
HAL Id: hal-00482682
https://hal.science/hal-00482682v1

Submitted on 27 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A memory Mapping Approach for Parallel Interleaver
design with multiples read and write accesses

Cyrille Chavet, Philippe Coussy

To cite this version:
Cyrille Chavet, Philippe Coussy. A memory Mapping Approach for Parallel Interleaver design with
multiples read and write accesses. IEEE International Symposium on Circuits and Systems (ISCAS),
May 2010, Paris, France. page 3168-3171, �10.1109/ISCAS.2010.5537955�. �hal-00482682�

https://hal.science/hal-00482682v1
https://hal.archives-ouvertes.fr

A memory Mapping Approach for Parallel Interleaver design with multiples read and write accesses

C. Chavet, P. Coussy

LabSTICC Lab., Université de Bretagne Sud

Abstract-For high throughput applications, turbo-like iterative

decoders are implemented with parallel architectures. However,

to be efficient parallel architectures require to avoid collision

accesses i.e. concurrent read/write accesses should not target

the same memory block. This consideration applies to the two

main classes of turbo-like codes which are Low Density Parity

Check (LDPC) and Turbo-Codes. In this paper we propose a

methodology which always finds a collision-free mapping of

the variables in the memory banks and which optimizes the

resulting interleaving architecture. Finally, we show through a

pedagogical example the interest our approach. This research

was supported by the European project DAVINCI.

Index Terms - Parallel architecture, interleavers, turbo-like

codes, memory mapping.

1. INTRODUCTION

In the multimedia and telecommunications domain, continuously

emerging customer services require severe performance to

implement the new communication standards. Indeed,

communication systems require high throughput -on the order of

several hundred Mb/s- accompanied by both low latency and

severe bit error rate BER constraints (e.g. wireless, fiber-optic

communication…). Owing to their impressive near-Shannon-limit

error correcting performance, turbo-like codes in their parallel or

serially concatenated versions [3], originally dedicated to channel

coding, or LDPC codes [5], are being currently reused in most of

digital communication systems (e.g. equalization, demodulation,

synchronization, MIMO…).

These coders are formed by two or more processing elements PE

(encoders/decoders) and one communication network composed of

steering components (multiplexers, butterflies, barrel shifters…) and

memory elements (registers, RAMs…). This network interleaves the

data blocks exchanged by the PEs according to a predefined rule

named interleaving law or permutation law. The turbo-like

decoding principle is based on an iterative algorithm using

decoders exchanging information in order to improve the error

correction performance through the iterations. The iterative nature

of these algorithms is a severe constraint to satisfy the

aforementioned requirements with an affordable implementation

complexity. A widespread solution is to realize the decoder in a

parallel fashion. On the one hand, this solution increases the

throughput since the latency of the system becomes the latency of

constituent sub-blocks [3]. On the other hand, the complexity and

the cost of the system are increased due to parallel nature of the

architecture.

By the way, depending on the interleaving law, different parallel

processing elements may try to simultaneously access the same

memory block (cf. Fig. 1). This problem is known as the “collision”

problem [11]. In this case, three classes of solution are available:

The designer may

- define his own dedicated interleaving law in order to avoid such

collision problems, but the resulting architecture may not be

standard compliant.

- add extra memory elements and control logic in the communication

network in order to buffer and postpone the conflicting data.

- find a memory mapping avoiding any conflict access and taking into

account the cost of the architecture (i.e. interconnection network).

The paper is organized as follows: the second section presents the

existing solutions to design parallel interleaver architectures.

Mem 0

Mem 1

Mem 2

PE 0

PE 1

PE 2

In
te

rc
o

n
n

e
c
ti
o

n
n

e
tw

o
rk

Fig. 1 Memory collision problem

The third section is dedicated to the problem formulation of the

interleaver design. In the fourth section we present the proposed

approach to automatically find a memory mapping solution that

avoids any conflict access. Finally, the last section presents

experimental results on a pedagogical example.

