to contain only nonzero entries in Y i * with the corresponding entries of F i * having been selected accordingly. Assume that y is of length m containing m j movies of score j, that is j m j = m. For a given pair of movies (u, v) we consider them to be ranked correctly whenever y u > y v implies that also

f u > f v . A loss of 1 is incurred whenever this implication does not hold. That is, we count yu>yv C(y u , y v) {f u ≤ f v } . (5
)
Here C(y u , y v) denotes the cost of confusing a movie with score y u with one of score y v . Since there are n = 1 2 m 2j m 2 j terms in the sum we need to renormalize the error by n in order to render losses among different users comparable. Moreover, we need to impose a soft-margin loss on the comparator Algorithm 1.1. (l, g) = l(f, y, C) input Vectors f and y, score matrix C output Loss l and gradient g initialize l = 0 (loss) and g = 0 (gradient) for i = 1 to n do bi = 0 (lower counter) and ui = mi (upper counter)

end for Let c = [f -1 2 , f + 1 2] ∈ R 2m Rescale C ← 2C/(m 2 -u 2
2) index = Argsort(c) (find overlaps between pairs) for i = 1 to 2m do j = index(i) mod m and z = yj if index(i) ≤ m (from the first half) then for k = 1 to z -1 (we should be better than those) do l ← l -C(k, z)u k cj and gj ← gj -C(k, z)u k end for bz ← bz + 1 (there are now bz + 1 elements below us) else for (they should be better than us

) k = z + 1 to n do r ← r + C(z, k)b k cj+m and gj ← gj + C(z, k)b k end for uz ← uz -1 (
we've just seen one more term from above) end if end for {f u ≤ f v } to obtain a convex differentiable loss. This yields the loss

l(f, y) = 2 m 2 - j m 2 j -1 yu>yv C(y u , y v) max(0, 1 -f u + f v). (6
)
The gradient ∂ f l(f, y) can be computed in a straightforward fashion via

∂ f l(f, y) = -2 yu>yv C(y u , y v) m 2 -j m 2 j (7)
In general, computing losses using preferences such as (6) is an O(m 2) operation. However, we may extend the reasoning of [START_REF] Joachims | Training linear SVMs in linear time[END_REF] to more than binary scores to obtain an O(m log m) algorithm instead. Algorithm 1.1 relies on sorting f before taking sums. It uses the decomposition of the soft margin loss via max(0, 1 -

f u + f v) = max(0, (f v + 0.5) -(f u -0.5)) = max(0, c v+m -c v)
where c = [f -0.5, f + 0.5] to disentangle upper and lower bounds. It then traverses the sorted list of c to check for how many terms an upper or lower bound is violated by means of auxiliary counters b and u.

Fig. 1. A convex function (solid) is bounded from below by Taylor approximations of first order (dashed). Adding more terms improves the bound.

Optimization

Although (1) is not jointly convex in U and M , it is still convex in U if M is kept fixed and convex in M if U is kept fixed. We thus resort to alternating subspace descent as proposed by [START_REF] Rennie | Fast maximum margin matrix factoriazation for collaborative prediction[END_REF] by keeping U fixed and minimizing over M and repeating the process for M with U fixed. We have the following procedure: repeat For fixed M minimize (1) with respect to U . For fixed U minimize (1) with respect to M . until no more progress is made or a maximum iteration count is reached. While this approach does not ensure that a global minimum is reached, it proves to be rather efficient and scalable for problems of up to 10 8 nonzero entries in Y (Netflix) [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF].

Our implementation uses a bundle method solver for the two optimization steps over U and M . Recently, bundle methods have been introduced with promising results for optimizing regularized risk functions in supervised machine learning [START_REF] Smola | Bundle methods for machine learning[END_REF]. Bundle methods are especially suited to structured output estimation problems as they require relatively few function and gradient computations which can be costly in the structured estimation setting [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF], while they can be also used to minimize non-smooth loss functions where only subdifferentials are available.

The key idea behind bundle methods is to compute successively improving linear lower bounds of an objective function through first order Taylor approximations as shown in Figure 1. Several lower bounds from previous iterations are bundled in order to gain more information on the global behavior of the function. The minimum of these lower bounds is then used as a new location where to compute the next approximation, which leads to increasingly tighter bounds and convergence.

