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Observation of nonlinear dispersion relation and spatial
statistics of wave turbulence on the surface of a fluid
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We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave
amplitudes are measured simultaneously in time and space using an optical method. The full
space-time power spectrum shows that the wave energy is localized on several branches in the wave-
vector-frequency space. The number of branches depend on the power injected within the waves. The
measurement of the nonlinear dispersion relation is found to be well described by a law suggesting
that the energy transfer mechanisms involved in wave turbulence are not only restricted to purely
resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and
the probability distribution of the wave amplitudes at a given wave number are also measured and

compared to the theoretical predictions.

PACS numbers: 47.35.-1,05.45.-2,47.52.+j

Wave turbulence concerns the study of the statistical
and dynamical properties of a set of numerous nonlin-
ear interacting waves. It is an ubiquitous phenomenon
observed in various situations from spin waves in solids,
internal or surface waves in oceanography up to plasma
waves in astrophysics (for recent reviews see [[l, f]). Wave
turbulence theory, also called weak turbulence, predicts
a wave energy cascade through the scales that can be
derived analytically in nearly all fields of physics involv-
ing weakly nonlinear interacting waves in infinite systems
[ﬂ] However, few well-controled laboratory experiments
have been performed so far, and show partial agreement
with the theory , H] While most in situ or labora-
tory measurements involve time signals at a fixed loca-
tion, theoretical predictions often concern the Fourier
space. An important challenge is thus to get a space-
time measurement of the turbulent wave amplitudes (as
recently achieved for elastic wave turbulence [ff]), and
thus to have a better understanding of the elementary
dynamical processes involved in the energy cascade. In
the case of the wave turbulence on a fluid, 2D measure-
ments are scarce and are achieved in oceanography by
airbone remote sensing [[]. In laboratory, 1D [{, fi] or
2D [E] spatial measurements of the amplitude of gentle
interacting waves exist. However, to our knowledge, no
2D spatial measurement has been performed for steep
nonlinear waves as involved in wave turbulence.

Here, we investigate 2D spatial statistics of wave turbu-
lence on the surface of a fluid. An optical method, based
on Fourier transform profilometry [E, E], provides the
full space-time deformation field of the free-surface even
when strongly nonlinear waves are involved. This leads
to the first observation of the nonlinear dispersion rela-
tion. We also show that the energy transfer mechanisms
during the cascade are not only restricted to purely reso-
nant interactions between nonlinear waves as expected in
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weak turbulence [fJ], but also involve other mechanisms
such as the formation of localized nonlinear structures
(sharp-crested gravity waves) and of bound (or parasitic)
gravity-capillary waves. Moreover, the scalings of the
wave energy spectrum emphasize that the transition from
k-space to w-space cannot be done according to the lin-
ear wave dispersion relation as usually performed in wave
turbulence experiments. Finally, the probability distri-
bution of the Fourier mode amplitude is measured and
shows a departure from the exponential at high Fourier
wave amplitude.

The experimental setup consists of a rectangular tank,
46 c¢m x 36 cm in length, filled with water up to a depth
of 7cm. Surface waves are generated by the horizontal
motion of two plunging rectangular Plexiglas wave mak-
ers (19 cm in width and 2 cm in depth). They are located
at two corners of the same longest side of the tank, the
vibration directions being perpendicular to each other
[0]. The wave makers are driven by two electromag-
netic shakers submitted to a random forcing within a
narrow low-frequency band (typically from 1 to 4 Hz).
When the forcing amplitude is increased, typical maxi-
mal crest-to-trough wave amplitude increases from 1 mm
to 1.5 c¢m, whereas the wave mean steepness (ratio of
crest-to-trough amplitude to its duration) increases from
0.2 up to 3.3cm/s. This latter value corresponds to an
injected power, P, 600 times greater than its value at
the minimum forcing amplitude. This enables to access
to linear, weakly and strongly nonlinear wave regimes. A
Fourier transform profilometry method [f], [[d] provides
the temporal evolution of the vertical deformation of the
free-surface of the fluid over a significant spatial zone of
the tank. Namely, a fringe pattern (wavelength Ay = 2.6
or 5.2mm) is projected on the fluid surface by a video
projector. When waves are generated, the vertical dis-
placement of the free-surface leads to a phase shift of the
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FIG. 1: (Color online) Space-time spectrum E(k, f) of the
vertical velocity of surface waves: moderate (a) and strong
(b) injected powers [P*/? = 5.2 (a) and 24.7 (b) in arb. units].
Forcing: 1 - 4 Hz. Colors are log scaled. Solid white lines are
Qn (k) with N =1, 2, and 3 (see text).

