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A New Rapid and Simple Method to Determine the Kinetics of Electrode Reactions of Biologically Relevant Compounds from the Half-Peak Width of the Square-Wave Voltammograms

Introduction

The electron (or charge) transfer reactions are central to the function of proteins and other redox active compounds in many biological processes. This is well known in bioenergetics: photosynthesis and respiration realize energy conversion through a complex sequence of electron transfer reactions. However, electron transfer also takes place in many other biological processes ranging from cell defense to gene control. The rate of electron transfer from a donor D to an acceptor A is a key parameter that determines biological function, and much effort has been made to relate the rate of electron transfer to structural and thermodynamic features of the compounds of interest.

In the last 20 years the square-wave voltammetry (SWV) emerged as an inevitable instrumental tool in numerous research laboratories dealing with biochemical, physiological, physical, chemical, environmental and medical issues [START_REF] Osteryoung | Square-Wave Voltammetry[END_REF][START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Smith | Redox properties of several bacterial ferredoxins using square-wave voltammetry[END_REF][START_REF] Scholz | Electrochemistry of Immobilized Particles and Droplets[END_REF][START_REF] Hu | Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants[END_REF]. The electrochemical analysis of various biologically relevant redox-active compounds with square-wave voltammetry attracted significant attention, mainly because of the ability of SWV to gain detailed insight into mechanisms of chemical reactions coupled to electron transfer, as well as due to appropriateness of the technique for sensory biotechnology [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Wu | Biosensors based on direct electron transfer in redox proteins[END_REF][START_REF] Armstrong | Bioelectrochemistry of Biomacromolecules[END_REF][START_REF] Armstrong | Reactions of complex metalloproteins studied by protein-film voltammetry[END_REF]. The main attributes and the most important theoretical and experimental achievements of the SWV have been thoroughly reviewed in a very recent monograph [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF]. Quantifying the strengths of interactions between biologically important compounds, and revealing the mechanistic pathways of many proteins and enzymes attached to the surface of the working electrodes are just some of the new exciting fields in which square-wave voltammetry has been explored as a simple and powerful tool [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Armstrong | Bioelectrochemistry of Biomacromolecules[END_REF][START_REF] Armstrong | Reactions of complex metalloproteins studied by protein-film voltammetry[END_REF][START_REF] Leger | Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms[END_REF][START_REF] Obrien | Low-Temperature electrochemistry of Chromium porphyrins -characterization of transient species[END_REF].
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The SWV technique allows accurate quantification of various kinetic and thermodynamic parameters connected to electron transfer reactions of many redox active compounds in very elegant ways [1-3, 12,13]. Considering the electrode reaction of a single compound, the main physical parameters that describe the electron transfer reaction between the electrode and the investigated compound are: the standard redox potential E o (which is tightly connected to the magnitude of the energetic barrier of electron transfer), the number of exchanged electrons involved in the elementary act of electrochemical transformation n, the electron transfer coefficient α (i.e. the symmetry factor of the energetic barrier [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF]), and the standard rate constant of electron transfer k s . The recent theoretical considerations of various redox systems analyzed by SWV permitted valuable information about the kinetic and thermodynamic parameters of electron transfer steps by various redox systems [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Garay | Quasi-reversible EC reactions at spherical microelectrodes analysed by square-wave voltammetry[END_REF][START_REF] Garay | Square-wave voltammetry of quasi-reversible electrode processes with coupled homogeneous chemical reactions[END_REF][START_REF] Miles | The theory of square wave voltammetry at uniformly accessible hydrodynamic electrodes[END_REF][START_REF] Miles | Simulation of square-wave voltammetry at a channel electrode: E, EC and ECE processes[END_REF][START_REF] Brookes | Simulation of square wave voltammetry: quasireversible electrode processes[END_REF][START_REF] Mirceski | Surface catalytic mechanism in square-wave voltammetry[END_REF][START_REF] Mirceski | Adsorption effects in square-wave voltammetry of an EC mechanism[END_REF][START_REF] Gulaboski | Square-wave voltammetry of cathodic stripping reactions. diagnostic criteria, redox kinetic measurements, and analytical applications[END_REF][START_REF] Mirceski | EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction[END_REF][START_REF] Mirceski | Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry[END_REF][START_REF] Mirceski | Square-wave voltammetry of an EC reaction of a partly adsorbed redox couple[END_REF]. To date, the kinetics of electron transfer reactions have been most commonly characterized by cyclic voltammetry [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Laviron | Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry[END_REF][START_REF] Laviron | Use of linear potential sweep voltammetry and of AC voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes[END_REF]. The kinetic characterization with the square-wave voltammetry has become particularly interesting due to the simplicity and accuracy of the developed methods [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Garay | Quasi-reversible EC reactions at spherical microelectrodes analysed by square-wave voltammetry[END_REF][START_REF] Garay | Square-wave voltammetry of quasi-reversible electrode processes with coupled homogeneous chemical reactions[END_REF][START_REF] Miles | The theory of square wave voltammetry at uniformly accessible hydrodynamic electrodes[END_REF][START_REF] Miles | Simulation of square-wave voltammetry at a channel electrode: E, EC and ECE processes[END_REF][START_REF] Brookes | Simulation of square wave voltammetry: quasireversible electrode processes[END_REF][START_REF] Mirceski | Surface catalytic mechanism in square-wave voltammetry[END_REF][START_REF] Mirceski | Adsorption effects in square-wave voltammetry of an EC mechanism[END_REF][START_REF] Gulaboski | Square-wave voltammetry of cathodic stripping reactions. diagnostic criteria, redox kinetic measurements, and analytical applications[END_REF][START_REF] Mirceski | EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction[END_REF][START_REF] Mirceski | Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry[END_REF][START_REF] Mirceski | Square-wave voltammetry of an EC reaction of a partly adsorbed redox couple[END_REF]. While the peak potentials (and peak-to-peak separation) as a function of the SW frequency have commonly been used to determine the kinetics of redox reactions from the dissolved state [START_REF] Osteryoung | Square-Wave Voltammetry[END_REF][START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF], the phenomenon of "quasireversible maximum" (based on the peak-current measurements) has emerged as a simple and viable method to determine kinetic parameters of surface-confined redox reactions [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Characterization of quasi-reversible surface processes by square-wave voltammetry[END_REF][START_REF] Mirceski | Surface catalytic mechanism in square-wave voltammetry[END_REF][START_REF] Mirceski | Adsorption effects in square-wave voltammetry of an EC mechanism[END_REF][START_REF] Gulaboski | Square-wave voltammetry of cathodic stripping reactions. diagnostic criteria, redox kinetic measurements, and analytical applications[END_REF][START_REF] Mirceski | EC mechanism of an adsorbed redox couple. Volume vs surface chemical reaction[END_REF][START_REF] Mirceski | Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry[END_REF][START_REF] Mirceski | Square-wave voltammetry of an EC reaction of a partly adsorbed redox couple[END_REF]. In the present paper, we present theoretical results that are related to the measuring of kinetic parameters of the electron transfer reactions, in which the half-peak width of the net square-wave voltammograms is the main studied feature. To the best of our knowledge, there is no
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paper in the literature about the kinetic measurements extracted from the half-peak widths of the square-wave voltammograms. We develop a new theoretical method to determine the kinetics of electrode reactions from the half-peak width of the square-wave voltammograms. Redox reactions in a dissolved state and surface redox reactions of strongly adsorbed redox couple (which can be considered as a diffusionless redox system) were analyzed. The new method is a simple and viable alternative for quick and accurate assessment of the physical parameters related to the electron transfer reactions of redox systems.

