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Abstract-For high throughput applications, turbo-like iterative 

decoders are implemented with parallel architectures. However, 

to be efficient parallel architectures require to avoid collision 

accesses i.e. concurrent read/write accesses should not target 

the same memory block. This consideration applies to the two 

main classes of turbo-like codes which are Low Density Parity 

Check (LDPC) and Turbo-Codes. In this paper we propose a 

methodology which always finds a collision-free mapping of 

the variables in the memory banks and which optimizes the 

resulting interleaving architecture. Finally, we show through a 

pedagogical example the interest our approach. This research 

was supported by the European project DAVINCI. 
 

Index Terms - Parallel architecture, interleavers, turbo-like 

codes, memory mapping. 
 

1. INTRODUCTION 
 

In the multimedia and telecommunications domain, continuously 

emerging customer services require severe performance to 

implement the new communication standards. Indeed, 

communication systems require high throughput -on the order of 

several hundred Mb/s- accompanied by both low latency and 

severe bit error rate BER constraints (e.g. wireless, fiber-optic 

communication…). Owing to their impressive near-Shannon-limit 

error correcting performance, turbo-like codes in their parallel or 

serially concatenated versions [3], originally dedicated to channel 

coding, or LDPC codes [5], are being currently reused in most of 

digital communication systems (e.g. equalization, demodulation, 

synchronization, MIMO…).  

These coders are formed by two or more processing elements PE 

(encoders/decoders) and one communication network composed of 

steering components (multiplexers, butterflies, barrel shifters…) and 

memory elements (registers, RAMs…). This network interleaves the 

data blocks exchanged by the PEs according to a predefined rule 

named interleaving law or permutation law. The turbo-like 

decoding principle is based on an iterative algorithm using 

decoders exchanging information in order to improve the error 

correction performance through the iterations. The iterative nature 

of these algorithms is a severe constraint to satisfy the 

aforementioned requirements with an affordable implementation 

complexity. A widespread solution is to realize the decoder in a 

parallel fashion. On the one hand, this solution increases the 

throughput since the latency of the system becomes the latency of 

constituent sub-blocks [3]. On the other hand, the complexity and 

the cost of the system are increased due to parallel nature of the 

architecture. 

By the way, depending on the interleaving law, different parallel 

processing elements may try to simultaneously access the same 

memory block (cf. Fig. 1). This problem is known as the “collision” 

problem [11]. In this case, three classes of solution are available: 

The designer may 

- define his own dedicated interleaving law in order to avoid such 

collision problems, but the resulting architecture may not be 

standard compliant. 

- add extra memory elements and control logic in the communication 

network in order to buffer and postpone the conflicting data. 

- find a memory mapping avoiding any conflict access and taking into 

account the cost of the architecture (i.e. interconnection network). 

The paper is organized as follows: the second section presents the 

existing solutions to design parallel interleaver architectures. 
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Fig. 1 Memory collision problem 

The third section is dedicated to the problem formulation of the 

interleaver design. In the fourth section we present the proposed 

approach to automatically find a memory mapping solution that 

avoids any conflict access. Finally, the last section presents 

experimental results on a pedagogical example. 
 

2. RELATED WORKS 
 

An interleaving law is a permutation law, also referred as π, that 

scrambles data to break up neighbourhood-relations [11]. It is a 

key factor for turbo-codes performances, which varies from one 

communication standard to another. Moreover for a given 

standard, different interleaving rules can be used for different 

modes through varying frame lengths and/or data rates [7]. In this 

context, taking into account the aforementioned constraints and the 

collision problems to design hardware implementations of parallel 

turbo decoders require the integration of complex interconnection 

network topology (cf. Fig. 1) supporting the intensive interleaved 

memory accesses. Indeed, in state-of-the-art parallel turbo-

decoding, interleaving is considered as a limiting factor for the 

overall system performance and the architectural cost. To 

successfully tackle these problems, different solutions exist.  

Multiple solutions have been proposed in classical Single-Read / 

Single-Write approaches. A first solution to get rid of collisions 

with non prunable interleavers, consists in designing a specific 

interleaver rule. In [11], the authors propose a deterministic 

methodology to design collision-free interleavers. In [12] and [8] 

the authors define collision-free permutations thanks to a 

combination of a spatial and a temporal permutation. The authors 

of [14] simply integrate the collision-free constraint in the design 

of their interleaver. However, the multi-modes architectures 

(depending on the frame length, the data-rate…) cannot be handled 

by such approaches. Another solution consists in defining a 

collision-free interleaver that preserves this property even when 

pruned. In [7], the authors describe a design rule to obtain such 

interleavers, with an incremental algorithm that generates 

collision-free interleavers by adding new elements in successive 

steps, to a small initial permutation. Of course, all these solutions 

are viable if and only if the designer is free to choose the 

permutation law to be used in the system. As a consequence, the 

resulting architecture may not be standard compliant. 