2. RELATED WORKS

An interleaving law is a permutation law, also referred as π, that

scrambles data to break up neighbourhood-relations [11]. It is a

key factor for turbo-codes performances, which varies from one

communication standard to another. Moreover for a given

standard, different interleaving rules can be used for different

modes through varying frame lengths and/or data rates [7]. In this

context, taking into account the aforementioned constraints and the

collision problems to design hardware implementations of parallel

turbo decoders require the integration of complex interconnection

network topology (cf. Fig. 1) supporting the intensive interleaved

memory accesses. Indeed, in state-of-the-art parallel turbo-

decoding, interleaving is considered as a limiting factor for the

overall system performance and the architectural cost. To

successfully tackle these problems, different solutions exist.

Multiple solutions have been proposed in classical Single-Read /

Single-Write approaches. A first solution to get rid of collisions

with non prunable interleavers, consists in designing a specific

interleaver rule. In [11], the authors propose a deterministic

methodology to design collision-free interleavers. In [12] and [8]

the authors define collision-free permutations thanks to a

combination of a spatial and a temporal permutation. The authors

of [14] simply integrate the collision-free constraint in the design

of their interleaver. However, the multi-modes architectures

(depending on the frame length, the data-rate…) cannot be handled

by such approaches. Another solution consists in defining a

collision-free interleaver that preserves this property even when

pruned. In [7], the authors describe a design rule to obtain such

interleavers, with an incremental algorithm that generates

collision-free interleavers by adding new elements in successive

steps, to a small initial permutation. Of course, all these solutions

are viable if and only if the designer is free to choose the

permutation law to be used in the system. As a consequence, the

resulting architecture may not be standard compliant.

A second approach consists in adding extra memory elements in

the communication network. The aim is to buffer and to postpone

the conflicting data. In [19] the authors propose, when a collision

appears, to store the conflicting information in the communication

network until the targeted sub-block can process it. Of course, the

additional network buffering resources, and consequently the time

needed to interleave information, increase with the number of

parallel processors. This is a suboptimal strategy, in terms of

latency and thus throughput, which avoids collisions at the

expense of area and memory. Moreover, the communication is

based on a Benes network [2], which might be suboptimal

compared to a dedicated and optimized architecture. Unlike these

implementations, in [15] the authors propose a solution based on

software and/or reconfigurable parts to achieve the required

flexibility, but achieving lower throughput. In [17], an advanced

heterogeneous communication network implementation was

proposed. Two multistage interconnection network architectures

are presented in order to handle on-chip communications in

multiprocessor parallel turbo decoders. They are based on a

dedicated network and associated routers. The main feature of

these network architectures (Butterfly and Benes based topologies)

is their supposed scalability enabling seamless trade-off between

hardware complexity and available bandwidth for turbo decoding.

The Butterfly network, which lacks of diversity, is a multistage

interconnection network with 2-input 2-output routers. There is a

unique path between each source and destination. As a

consequence, the conflicts risk is increased and the authors have to

add queues to store conflicting information. The second network

architecture proposed is based on a Benes network. In this case,

the latency is constant for all the couples (source, destination), but

this network avoids the conflicts if and only if all the paths have a

different destination. Unfortunately, it has been shown that it was

not true for turbo-decoding applications because interleaving

(respectively de-interleaving) ends in potential conflicts.

Moreover, as already mentioned the Benes networks are costly and

under-optimized solutions. In [15] the authors propose another on-

chip interconnection network adapted to a flexible multiprocessor

LDPC decoder based on a De Bruijn network. This network allows

to efficiently supporting the communication intensive nature of the

application. The conflict access are avoided thanks to a dedicated

routing algorithm.

A third solution consists in finding a memory mapping avoiding

any conflict access. This problem can also be seen as a graph

colouring problem [13]. In the graph the vertices represent the data

to be stored and the edges show the conflict existing between data

accessed in parallel. In our case, node colouring algorithms cannot

be able to propose a minimal graph colouring as we demonstrate it

in the next section. The edge algorithm [9] is based on a divide-

and-conquer strategy, uses Euler partition to perform this

colouring on bipartite multigraph. This king of approach is able to

find the minimal edge colouring in polynomial time. Nevertheless,

this theoretical approach does not take into account the resulting

steering logic complexity.