Results and Discussions

Theoretical net SW voltammograms are bell-shaped curves characterized by peak potential ∆E p , peak current Ψ p , and half-peak width ∆E p/2 (figure 1). The half-peak width is an item defined as the width (measured in millivolts) at the half-height of the net SW voltammetric peak. All these parameters of the voltammetric curves are a function of the potential modulation parameters (frequency f, amplitude E sw , and potential increment ∆E), the number of exchanged electrons n, the electron transfer coefficient α, and the temperature T, as well as of the dimensionless electrode kinetic parameter K. For redox reactions taking place from a dissolved state, the dimensionless kinetic parameter K is defined as K = k s (fD) -0.5 , while for the surface redox reaction K is defined as K = k s /f. By k s we assign the standard rate constant of electron transfer (k s is given in cm s -1 for reaction from the dissolved state and in s -1 for surface redox reactions), while D (cm 2 s -1 )

is the common diffusion coefficient of both species of the dissolved redox couple.
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6 Detailed studies of the features of simple surface redox reaction and redox reaction from the dissolved state related to the influence of the kinetic parameter K, E sw , α, and n under conditions of square-wave voltammetry can be found elsewhere [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Characterization of quasi-reversible surface processes by square-wave voltammetry[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF]. In this work, we focus on the influence of the kinetic parameters of the electron transfer reaction on the half-peak widths of theoretical square-wave voltammograms.

A. Analysis of the half-peak width of the SW voltammograms in the case of an electrode reaction taking place from dissolved state

In this case, we consider simple redox reaction taking place from dissolved state that can be described by the following reaction scheme:

A (dissolved) + ne -⇔ B (dissolved) (I)
The half-peak width of the SW voltammograms of a redox reaction from dissolved state (at constant temperature) is influenced by the normalized square-wave amplitude nE sw , the electron transfer coefficient α, and the dimensionless kinetic parameter K. The sensitivity of the half-peak width to the number of exchanged electrons n and the electron transfer coefficient α has been briefly mentioned in the work of O'Dea and Osteryoungs' [START_REF] Odea | Characterization of quasi-reversible surface processes by square-wave voltammetry[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF] In the next set of figures, we show in more details how the SW voltammetric responses are affected by n and α. In figure 2A, the net square-wave voltammograms calculated for 3 different values of n are shown. Increasing the number of electrons involved in the direct act of the electrochemical transformation is followed by a decrease of the half-peak width of the simulated SW voltammograms. This feature is a direct consequence of the sensitivity of the shape of forward and backward components of the corresponding
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square-wave voltammetric responses to n. Both, forward and backward component are getting much narrower as n increases (see figure 2B). Since the net current in SWV is defined as a difference between the forward and the backward current components, the shape of the net SWV peak always reflects changes of the forward and/or backward SW components. Besides the number of electrons, the half-peak widths of theoretical squarewave voltammograms are also sensitive to the charge transfer coefficient α (see figures 3A and 3B). Increasing of the value of electron transfer coefficient α decreases the peakto-peak separations between the forward and backward current components (figure 3A), which again results in a decrease of the net half-peak widths (figure 3B).

Determination of charge-transfer coefficient alpha (α α α α) from the net square-wave voltammograms

Most commonly, for a given number of electrons exchanged n, the half-peak width of the net voltammograms of an irreversible electrode reaction depends mainly on the electron transfer coefficient α [START_REF] Osteryoung | Square-Wave Voltammetry[END_REF][START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF][START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF]. In the region of a very sluggish (irreversible) electron transfer, the half-peak width ∆E p/2 is a linear function of the temperature. The magnitude of the half-peak widths decreases linearly with the temperature, with a slope being inversely proportional of α (see figure 4). The dependence ∆E p/2 vs. T in the irreversible region is defined as

T nF R z E ) ( p/2 α = ∆
, where the factor z is a constant depending on E sw .