A second approach consists in adding extra memory elements in 

the communication network. The aim is to buffer and to postpone 

the conflicting data. In [19] the authors propose, when a collision 

appears, to store the conflicting information in the communication 

network until the targeted sub-block can process it. Of course, the 

additional network buffering resources, and consequently the time 

needed to interleave information, increase with the number of 

parallel processors. This is a suboptimal strategy, in terms of 

latency and thus throughput, which avoids collisions at the 



expense of area and memory. Moreover, the communication is 

based on a Benes network [2], which might be suboptimal 

compared to a dedicated and optimized architecture. Unlike these 

implementations, in [15] the authors propose a solution based on 

software and/or reconfigurable parts to achieve the required 

flexibility, but achieving lower throughput. In [17], an advanced 

heterogeneous communication network implementation was 

proposed. Two multistage interconnection network architectures 

are presented in order to handle on-chip communications in 

multiprocessor parallel turbo decoders. They are based on a 

dedicated network and associated routers. The main feature of 

these network architectures (Butterfly and Benes based topologies) 

is their supposed scalability enabling seamless trade-off between 

hardware complexity and available bandwidth for turbo decoding. 

The Butterfly network, which lacks of diversity, is a multistage 

interconnection network with 2-input 2-output routers. There is a 

unique path between each source and destination. As a 

consequence, the conflicts risk is increased and the authors have to 

add queues to store conflicting information. The second network 

architecture proposed is based on a Benes network. In this case, 

the latency is constant for all the couples (source, destination), but 

this network avoids the conflicts if and only if all the paths have a 

different destination. Unfortunately, it has been shown that it was 

not true for turbo-decoding applications because interleaving 

(respectively de-interleaving) ends in potential conflicts. 

Moreover, as already mentioned the Benes networks are costly and 

under-optimized solutions. In [15] the authors propose another on-

chip interconnection network adapted to a flexible multiprocessor 

LDPC decoder based on a De Bruijn network. This network allows 

to efficiently supporting the communication intensive nature of the 

application. The conflict access are avoided thanks to a dedicated 

routing algorithm. 

A third solution consists in finding a memory mapping avoiding 

any conflict access. This problem can also be seen as a graph 

colouring problem [13]. In the graph the vertices represent the data 

to be stored and the edges show the conflict existing between data 

accessed in parallel. In our case, node colouring algorithms cannot 

be able to propose a minimal graph colouring as we demonstrate it 

in the next section. The edge algorithm [9] is based on a divide-

and-conquer strategy, uses Euler partition to perform this 

colouring on bipartite multigraph. This king of approach is able to 

find the minimal edge colouring in polynomial time. Nevertheless, 

this theoretical approach does not take into account the resulting 

steering logic complexity.  

Other methods have been proposed to find a solution to this 

problem. Hence, the authors of [18] describe an approach that 

avoids collisions for any interleaver and any degree of parallelism. 

Contrary to the literature belief, the author have proven that for 

any code and any read/write operations scheduling, there exist a 

suitable memory mapping that grants a collision-free access. This 

solution automatically finds a collision-free data memory mapping 

respecting the interleaving rule, thanks to a simulated-annealing 

algorithm. As a consequence, the user cannot predict when the 

algorithm will end. Moreover, the proposed approach neither 

targets the optimization of the storage elements, nor the 

optimization of the interconnection network. 

Finally some solutions based on a set of elementary memorising 

elements (Registers, FIFO, LIFO), such as [4], have been 

proposed. But if these solutions are able to generate strongly 

optimized architectures, they cannot, to this day, target memory 

block based architecture.  

In this paper, we present an approach which is able to deal with the 

memory mapping in block-based and parallel interleaver 

architectures with multiple accesses to the data. This solution 

generates a conflict-free in-place memory mapping for any 

interleaving law (as well as [18] or [19]) and it is able to optimize 

the interconnection network (as well as [12]) in order to target a 

specific steering component to obtain an optimized interconnection 

network between the PEs and the memory banks (if the 

interleaving rule enables to use this steering component, e.g. a 

barrel-shifter, a butterfly…). 
 