Other methods have been proposed to find a solution to this

problem. Hence, the authors of [18] describe an approach that

avoids collisions for any interleaver and any degree of parallelism.

Contrary to the literature belief, the author have proven that for

any code and any read/write operations scheduling, there exist a

suitable memory mapping that grants a collision-free access. This

solution automatically finds a collision-free data memory mapping

respecting the interleaving rule, thanks to a simulated-annealing

algorithm. As a consequence, the user cannot predict when the

algorithm will end. Moreover, the proposed approach neither

targets the optimization of the storage elements, nor the

optimization of the interconnection network.

Finally some solutions based on a set of elementary memorising

elements (Registers, FIFO, LIFO), such as [4], have been

proposed. But if these solutions are able to generate strongly

optimized architectures, they cannot, to this day, target memory

block based architecture.

In this paper, we present an approach which is able to deal with the

memory mapping in block-based and parallel interleaver

architectures with multiple accesses to the data. This solution

generates a conflict-free in-place memory mapping for any

interleaving law (as well as [18] or [19]) and it is able to optimize

the interconnection network (as well as [12]) in order to target a

specific steering component to obtain an optimized interconnection

network between the PEs and the memory banks (if the

interleaving rule enables to use this steering component, e.g. a

barrel-shifter, a butterfly…).

3. PROBLEM FORMULATION

Let us consider a set of L elements E={e0 ,…eL-1}. As an example,

LDPC codes require that each element will be processed N times by

the processing elements. The parallelism P represents the number

of processing elements required in order to achieve throughput

constraints. The number of parallel memory banks B needed to

store these data equals P, i.e. B={b0,…bP-1}. In order to equilibrate

these memory banks, each of them has to store M=L/P data.

452463

136152

245631

452463

136152

245631

Time

Parallelism

Fig. 2 Data accesses matrix

As a pedagogical example, Fig. 2 represents the data accesses for

such a decoding approach. In this example, three processing

elements compute data and store the results in three memory banks,

through an interconnection network (see Fig. 1). In this matrix, each

row refers to the data processed by a given processing element and

the column represents the time through the successive steps of the

decoding algorithm to process this block of data. The multiple

occurrences of a given data represent the iterative accesses to this

data. These accesses can be interleaved in time, e.g. data 3 is

successively accessed in the first and the second column, even if

all data have not been yet accessed: the first access to data 4 is

performed in third column.

Valid mapping constraint

In order to ensure the correctness of the proposed memory

mapping, the constraint to be respected is: if two data ei and ej are

accessed at the same time, i.e. if there exists a column in the

matrix in which data ei and ej appear, then their respective memory

mapping must be different.

Formal approach for memory mapping

In section 2, this memory mapping problem has been shown very

similar to the graph colouring problem. Unfortunately, node

colouring approaches are not suited to solve our problem. Fig. 3

represents the conflict graph extracted from the matrix (cf. Fig. 2).

In such a graph, if two nodes (i.e. two data) are linked by an edge,

this means that these data are accessed in parallel during a

processing step (i.e. a column of the matrix).

12 3

4

65

12 3

4

65

Fig. 3 Conflict access graph

In this conflict graph, the biggest clique gathers 5 data (Data 2, 3,

4, 5 and 6). As a consequence, any off the shelf node colouring

algorithm will result in a 5-colouring solution. This means that

using this approach, the user has to implement 5 memory banks to

store the data (instead of the 3 memory banks required in this

case). Fortunately, this weakness can be overcome.

The solution consists in taking into account separately the reads

and writes accesses of each data from/to the memory. This means

that any data ei should be (1) read in a memory bank bj, (2)

processed by a PE and then (3) stored in another memory bank bk.

In this case, if two data ei and ej are accessed at the same time,

then they must be read in different memory banks and the results

will be written in different memory banks. Of course, in order to

optimize the resulting architecture, these memory switches have to

be minimized and done if possible by using a regular permutation

scheme (such as circular permutation that can be implemented for

example with a barrel-shifter based network).