Since the half-peak width is independent on the electrode kinetic parameter K (K = k s (Df) - 0.5 ) in the irreversible kinetic region (ln(K) < -3) [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF], the electron transfer coefficient can be estimated from the analysis of ∆E p/2 vs. T (see figure 4). At this stage, it is worth
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to stress that the temperature dependence should be done in some reasonable temperature interval (i.e. not very drastic changes in T) in order to avoid the strong changes of the value of the diffusion coefficient (and strong changes in the values of K, correspondingly), which is, indeed, temperature sensitive parameter. It is worth mentioning, that in the real experiment, if a quasireversible electrode reaction is being considered, the transfer of the electrode system into the irreversible kinetic region can be achieved by increasing of the frequency of the potential modulation.

Effect of the kinetic parameter K to the half-peak width of square-wave voltammograms

The calculated curves representing the effect of the dimensionless kinetic parameter K on the half-peak widths for several values of the electron transfer coefficient α are shown in figures 5A and 5B (for n =1 and n = 2, respectively). In all cases, the dependences between ∆E p/2 and ln(K) are sigmoidal. In the region of very sluggish electron transfer (roughly for ln(K) < -3) as well as in the region of very fast electron transfer (ln(K) > 0), the half-peak width is insensitive to the kinetic parameter K. However, in the region of modest electron transfer (the so-called "quasireversible region"), significant changes in the half-peak widths occur. Increasing of the value of K in the quasireversible region is followed by a decrease of the magnitude of the half-peak width. The origin of such behaviour is revealed by analysing the properties of the forward and backward components of the SW voltammograms as a function of K (figure 6A). As the value of K increases, the peak-to-peak separation between the forward and the backward current components decrease. This results in a decrease of the half-peak width of the net SW voltammograms in the quasireversible kinetic region (see figure 6B). In the
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quasireversible region, the magnitude of the half-peak width is a linear function of ln(K) (see figure 5 A, B), with a slope being inversely proportional to the electron transfer coefficient α. The equations corresponding to the theoretical linear dependences between the half-peak widths ∆E p/2 and ln(K) in the quasireversible region of electron transfer are given in Table 1 (for n = 1 and n = 2 and several square-wave amplitudes and α values).

The equations given in Table 1 can be routinely used for quick determination of the standard rate constant of electron transfer k s from the simple half-peak widths measurements of the experimental square-wave voltammograms. This is a very simple approach for precise determination of the standard rate constant of the electrode reaction.

In the real experiment, one needs to measure the half-peak width only for a given set of parameters of the potential modulation. With a help of equations listed in Table 1, one can calculate the value of the electrode kinetic parameter K, provided that n, α, and D are already known. From the definition of the electrode kinetic parameter, it follows that the standard rate constant of the electrode reaction can be calculated from the following simple relation:

f D K k = s
. This procedure has been applied for a series of experimental systems presented in the literature listed in Table 3.1. The standard rate constants measured with other SW voltammetric methods (third column) are compared to the values estimated with the approach presented here (fourth column).
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B. Sensitivity of the half-peak widths of SW voltammograms by the surface redox reactions

In this part we elaborate the half-peak width features of theoretical SW voltammograms of a simple surface electrode reaction that can be described by following reaction scheme:

A (adsorbed) + ne -⇔ B (adsorbed) (II)
Both, the reactant A and the product B are strongly adsorbed to the surface of electrode surface, so that the mass transport can be completely neglected. All general principles of part A can also be applied to the surface electrode reaction. Again, for a constant temperature, the magnitudes of the half-peak widths of the simulated square-wave voltammograms depend in the same way on n, α, and the kinetic parameter K (in this situation K is defined as K = k s /f). Similar to the case of a dissolved redox couple, the dependence ∆E p/2 vs. T in the irreversible kinetic region can be used for the determination of electron transfer coefficient α (see figure 8). Theoretical curves of the half-peak widths ∆E p/2 as function of the kinetic parameter ln(K) are calculated for several values of α and n =1 and n = 2 and are presented in figures 7A and 7B, respectively. For the case of a very slow electron transfer reaction (ln(K) < -2), and for fast electron transfers (ln(K) > -0.2) the magnitude of the theoretical half-peak widths are insensitive to K (it is important to stress that in the regions of very fast electron transfers (ln(K) > 0.2), the net SW peak splits into two peaks, a phenomenon discussed elsewhere) [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Characterization of quasi-reversible surface processes by square-wave voltammetry[END_REF]27]. Within these two kinetic regions i.e. -2 < ln(K) < -0.2, the half-peak widths of theoretical net square-wave voltammograms decreases considerably by increasing of the value of ln(K).