3. PROBLEM FORMULATION 
 

Let us consider a set of L elements E={e0 ,…eL-1}. As an example, 

LDPC codes require that each element will be processed N times by 

the processing elements. The parallelism P represents the number 

of processing elements required in order to achieve throughput 

constraints. The number of parallel memory banks B needed to 

store these data equals P, i.e. B={b0,…bP-1}. In order to equilibrate 

these memory banks, each of them has to store M=L/P data.  
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Fig. 2 Data accesses matrix 

As a pedagogical example, Fig. 2 represents the data accesses for 

such a decoding approach. In this example, three processing 

elements compute data and store the results in three memory banks, 

through an interconnection network (see Fig. 1). In this matrix, each 

row refers to the data processed by a given processing element and 

the column represents the time through the successive steps of the 

decoding algorithm to process this block of data. The multiple 

occurrences of a given data represent the iterative accesses to this 

data. These accesses can be interleaved in time, e.g. data 3 is 

successively accessed in the first and the second column, even if 

all data have not been yet accessed: the first access to data 4 is 

performed in third column. 

Valid mapping constraint 

In order to ensure the correctness of the proposed memory 

mapping, the constraint to be respected is: if two data ei and ej are 

accessed at the same time, i.e. if there exists a column in the 

matrix in which data ei and ej appear, then their respective memory 

mapping must be different. 

Formal approach for memory mapping 

In section 2, this memory mapping problem has been shown very 

similar to the graph colouring problem. Unfortunately, node 

colouring approaches are not suited to solve our problem. Fig. 3 

represents the conflict graph extracted from the matrix (cf. Fig. 2). 

In such a graph, if two nodes (i.e. two data) are linked by an edge, 

this means that these data are accessed in parallel during a 

processing step (i.e. a column of the matrix).  
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Fig. 3 Conflict access graph 

In this conflict graph, the biggest clique gathers 5 data (Data 2, 3, 

4, 5 and 6). As a consequence, any off the shelf node colouring 

algorithm will result in a 5-colouring solution. This means that 

using this approach, the user has to implement 5 memory banks to 

store the data (instead of the 3 memory banks required in this 

case). Fortunately, this weakness can be overcome.  



The solution consists in taking into account separately the reads 

and writes accesses of each data from/to the memory. This means 

that any data ei should be (1) read in a memory bank bj, (2) 

processed by a PE and then (3) stored in another memory bank bk. 

In this case, if two data ei and ej are accessed at the same time, 

then they must be read in different memory banks and the results 

will be written in different memory banks. Of course, in order to 

optimize the resulting architecture, these memory switches have to 

be minimized and done if possible by using a regular permutation 

scheme (such as circular permutation that can be implemented for 

example with a barrel-shifter based network). 

A dedicated design approach is thus needed. This approach has to 

respect both the interleaving rule and the design constraints (the 

parallelism, the number of memory bank, the size of the memory 

banks, the latency, the throughput…). In order to optimize the 

architecture, the approach has also to take into account the steering 

components required by the designer. 
 

4. PROPOSED APPROACH 
 

A. Memory Mapping Constraints and Objectives 
The previous mapping constraints will guarantee that the generated 

mapping is valid. In addition, algorithmic constraints also require 

that the first read access of a data ei has to be done in same the 

memory bank bk, used for the last write access to this same data. 

The architectural objectives will be used to guide the memory 

mapping algorithm in order to implement an optimized 

interconnection network based on specific steering components 

(e.g. a barrel-shifter based network) if possible.   
 

B. Algorithm 
The algorithm we propose uses a matrix (MAP in Fig. 4.b) in order 

represents the memory mapping. In this matrix, two mapping cells, 

initially empty, are associated to each data ei. These cells 

correspond to the memory banks in which the read and write 

memory accesses for this data are performed. The Fig. 4.a presents 

an element of the memory matrix. In this example, the data ei is 

read in the memory bank bj and then stored in the memory bank bk. 
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        a- An element of MAP                            b-The MAP matrix 

Fig. 4 Mapping matrix MAP for the matrix accesses presented in Fig. 1 

If a given data appears several time in the mapping matrix, then 

the read memory access of the ith occurrence of the data must be 

performed in the same memory bank than the write memory access 

of the (i-1)th occurrence of this data. This memory mapping matrix 

will be filled according to the aforementioned constraints. 

Mapping constraint: 

- In any column of MAP each memory has to be used only one 

time for the read accesses and only one time for the write accesses. 

- The first read access to a given data is performed in the same 

memory bank than its last write access. 

Architectural objectives: 

- The memory mapping in a given column of MAP for the read 

access (resp. write access) has to respect the rules of the steering 

components that compose the network. 

- The number of different memory read access (resp. write 

access) for a given processing element, i.e. a line in matrix MAP, 

has to be minimized in order to reduce the control complexity. 

The initialization of our mapping algorithm consists in assigning 

memory banks for the first column of the matrix MAP in Fig. 4.b. 