pattern that is recorded by a high speed camera. The
deformation of the fluid surface n(z,y,t) is then recov-
ered by a 2D phase demodulation of each image of the
recorded movie [fl, [[(]. Movies are recorded with 1600
by 1200 pixels at f,cq = 50 or 60 Hz during roughly 1
minute. The size of the recorded image is 25 x 19 cm?.
To improve the contrast of the projected fringes on the
fluid surface, a high concentrated white dye is added to
the water bulk at an optimum concentration of 0.5% v /v
[@] The surface tension of this dyed water is measured
to be v = 32+1mN/m. Spatial and temporal resolutions
of the measurement are 3\ and 2/ fycq-

The vertical velocity of the fluid surface v(x,y,t) is
obtained by differentiating the wave height movie in
time. The full space-time power spectrum of the veloc-
ity E(k, f) (a function of both the wave vector k and
the frequency f) is then computed from multidimen-
sional Fourier transform. By integrating E(k, f) over
all directions of k, one obtains the velocity spectrum
E(k = |[k[|, f) displayed in Fig. ] for moderate and
strong forcings. We observe that the energy injected at
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FIG. 2: (Color online) Nonlinear dispersion relation k(f) com-
puted from the lines of maximum energy of E(k, f) for differ-
ent forcings [PY2 =1 (+), 5.2, (o), 10.5 (x), 24.7 (%)]. Solid
thick lines around each branch correspond to the branch width
averaged for all forcings. Solid lines are Qn (k) with N = 1,
2, and 3 (see text - same as in Fig. [If). Inset: snapshot of the
wave amplitudes at strong forcing (P/? = 24.7).

low frequencies cascades through the scales and is mainly
localized on several branches in the (w = 27 f, k = 27/)\)
space. At low forcing amplitude (not shown here), only
one branch occurs that corresponds to the linear gravity-
capillary relation dispersion w(k) = \/gk + (v/p)k3, with
g = 9.81 m/s? the acceleration of gravity, p = 1000
kg/m? the fluid density. When the forcing is increased
(see Fig. ), a secondary branch appears below the lin-
ear dispersion relation. This branch is found to be well
described by Qn (k) = \/gNk + (v/p)k3/N with N = 2
with no adjustable parameter (see solid line). At higher
forcing (see Fig. b), a third branch appears below the
second one that is also well governed by Qn(k) with
N = 3. Thus, as the power injected in the wave system
increases, the nonlinear wave interactions redistribute the
wave energy on N branches govern by Qy (k), the nonlin-
ear dispersion relation (NLDR). Since Qx (k) = Nwy/n,
at a fixed k* corresponds N peaks (wg+, 2wy /2, 3wps /3,

-+) in a frequency Fourier spectrum, i.e. a horizontal
slice of Fig. EI This is consistent with a two-peak fre-
quency spectrum reported in a numerical simulation [@]