A dedicated design approach is thus needed. This approach has to

respect both the interleaving rule and the design constraints (the

parallelism, the number of memory bank, the size of the memory

banks, the latency, the throughput…). In order to optimize the

architecture, the approach has also to take into account the steering

components required by the designer.

4. PROPOSED APPROACH

A. Memory Mapping Constraints and Objectives
The previous mapping constraints will guarantee that the generated

mapping is valid. In addition, algorithmic constraints also require

that the first read access of a data ei has to be done in same the

memory bank bk, used for the last write access to this same data.

The architectural objectives will be used to guide the memory

mapping algorithm in order to implement an optimized

interconnection network based on specific steering components

(e.g. a barrel-shifter based network) if possible.

B. Algorithm
The algorithm we propose uses a matrix (MAP in Fig. 4.b) in order

represents the memory mapping. In this matrix, two mapping cells,

initially empty, are associated to each data ei. These cells

correspond to the memory banks in which the read and write

memory accesses for this data are performed. The Fig. 4.a presents

an element of the memory matrix. In this example, the data ei is

read in the memory bank bj and then stored in the memory bank bk.

bkbj

ei

bkbj

ei

245631

245631

136152

136152

452463

452463

 a- An element of MAP b-The MAP matrix

Fig. 4 Mapping matrix MAP for the matrix accesses presented in Fig. 1

If a given data appears several time in the mapping matrix, then

the read memory access of the ith occurrence of the data must be

performed in the same memory bank than the write memory access

of the (i-1)th occurrence of this data. This memory mapping matrix

will be filled according to the aforementioned constraints.

Mapping constraint:

- In any column of MAP each memory has to be used only one

time for the read accesses and only one time for the write accesses.

- The first read access to a given data is performed in the same

memory bank than its last write access.

Architectural objectives:

- The memory mapping in a given column of MAP for the read

access (resp. write access) has to respect the rules of the steering

components that compose the network.

- The number of different memory read access (resp. write

access) for a given processing element, i.e. a line in matrix MAP,

has to be minimized in order to reduce the control complexity.

The initialization of our mapping algorithm consists in assigning

memory banks for the first column of the matrix MAP in Fig. 4.b.

By default, the read and write access to a data are performed in the

same memory bank. Next, since each of these data is accessed for

the first time, their memory banks are reported in the last write

access to this data.

Once this update has been done, the algorithm selects the next

column in MAP and tries to find the read and write memory

mapping for the data which have not been assigned, with respect to

mapping constraints and architectural objectives. To do this, the

algorithm constructs for all empty mapping cells of the selected

column a list of all available memory banks (observing the

mapping constraints for the current column). This mapping list is

ordered by taking into account the targeted architecture (the first

elements are those which implement the targeted communication

network).

If a valid mapping is possible, i.e. all the lists generated for the

current column have at least one element, then the mapping is

done with the first element of each list.

Else if there is no mapping solution respecting the aforementioned

constraints, then for the conflicting data, the algorithm selects a

data D in the current column which has already been assigned to a

couple of memory banks in the past (i.e. in one of the previous

column in matrix MAP). The algorithm chooses the earliest

occurrence of D in the past (i.e. column CNear). Then the write

memory access of D in CNear is exchanged in order to be mapped to

a memory bank which will solve the conflict access in the current

column.

Of course, this change generates a local write access conflict to be

solved. This resolution is performed by swapping the memory

banks of the two conflicting data, if these write accesses can be

modified (i.e. this is not the last write access to the data). This

correction is then propagated in the rest of the matrix MAP if needed.

If some of the data in the current column are accessed for the first

time, then their mapping is reported in the last write access to these

data and the recursion is performed.

The resulting matrix represents a conflict free memory mapping

for the given interleaving law, and also gives the control steps of

the interleaving network. Our recursive algorithm is thus able to

find a valid memory mapping, and each time the interleaving law

enables it, this mapping will by construction respect the input

architectural objective.