The effect of the K to the forward, backward and net components of the theoretical SW voltammograms in the quasireversible region of electron transfer can be easily obtained from the voltammograms presented in figure 9A and 9B, respectively. The slopes of the linear parts of the theoretical curves presented in figure 7A and 7B are again inversely proportional to the values of α. The equations corresponding to the region of the linear dependence between ∆E p/2 and ln(K) are given in Table 2. As for the case of redox reactions taking place from dissolved state, the equations given in Table 2 can be used for a very simple and precise determination of the value of the standard rate constant of electron transfer k s and even from the single measurements of the half-peak widths of the experimental voltammograms, providing that the values of n and α are known. This method can be regarded as a viable alternative for the methods of "quasireversible maximum" and "splitting SW peaks" [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF] for accessing the kinetic parameters of the simple surface redox reactions featuring moderate electron transfers.
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Conclusions

The demands for rapid and precise determinations of the kinetic parameters of electron (charge) transfer reactions by many biologically important redox systems require development of simple and reliable methods. To date, the majority of the physical parameters characterizing the electron transfer reactions by various biologically relevant redox systems have been commonly accessed from the cyclo-voltammetric experiments [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF]. The recent developments of several theoretical works analysing different redox systems studied under conditions of square-wave voltammetry provided a large number of elegant methods for assessing a variety of thermodynamic and kinetics parameters [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF]27]. Generally, the magnitudes of the SW peak potentials and the SW peak currents, analysed as a function of the time (frequency), have been explored as main items for the determination of the kinetic parameters of the electron transfer reactions [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF]. In this work, we present a theoretical set of results, which shows that the half-peak width of the net square-wave voltammograms can be used as a method for quick and reliable determination of the physical parameters characterizing the electron transfer reactions of a dissolved state and on the electrode surface reactions. With the help of the theoretical equations given in the Tables 1 and2, we have estimated the standard rate constant k s of numerous biologically relevant redox systems, by using this new method based on the half-peak width measurements. The estimated values of k s are given in Table 3.1. and methodologies. This shows that the half-peak width measuring method of the SW voltammograms can be successfully explored as a routine tool for rapid and precise determination of the kinetic parameters of electron transfer reactions featuring moderate electron transfers. Moreover, it can be also seen as a simple and viable alternative for the other voltammetric methods developed for kinetics characterizations of the electron transfer rates, as well as for assessing the ion-transfer kinetics by the four-electrode experiments of ion transfer across the liquid-liquid interface [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Scholz | Electrochemistry of Immobilized Particles and Droplets[END_REF]. In particular, the method can be of a significant importance for the kinetic characterizations of the electron transfer rates by surface-confined metalo-protein reactions studied with protein-film voltammetry [START_REF] Armstrong | Bioelectrochemistry of Biomacromolecules[END_REF][START_REF] Armstrong | Reactions of complex metalloproteins studied by protein-film voltammetry[END_REF][START_REF] Leger | Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms[END_REF][START_REF] Jeuken | Insights into gated electron-transfer kinetics at the electrode-protein interface: A square wave voltammetry study of the blue copper protein azurin[END_REF][START_REF] Hirst | Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: Characteristics of electron exchange[END_REF][START_REF] Mcevoy | Protein film cryovoltammetry: demonstrations with a 7Fe ([3Fe-4S]+[4Fe-4S]) ferredoxin[END_REF]. The main advantage of this method, against the familiar cylco-voltammetric method based on the dependence of the peak-to-peak separation as a function of the scan rate [START_REF] Bard | Electrochemical Methods, Fundamentals and Applications[END_REF], is the avoidance of the IR drop effect, which is inevitably present when using large scan-rates in cyclo-voltammetric measurements. By using the corresponding equations given in Tables 1 and2, we give a simple and easy method to determine the kinetic parameters of various charge-transfer reactions without making comprehensive frequency analysis, thus avoiding the undesired IR drop effects to the charge transfer kinetics [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF].