At weak forcing, one observes linear gravity-capillary
waves of gentle amplitudes that mix together. At strong
forcing, steep long waves occur with sharp crest-ridges
(see inset of Fig. E) Near the crests of these waves, high
order harmonics are generated: small gravity-capillary
waves superimposed on the long wave are observed (see
also [L4]). These harmonics are called bound waves since
they do not propagate with their own phase velocity but
with the one of the carrier long wave E], and thus leads
to harmonics Qn (K) of velocity Qn(K)/K = w(k)/k
where K = Nk. They thus do not obey the linear dis-
persion relation which is consistent with the observation
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FIG. 3: (Color online) Space-time spectrum E(k., f) of veloc-
ity at P/2 = 10.5 located at ky = 0. Same forcing bandwidth
as in Fig. EI Inset: space spectrum E(kz, ky) located at f =5
Hz (a) and 9 Hz (b). Dashed lines: forcing directions. Log
scaled colors are different for each plot.

of secondary branches of the NLDR. This shows that
other mechanisms than purely resonant wave interaction
should be taken into account to describe the energy trans-
fer across scales in wave turbulence.

Let us now focus on the effect of the injected power P
on the location and the width of branches Qu (k). The
maximum amplitude of each branch of the velocity spec-
trum E(k, f) is extracted using the maximum of a Gaus-
sian fit with respect to k at a fixed f. For different P,
the lines of maximum energy of each branch are shown
in Fig. f| (symbols). Whatever the branch, the localized
energy line is found to be independent of P: no measur-
able shift of these lines occurs in the (kw) space. This
differs from recent observation reported in elastic wave
turbulence [[] or in simulation [[J. The widths of these
branches are also plotted in Fig. E The width is de-
fined by the rms value of the Gaussian fit. Whatever
the branch, no significant evolution of the width is found
when P is increased. The width is also independent of the
branch number within our experimental accuracy. The
typical width [A(A~1),Af] centered on a point (A™1,f) of
the NLDR is roughly (8 m~!, 1.5 Hz), and corresponds
to a finite width of the non purely resonant interaction
between waves. Thus, the wave energy is redistributed
on different branches of the NLDR of width that is inde-
pendent of P, and of the branch number.

Figure Pl shows different views of the full space-time
Fourier spectrum of the velocity E(k, f). Main figure is
E(ky, f), a slice at k, = 0 of the spectrum along the z-
axis. For frequencies above the forcing ones, one observes
two branches in the positive k, part and their symmet-
ric in the negative part. This reveals the isotropy of the
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FIG. 4: (Color online) Spatial power spectrum E(k) of the
velocity for P2 =1, 5.2, 10.5, 24.7 (from bottom to top).
Dashed lines have slopes —4.6, —4.5 and —4.2 (from bottom
to top). Dot-dashed line: A\;' =25.2m™" (see Fig. 5).

spectrum in both direction along the x-axis. Figures Ea
and fJb then show E(k) at two fixed frequencies (5 and
9Hz). One distinguishes in Fig. Eb at least two con-
centric circles on the (k;,k,) plane corresponding to two
wave numbers given by the above linear and nonlinear
dispersion relation. Such circles show that the spectrum
is roughly isotropic. Note that it is not fully isotropic
since peaks of maximum amplitude are observed in both
bottom quarters on each circle. These peaks are located
on two axes corresponding to the ones of the wave gen-
eration by each wavemaker due to the forcing anisotropy
(see Fig. ). At a lower fixed frequency [see Fig. Pa], in-
stead of different concentric circles corresponding to each
branch, one rather observes a disc due to the overlapping
of both branches of non-zero width (see above). Note
also, here again, the presence of peaks in the two direc-
tions of the forcing. The spatial spectrum is thus found
isotropic except in the vicinity and in the directions of
the forcing.