5. PRATICAL IMPLEMENTATION

Let us take as an example a matrix (see Fig. 2) with 3 PEs. The

first step of our mapping algorithm consists in assigning a memory

bank for a first set of data, e.g. the first column of MAP in Fig. 5:

data 1 in this first column of MAP, the data is first read in the

memory bank b0, and then the result is stored in the same memory

bank b0.

----------b0b0

245631

----------b0b0

245631

----------b1b1

136152

----------b1b1

136152

----------b2b2

452463

----------b2b2

452463

Fig. 5 Initialization of the mapping matrix

Then, the last write accesses to these data in the matrix are

assigned to the same memory bank as can be seen in bold in Fig. 6.

Once this update has been done, the algorithm selects the next

column and assigns a memory mapping with respect to both the

mapping constraints and architectural objectives.

b1---------b0b0

245631

b1---------b0b0

245631

b0-b2-------b1b1

136152

b0-b2-------b1b1

136152

----------b2b2

452463

----------b2b2

452463

Fig. 6 Memory mapping of the last write access

In Fig.7, the data 3 in the second column has been previously

mapped to bank b2 (in the first column), then the read access to this

data should be done in b2. Then this bank is reused for the current

write access.

1 3 6 5 4 2

b0 b0 b2 b2 - - - - - - - b1

2 5 1 6 3 1

b1 b1 - - - - - - - b2 - b0

3 6 4 2 5 4

b2 b2
- - - - - - - - - -

Fig. 7 Second column mapping report of data 3

The other data are accessed for the first time so the algorithm first

constructs the mapping solutions lists for these data. Then the

memory mappings of the current column are performed and the read

accesses of data 5 and 6 are reported to their last write accesses in

MAP (see Fig. 8).

b1-------b2b2b0b0

245631

b1-------b2b2b0b0

245631

b0-b2-b1---b0b0b1b1

136152

b0-b2-b1---b0b0b1b1

136152

--b0-----b1b1b2b2

452463

--b0-----b1b1b2b2

452463

Fig. 8 Second column mapping

Then, our algorithm is performed on the rest of the matrix until it

reaches a conflict (Fig. 9). In this case, the data 6 has just been

written (previous column) to bank b1, but data 2 is also stored in

the bank b1 (first column mapping).

b1-----b1b1b2b2b0b0

245631

b1-----b1b1b2b2b0b0

245631

b0-b2-b1-b0b0b0b0b1b1

136152

b0-b2-b1-b0b0b0b0b1b1

136152

b2-b0---b2b2b1b1b2b2

452463

b2-b0---b2b2b1b1b2b2

452463

Fig. 9 Mapping conflict in the fourth column

To solve this problem, the algorithm selects the conflicting data

which has been mapped during the nearest column in the past, i.e.

in our example: data 6. Then, its write access is exchanged with

the write access of data 4, as can be seen in Fig. 10.

b1---b0b0b2b1b2b2b0b0

245631

b1---b0b0b2b1b2b2b0b0

245631

b0-b2-b1b2b0b0b0b0b1b1

136152

b0-b2-b1b2b0b0b0b0b1b1

136152

b2-b0-b2b1b1b2b1b1b2b2

452463

b2-b0-b2b1b1b2b1b1b2b2

452463

Fig. 10 Solving the mapping conflict in the fourth column

Next, the algorithm is applied on the rest of the matrix, see Fig. 11.

The mapping matrix gives the interleaving network control

information: the sequential accesses to the memory banks are a

representation of the control state machine of the interconnection

network.

b1b2b1b1b0b0b2b1b2b2b0b0

245631

b1b2b1b1b0b0b2b1b2b2b0b0

245631

b0b0b2b2b1b2b0b0b0b0b1b1

136152

b0b0b2b2b1b2b0b0b0b0b1b1

136152

b2b1b0b0b2b1b1b2b1b1b2b2

452463

b2b1b0b0b2b1b1b2b1b1b2b2

452463

Fig. 11 The final memory mapping

5. CONCLUSION
In this paper, we have presented a memory mapping methodology

to design parallel interleaver architecture with multiple read/write

access. This methodology allows to generate a valid memory

mapping in any case and avoids the limitation of the traditional

graph colouring approach. If the interleaving law enables it, the

resulting memory mapping will optimize the resulting

interconnection network.