The main computational cost in using the bundle method solver is the computation of the gradients with respect to M and U . Using the chain rule yields This computation is easily parallelizable, since terms in ∂ F L(F, Y) with respect to each user can be computed separately.

∂ M L(F, Y) = U ⊤ ∂ F L(F, Y) and ∂ U L(F, Y) = [∂ F L(F, Y)] ⊤ M. (8)
We assume that the loss decomposes per user. Thus, we can optimize U by optimizing each row of U on its own as shown in algorithm 1.2. Note that we effectively construct and solve a regularized risk model for each user for a dense data matrix X and parameters w. On the other hand, when minimizing with respect to M we need to deal with the entire loss jointly. The main issue to solve is to compute the loss and its gradient with respect to M . Algorithm 1.3 shows an efficient way to compute the gradient which decomposes again for all users besides the final multiplication.

Extensions

So far we described a number of practical implementation details and extensions in the context of the loss function. We now discuss extensions of the model to take prior knowledge about the function class into account.

Offset Individual users may have different standards when it comes to rating movies. For instance, some users may rarely award a 5 while others are quite generous with it. Likewise, movies have an inherent quality bias. For instance, 'Plan 9 from Outer Space' will probably not garner high ratings with any movie buff while other movies may prove universally popular. This can be taken into account by means of an offset per movie. This can be incorporated via

F ij = U i * , M j * + u i + m j . (9)
Here u and m are bias vectors for movies and users alike. In practice, we simply extend the dimensionalities of U and M by one for each bias while pinning the corresponding coordinate of the other matrix to assume the value of 1. In this form no algorithmic modification for the U and M optimization is needed. The computational cost of this extension is near zero, as the feature vectors of the convex optimization problem are extended by only one or two dimensions.

Please note that this offset is different from a simple normalization of the input data: It is learned for each user and for each movie, while a normalization cannot cater for both appropriately at the same time.

Adaptive regularization Fixing a single regularization parameter for movies and users respectively is not a very effective choice. For instance, estimation for a user who has seen very few movies will likely suffer from overfitting unless heavily regularized. On the other hand, for users who have rated lots of movies, we should be more gentle in terms of regularization. Likewise, the number of ratings per movie varies widely and the regularization should take this into account.

Those issues can be dealt with by sample-size adaptive regularization for both movies and users. Denote by D u and D m diagonal matrices corresponding to movies and users. Setting

D u ii = n -α i and D M jj = m -α j
where n i denotes the number of movies user i has rated and m j denotes the number of users which have rated movie j, we obtain a sample size dependent regularizer as follows: minimize

U,M L(U M, Y) + λ m 2 tr M ⊤ D m M + λ u 2 tr U ⊤ D u U.
In our experiments we found that α = 0.5 provides best generalization performance. This is equivalent to the regularization scales provided in a maximum a posteriori setting where the log-prior is fixed whereas the evidence scales linearly with the number of observations. As the computation for this scaling can be done in advance, the computational cost of the adaptive regularizer is not important when compared to the overall runtime. The needed statistics can even be pre-computed and reused in many experiments.

Graph kernels So far we ignored a crucial piece of information, namely the fact that the ratings themselves are not random. For instance, knowing that a user rated 'Die Hard', 'Die Hard 2', and 'Top Gun' makes it likely that this user is interested in action movies. This information can be gained without even looking at the score matrix Y . One would expect that we should be able to take advantage of this structural information in addition to the actual scores.

One possibility, proposed by [START_REF] Basilico | Unifying collaborative and content-based filtering[END_REF] is to use the inner product between the movies two users rent as a kernel for comparing two different users. Denote by S ij = {C ij > 0}. In this case they define the kernel between users i and i ′ to be S i * , S i ′ * . It is well known that such a model is equivalent to using a linear model with user-features given by S. We can use this to improve the user matrix U to U + SA for a suitably chosen feature matrix A.

Independently, [START_REF] Salakhutdinov | Probabilistic matrix factorization[END_REF] recently developed a related line of thought by assuming that the user matrix is given by U + SA, where U and A are normally distributed and S is a row-normalized version of S, that is Si * = S i * -1 1 S i * . While their optimization strategy is very different (they use Markov Chain Monte Carlo sampling), it should already be clear at this point that the outcome is very similar to that of [START_REF] Basilico | Unifying collaborative and content-based filtering[END_REF].