By default, the read and write access to a data are performed in the 

same memory bank. Next, since each of these data is accessed for 

the first time, their memory banks are reported in the last write 

access to this data. 

Once this update has been done, the algorithm selects the next 

column in MAP and tries to find the read and write memory 

mapping for the data which have not been assigned, with respect to 

mapping constraints and architectural objectives. To do this, the 

algorithm constructs for all empty mapping cells of the selected 

column a list of all available memory banks (observing the 

mapping constraints for the current column). This mapping list is 

ordered by taking into account the targeted architecture (the first 

elements are those which implement the targeted communication 

network). 

If a valid mapping is possible, i.e. all the lists generated for the 

current column have at least one element, then the mapping is 

done with the first element of each list.  

Else if there is no mapping solution respecting the aforementioned 

constraints, then for the conflicting data, the algorithm selects a 

data D in the current column which has already been assigned to a 

couple of memory banks in the past (i.e. in one of the previous 

column in matrix MAP). The algorithm chooses the earliest 

occurrence of D in the past (i.e. column CNear). Then the write 

memory access of D in CNear is exchanged in order to be mapped to 

a memory bank which will solve the conflict access in the current 

column.  

Of course, this change generates a local write access conflict to be 

solved. This resolution is performed by swapping the memory 

banks of the two conflicting data, if these write accesses can be 

modified (i.e. this is not the last write access to the data). This 

correction is then propagated in the rest of the matrix MAP if needed.  

If some of the data in the current column are accessed for the first 

time, then their mapping is reported in the last write access to these 

data and the recursion is performed. 

The resulting matrix represents a conflict free memory mapping 

for the given interleaving law, and also gives the control steps of 

the interleaving network. Our recursive algorithm is thus able to 

find a valid memory mapping, and each time the interleaving law 

enables it, this mapping will by construction respect the input 

architectural objective. 
 

5. PRATICAL IMPLEMENTATION 
 

Let us take as an example a matrix (see Fig. 2) with 3 PEs. The 

first step of our mapping algorithm consists in assigning a memory 

bank for a first set of data, e.g. the first column of MAP in Fig. 5: 

data 1 in this first column of MAP, the data is first read in the 

memory bank b0, and then the result is stored in the same memory 

bank b0. 
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Fig. 5 Initialization of the mapping matrix 

Then, the last write accesses to these data in the matrix are 

assigned to the same memory bank as can be seen in bold in Fig. 6. 

Once this update has been done, the algorithm selects the next 

column and assigns a memory mapping with respect to both the 

mapping constraints and architectural objectives. 
 



b1---------b0b0
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Fig. 6 Memory mapping of the last write access 

In Fig.7, the data 3 in the second column has been previously 

mapped to bank b2 (in the first column), then the read access to this 

data should be done in b2. Then this bank is reused for the current 

write access.  

1 3 6 5 4 2

b0 b0 b2 b2 - - - - - - - b1

2 5 1 6 3 1

b1 b1 - - - - - - - b2 - b0

3 6 4 2 5 4

b2 b2
- - - - - - - - - -

 
Fig. 7 Second column mapping report of data 3 

 

The other data are accessed for the first time so the algorithm first 

constructs the mapping solutions lists for these data. Then the 

memory mappings of the current column are performed and the read 

accesses of data 5 and 6 are reported to their last write accesses in 

MAP (see Fig. 8). 
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Fig. 8 Second column mapping 

Then, our algorithm is performed on the rest of the matrix until it 

reaches a conflict (Fig. 9). In this case, the data 6 has just been 

written (previous column) to bank b1, but data 2 is also stored in 

the bank b1 (first column mapping). 
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Fig. 9 Mapping conflict in the fourth column 

To solve this problem, the algorithm selects the conflicting data 

which has been mapped during the nearest column in the past, i.e. 

in our example: data 6. Then, its write access is exchanged with 

the write access of data 4, as can be seen in Fig. 10.  
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Fig. 10 Solving the mapping conflict in the fourth column 

Next, the algorithm is applied on the rest of the matrix, see Fig. 11. 

The mapping matrix gives the interleaving network control 

information: the sequential accesses to the memory banks are a 

representation of the control state machine of the interconnection 

network. 
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Fig. 11 The final memory mapping 

 

5. CONCLUSION 
In this paper, we have presented a memory mapping methodology 

to design parallel interleaver architecture with multiple read/write 

access. This methodology allows to generate a valid memory 

mapping in any case and avoids the limitation of the traditional 

graph colouring approach. If the interleaving law enables it, the 

resulting memory mapping will optimize the resulting 

interconnection network.  
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