The space spectrum F(k = ||k]||) of the velocity is then
computed by summing the 3D space-time spectrum of
E(k, f) over all the directions of k and over f. Figure
shows F(k) when the forcing is increased. At high enough
forcing, E(k) is found to be scale invariant as expected for
wave turbulence. The inertial range increases with the
forcing, and E(k) ~ k=™ with n ~ 4.2 over almost one
decade in k corresponding to A ~ few cm. Note that this
exponent does not depend strongly on the forcing. Since
one cannot compute E(f) from E(k, f) in a wide range
of frequencies due to the strong steepness of the spec-
trum, one performs single point temporal measurements
that shows a strong dependence of the power-law fre-
quency exponent of the velocity spectrum on the forcing
as already reported (typically from f=° to f~2) [[L1] [L3).
These scalings suggest that the change of variable k <> f
using the linear dispersion relation to estimate E (k) from
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FIG. 5: (Color online) PDF of the Fourier wave amplitude,
|77k*|2/amm‘z7 at ke = 27/M with Ayt = 25.2 £ 0.6m™"
(see Fig. E) for two forcings PY/? = 5.2 (o) and 10.5 (%).
{|A%,*) = 1.1 (o) and 1.3 (*). Solid lines have slopes —0.46
and —0.58. Curves have been shifted vertically for clarity.
Inset: |k, |2 vs. time. \;' =25.2+£0.6m™%. P2 =24.7.

E(f) is not valid in temporal measurements in hydrody-
namics wave turbulence when strong nonlinear waves are
involved. Indeed, this would lead to an estimated veloc-
ity spectrum from k=3 to k=3/2. Moreover, our scaling
E(k) ~ k=*2 cannot be described by none of existing
theories of wave turbulence taking into account either
the presence of random-phased weakly nonlinear waves
[Etheo(k) ~ PY2k~/2] [Ild] or the dominance of coher-
ent sharp wave crests [Eypeo (k) ~ k71 to k=] [[f]. Since it
is known numerically that the spatial spectrum exponent
can change in case of anisotropy [[L7], one computes E(k)
by summing E(k, f) either over k, > 0 where isotropy is
checked or over k, < 0 where anisotropy occurs due to
the forcing reminiscence (see insets of Fig. E) For the
strongest forcing, the exponents found are 4.3 for k£, > 0
and 3.8 for k, < 0 that is close to the previous 4.2 expo-
nent. Our anisotropy thus not plays a significant role on
the estimation of the spatial spectrum exponent.
Finally, we look at the probability density function
(PDF) of the wave amplitude. First, the PDF of the
wave amplitude n(x,y) is found to be roughly Gaussian
whatever the forcing. Second, one computes the PDF of
the Fourier amplitude |fj, |? of a wave component at a
given wave number k.. As shown in Fig. E, we choose
k. = 27/, in the gravity regime with A\;! = 25.2 4 0.6
m~! corresponding (using the linear dispersion relation)
to a frequency of 6.5 Hz above the forcing ones. For each
image, the value of |, |? is extracted by averaging on
42 amplitudes found on a k-space ring of radius k.. It-
erating for all images leads to the temporal evolution of
the Fourier amplitude of the mode k, as shown in Fig. E
This signal is strongly erratic and bursts of random large-
amplitude occurs. Similar random bursts of Fourier am-
plitude has been reported in numerical simulation [@],

these bursts being correlated with phase jumps under-
lying strong nonlinear effects [@] Although we are not
able to measure the phase, this similarity is consistent
with our above results underlying strong nonlinear effect.
The PDF of the Fourier amplitude |, |?, rescaled to its
rms value o5, |2, is then plotted in Fig. ﬂ for two forc-
ings. At low forcing, the PDF is roughly exponential as
expected for random and uncorrelated waves. At higher
forcing, the PDF remains Gaussian up to three standard
deviations, whereas its tail shows a slight departure from
this Gaussian. Although more statistics are needed to
characterize more deeply the PDF tail, this anomalously
large probability of high Fourier mode amplitude is con-
sistent with 1D spatial measurements [ﬂ], simulations ]
and theory .

In conclusion, we have reported 2D spatial statistics
of wave turbulence on the surface of a fluid. The power
spectrum, the nonlinear dispersion relation and the PDF
of the Fourier modes show strong effects of nonlinear
waves involved in wave turbulence. The spatial corre-
lations and the role of the finite size of the basin should
deserve more studies to have a complete description of
the energy transfer mechanisms in wave turbulence.
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