We now show that both approaches, which are approximately equivalent (barring the normalization of S to S), are also equivalent to the use of graph kernels on the bipartite ranking graph defined between users and movies. For this purpose we require the following lemma: Lemma 1. Denote by f : R n → R some function and let A ∈ R n×d . Moreover, let U ∈ R n×d and S ∈ R n×m . Then the following problems are equivalent:

minimize U,A f (V) + U 2 + A 2 (10) minimize V f (V) + U ⊤ (1 + SS ⊤) -1 U (11)
Proof. Denote by (U * , A *) the optimal solution of [START_REF] Rennie | Fast maximum margin matrix factoriazation for collaborative prediction[END_REF]. Clearly in this case for

V := U * + SA * the optimization problem minimize A f (V) + V -SA 2 + A 2 (12)
needs to have A * as its solution. What remains is to express A as a function of V and to show that in this case (10) and (11) are equivalent. Taking derivatives of [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF] with respect to A yields

∂ A V -SA 2 + A 2 = 2S ⊤ (SA -V) + 2A.
Hence the gradient of the objective function vanishes for A * = (1+S ⊤ S) -1 S ⊤ V . Plugging this back into (11) yields the objective function

f (V) + 1 -S(1 + S ⊤ S) -1 S ⊤ V 2 + (1 + S ⊤ S) -1 S ⊤ V 2 = f (V) + (1 + SS ⊤) -1 V 2 + S ⊤ (1 + SS ⊤) -1 V 2 = f (V) + V ⊤ (1 + SS ⊤) -1 V
Here we used the Sherman-Morrison-Woodbury identity to transform the second term in the second line. The third term follows from the fact that left and right singular vectors associated with S constitute the eigenvectors of (1 + SS ⊤) and (1 + S ⊤ S) respectively. Hence we may "push" S to the left in the third term. The last equality follows by direct calculation. *

This lemma shows that the parameterization U + SA (or U + SA respectively) is equivalent to using a kernel (1 + SS ⊤) -1 as regularization. The latter is well known as the inverse Laplacian kernel, since SS ⊤ encodes the undirected graph obtained by connecting all users which watched the same movie. The connection strength in SS ⊤ denotes the number of movies both users shared.

The net result of this reparameterization is that (10) is a computationally more efficient way of dealing with such symmetries rather than computing the inverse of (1 + SS ⊤). Since we may have millions of users the latter would be computationally infeasible.

Note also the connection to the spectral theory of graphs [START_REF] Smola | Kernels and regularization on graphs[END_REF]: the eigenvalues and eigenvectors of 1 + S S⊤ are close to those of the bipartite graph Laplacian, which can be used for clustering between movies and users respectively. This means that for similar users and movies we end up using similar parameters respectively.

Experiments

To evaluate the the extension described in section 3 we performed experiments on the eachmovie and movielens data sets. The data sets are summarized in table 1.

Data set Users Movies Ratings EachMovie 61265 1623 2811717 MovieLens 983 1682 100000

Table 1. Data set statistics

In order to compare the results to those in the literature, we evaluate our system using the Normalized Discounted Cumulative Gain (NDCG) measure:

DCG(Y i * , π)@k = m j=0 2 Y iπ[j] -1 log 2 (j + 1) , N DCG(Y i * , π)@k = DCG(Y i * , π)@k DCG(Y i * , π s)@k (13)
The permutation π is computed as the argsort of the predicted values: π = argsort(F i *). The perfect permutation π s is the argsort of the true ratings given by the user: π s = argsort(Y i *). A NDCG of 1.0 indicates that the model sorts the movies in the same order as the user. The parameter k is a cut-off beyond which the actual ranking does no longer matter. This follows the intuition that typical recommender systems can only present a limited amount of items to the user. In all our experiments, we evaluated using NDCG@10.

Following [START_REF] Yu | Collaborative ordinal regression[END_REF] and [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF] , we distinguish two different evaluation scenarios: strong and weak generalization.

Weak generalization:

The train set is built by sampling 10,20 or 50 movies randomly from the seen movies of each user. The ranking performance is than evaluated using the NDCG@10 score on the remaining movies.

Strong generalization: The model is evaluated on users that were not present at training time. We follow the procedure described in [START_REF] Yu | Collaborative ordinal regression[END_REF]: Movies with less than 50 ratings are discarded. The 100 users with the most rated movies are selected as the test set and the methods are trained on the remaining users. In evaluation, 10, 20 or 50 ratings from those of the 100 test users are selected. For those ratings, the user training procedure is applied to optimize U . M is kept fixed in this process to the values obtained during training. The remaining ratings are tested using the same procedure as for the weak generalization.