REFERENCES

[1] S.Benedetto, D.Divsalar, G.Montorsi and F.Pollara,“Serial concatenation of

interleaved codes: Performance analysis, design, and iterative decoding”, IEEE

Trans.Inf.Theory, vol.44, no.3, pp.909–926, may 1998.

[2] V.E.Benes,“Mathematical Theory of connecting network and

telephone trafic”, New York, N.Y.: Academic, 1965.
[3] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near-Shannon limit

errorcorrecting coding and decoding: Turbo codes,” in Proc. IEEE Int.

Conf Commun., vol. 2, Geneva, Switzerland, 1993, pp. 1064–1070.
[4] C.Chavet, P.Coussy, P.Urard, E.Martin,”A Methodology for Efficient

Space-Time Adapter Design Space Exploration: A Case Study of an Ultra

Wide Band Interleaver”, p. 2946-2949, ISCAS 2007.
[5] J.C.MacKay David and R.M.Neal, “Near Shannon limit performance

of low density parity check codes”, Electronics letters, July 1996.
[6] R.Diestel, “Graph Theory”, vol. 98 of Graduate Texts in Mathematics,

Springer-Verlag, July 2005.
[7] L.Dinoi and S.Benedetto,“Variable-size interleaver design for parallel

turbo decoder architecture”, IEEE Trans.On Comm., vol.53, no11, Nov.2005.
[8] R.Dobkin,M.Peleg and R.Ginosar,“Parallel VLSI architectures and parallel

interleaving design for low-latency MAP turbo decoders”,Tech.Rep.CCIT-TR436.

[9] P.Erdős and R.J.Wilson,"Note on the chromatic index of almost all

graphs", Journal of Combinatorial Theory, Series B23: 255–257, 1977.

[10] H.N.Gabow, “Using Euler Partitions to Edge Color Bipartite

Multigraphs”, International Journal of Computer and information

Sciences, vol. 5, no.4, p.345-355, December 1976.
[11] A.Giulietti, L.Van Der Perre and M.Strum, “Parallel turbo coding

interleavers: avoiding collisions in accesses to storage elements”,

Electronics Leters, vol. 38, no. 5, pp.232–234, Feb. 2002.
[12] D.Gnaedig, E.Boutillon, M.Jezequel, V.C.Gaudet, and P.G.Gulak, “On

multiple slice turbo codes,” in Proc. 3rd Int. Symp. Turbo Codes, Related

Topics, Brest, 2003, pp. 343–346.
[13] M. Kubale, “Graph Colorings”, American Mathematical Society,

2004, ISBN 0-8218-3458-4.

[14] J.Kwak and K.Lee, “Design of dividable interleaver for parallel decoding

in turbo codes”, Electron. Lett., vol.38, no.22, pp.1362–1364, Oct. 2002.
[15] A.La Rosa, C.Passeron, F.Gregoretti and L.Lavagno, “Implementation

of a UMTS turbo-decoder on dynamically reconfigurable platform”,

proceedings of DATE 2004, Paris.
[16] H.Moussa, A.Baghdadi, M.Jezequel, “Binary de Bruijn on-chip

network for a flexible multiprocessor LDPC decoder”. 45thACM/IEEE

DAC, p.429-434, 2008.
[17] O.Muller, A.Baghdadi, M.Jezequel, “ASIP-based multiprocessor SoC

design for simple and double binary turbo decoding”, DATE 2006.
[18] A.Tarable, S.Benedetto, and G.Montorsi, “Mapping interleaving laws

to parallel turbo and LDPC decoder architectures”, IEEE Trans.Inf.

Theory, vol. 50, no.9, pp.2002-2009, Sep. 2004.
[19] M.J.Thul,F.Gilbert, and N.Wehn, “Optimized concurrent interleaving

architecture for high-throughput turbo-decoding,” in Proc. 9th Int. Conf.

Electron., Circuits, Syst., vol.3, pp.1099–1102, 2002.