It is important to note that in both cases, the system is evaluated on the vast majority of movies. This mimics the true situation of a recommender system which always has more unrated items to recommend than already rated items at its disposal. However, these evaluation schemes cannot show the usefulness of the per user offset, as the number of items in the train set is fixed for all users. To evaluate the influence of this extension, we performed experiments following the weak evaluation scheme with exchanged train and test sets: The system is tested on 10, 20 or 50 items per user and trained on the remaining items.

In all experiments, the regularization parameters were fixed and not formally tuned. The dimension of U and M is fixed to d = 10 in all experiments. We did not observe significant performance drop when compared to a value of d = 100 in [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF] or d = 30 in [START_REF] Salakhutdinov | Probabilistic matrix factorization[END_REF]. Additionally, we present results only for the least squares regression loss, as the emphasis is on the evaluation of the extensions to the original model. All experiments were performed ten times with different random draws of the train and test set from the data set. In total, we report results on 960 experiments.

Results

Weak generalization Table 2 shows the results for the weak generalization setting. Overall we can see that adding the offset term does improve the performance while enabling just the Graph kernel does not seem to yield significant gains in performance. This can be attributed to the fact that the impact of the graph kernel will be most profound in cases where users have rated relatively few movies compared to the average user. An additional factor to take into account is that due to computational time constraints we did not adjust the regularization parameter for each configuration. This is particularly significant in the graph kernel phase where we optimize over an additional set of parameters. Nevertheless we observe that in some cases the graph kernel seems to bring significant performance particularly when combined with the offset term. This leads us to believe that with proper parameter tuning, the graph kernel can add significant performance increases.

Inverted weak generalization

The results of this set of experiments table 3, again confirm our observations in the previous setting. The offset term along often Method N=10 N=20 N=50 EachMovie Plain 0.625 ± 0.000 0.639 ± 0.000 0.641 ± 0.000 Offset 0.646 ± 0.000 0.653 ± 0.000 0.647 ± 0.000 GraphKernel 0.583 ± 0.000 0.585 ± 0.000 0.590 ± 0.001 OffsetGK 0.576 ± 0.000 0.597 ± 0.000 0.580 ± 0.001 MovieLens Plain 0.657 ± 0.000 0.658 ± 0.000 0.686 ± 0.000 Offset 0.678 ± 0.000 0.680 ± 0.000 0.701 ± 0.000 GraphKernel 0.624 ± 0.001 0.644 ± 0.000 0.682 ± 0.000 OffsetGK 0.670 ± 0.001 0.681 ± 0.000 0.682 ± 0.000 Table 2. The NGDC@10 accuracy over ten runs and the standard deviation for the weak generalization evaluation.

combined with the graph kernel or the adaptive regularization brings significant performance gains. Again we have to note that the overall regularization parameters were not tuned for the individual configurations.

Method N=10 N=20 N=50 EachMovie Plain 0.859 ± 0.000 0.731 ± 0.000 0.627 ± 0.000 Offset 0.859 ± 0.000 0.734 ± 0.000 0.631 ± 0.000 GraphKernel 0.837 ± 0.000 0.693 ± 0.000 0.553 ± 0.001 AdaReg 0.858 ± 0.000 0.729 ± 0.000 0.635 ± 0.000 AdaRegGK 0.832 ± 0.000 0.692 ± 0.000 0.578 ± 0.000 OffsetGK 0.832 ± 0.000 0.689 ± 0.000 0.587 ± 0.001 OffsetAdareg 0.859 ± 0.000 0.728 ± 0.000 0.637 ± 0.000 All 0.836 ± 0.000 0.702 ± 0.000 0.585 ± 0.000 MovieLens Plain 0.875 ± 0.000 0.750 ± 0.000 0.673 ± 0.000 Offset 0.886 ± 0.000 0.764 ± 0.000 0.703 ± 0.001 GraphKernel 0.845 ± 0.000 0.720 ± 0.001 0.667 ± 0.000 AdaReg 0.873 ± 0.000 0.736 ± 0.000 0.652 ± 0.001 AdaRegGK 0.835 ± 0.000 0.694 ± 0.001 0.645 ± 0.001 OffsetGK 0.882 ± 0.000 0.773 ± 0.000 0.703 ± 0.000 OffsetAdareg 0.874 ± 0.000 0.750 ± 0.000 0.681 ± 0.000 All 0.869 ± 0.000 0.730 ± 0.002 0.645 ± 0.005 Table 3. The NGDC@10 accuracy over ten runs and the standard deviation for the inverted weak generalization evaluation.

Strong generalization For the strong generalization setting, we compare our results to Gaussian Process Ordinal Regression (GPOR) [START_REF] Chu | Gaussian processes for ordinal regression[END_REF] Gaussian Process Regression (GPR), the collaborative extensions (CPR, CGPOR) as well as the original MMMF implementation [START_REF] Yu | Collaborative ordinal regression[END_REF], [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF]. Table 4 shows our results compared to the ones from [START_REF] Yu | Collaborative ordinal regression[END_REF].

For the Movielens data, our system with the offset and graph kernel extensions outperforms the other systems we compare to. Additionally, the system with both extensions performs consistently better than the ones with only one extension. On the Eachmovie data, our system performs the best with the offset parameters enabled. it appears that that the graph kernel in the Eachmovie data set does not improve the performance but again this can be attributed to a poor choice of the regularization parameters for this data set.

On both data sets, the results are very good in the strong generalization setting. This is not as surprising as it may seem at first: In the strong generalization phase, our system solves a convex problem for each test user in order to learn the right U i * for that user. If the system learned reasonable features for the items in the weak generalization phase of this evaluation, good results for the strong evaluation phase are to be expected. We believe that this is an important benefit of our method in many applications, as it allows for fast accurate predictions for new users without the need to retrain the whole system. 4. The NGDC@10 accuracy over ten runs and the standard deviation for the strong generalization evaluation.

The variance over the ten runs on different data in all experiments is surprisingly low, especially given the fact that we are optimizing a non convex function. The same is true for the variance on the objective function. The low variance may mean that we always reach the same local minimum or that this minimum is indeed a global one.

Overall, the experiments show that the performance of the basic model can be significantly increased by the extensions proposed in this paper. Please note that we did not optimize the regularization parameters, which might improve the performance even further. Additional improvements are to be expected when applying other loss functions like ordinal regression or the ranking losses as described in [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF]. Both have shown to yield better ranking performance, yet we could not evaluate them here as each loss function would have added another 960 experiments.

Conclusion

In this paper, we have shown several extensions to the original MMMF model that add up to recent advances in the optimization procedure and the losses. We introduced offset terms, item dependent regularization and a graph kernel on the recommender graph. We also showed that recent extensions to MMMF [START_REF] Salakhutdinov | Probabilistic matrix factorization[END_REF] as well as well known approaches [START_REF] Basilico | Unifying collaborative and content-based filtering[END_REF] are both instances of our graph kernel formulation.

The extensions have been introduced in a way that preserves recent extensions of MMMF to structured loss [START_REF] Weimer | Cofi rank -maximum margin matrix factorization for collaborative ranking[END_REF]. Additionally, this still allows us to use state of the art optimizers based on bundle methods which have recently been proposed for the regularized risk minimization problem [START_REF] Smola | Bundle methods for machine learning[END_REF].

On all evaluated data sets in all evaluation settings, one combination of the proposed extensions yielded significantly improved results, even though we did not tune the parameters of the model. Thus, even better results are to be expected in real world applications of this method.

The software developed to evaluate the methods described in this paper will be available on http://www.cofirank.org.

Algorithm 1 . 2 . 3 .

 123 Optimization over U input Matrix U and M , data Y output Matrix U for i = 1 to n do Select idx as the nonzero set of Yi * Initialize w = Ui * Ui,idx = argmin w l(wMidx, * , Yi,idx) + λu 2 Computation of ∂M L input Matrix U and M , data Y output ∂M L = D ⊤ M for i = 1 to n do Update w ← Ui * Find index ind where Yi * = 0 X ← M [ind, :] Update Di * ← ∂F L(wX, Yi * [ind]) end for∂M L = D ⊤ M

Acknowledgements

Markus Weimer has been funded under Grant 1223 by the German Science Foundation (DFG). Alexandros Karatzoglou was supported by a grant of the ANR -CADI project. We gratefully acknowledge support by the Frankfurt Center for Scientific Computing in running our experiments.