At the end, it is worth to mention once again that the estimation of the standard rate constants of electron transfer with the help of theoretical equations given in Tables 1 and2 
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Appendix:

Mathematical Model and Simulation Details

Redox reaction from dissolved state

A quasireversible electrode reaction of two chemically stable species dissolved in the electrolyte solution is described by:

A (dissolved) + ne -⇔ B (dissolved) (I)
The electrode mechanism (I) can be described mathematically by the following set of equations: 

        ∂ ∂ = ∂ ∂ 2 2 ) ( ) ( x A c D t A c (1)         ∂ ∂ = ∂ ∂ 2 2 ) B ( ) B ( x c D t c (2) t = 0, x→ ∝ : c(A) = c(A)*; c(B) = 0 (3) t > 0, x→ ∝ : c(A) + c(B) = c(A)* ∞ → (A) c , 0 (B) → c t > 0, x = 0: nFS I x c D x c D x x =       ∂ ∂ - =       ∂ ∂ = = 0 0 ) B ( ) A ( (4) 
- - = = t x t d D nFS I A c A c 0 0 ) ( ) ( 1 * ) ( ) ( τ τ τ π (6) ∫ - = = t x t d D nFS I B c 0 0 ) ( ) ( 1 ) ( τ τ τ π (7).
By substituting equations ( 6) and ( 7) into the (5) one gets the integral equation ( 8) that represents mathematically the quasireversible electrode reaction of a dissolved redox couple under voltammetric conditions:

        - - - - - = ∫ ∫ τ τ π φ τ τ π αφ d t D nFS I d t D nFS I A c k nFS I t t s 0 0 ) ( 1 1 ) exp( ) ( 1 1 * ) ( ) exp( (8)
The solution of equation ( 8) under conditions of square-wave voltammetry was obtained with the help of numerical method proposed by Nicholson and Olmstead [START_REF] Nicholson | Olmsetad Electrochemistry: Calculations, Simulation and Instrumentation[END_REF]. Both, the time variable and dimensionless current were discretized. To each time period t = jd, where d is the time increment, a certain current Ψ j can be ascribed. The numerical solution for the equation ( 8) reads:

A C C E P T E D M A N U S C R I P T [ ] ) exp( 1 ( 50 ) exp( 2 1 )) exp( 1 ( 50 2 1 ) exp( 1 1 1 j j j i i j i j j j K S K φ π αφ φ π αφ + - +       Ψ + - - = Ψ ∑ - = + - (9), where 1 - - = j j S j
, and K is the dimensionless kinetic parameter defined as

Df k K s =
. For the calculations, the time increment d = 1/(50f) was used, which means that each SW half-period was divided into 25 increments. The dimensionless current Ψ is normalized as:

D f A nFSc I Ψ * ) ( = .
A comprehensive study of this redox mechanism can be found elsewhere [START_REF] Mirceski | Square-Wave Voltammetry, Theory and Application[END_REF][START_REF] Odea | Theory of square-wave voltammetry for kinetic systems[END_REF].

Surface electrode reaction

In the second case, we consider surface confined (diffusionless) electrode reaction of strongly adsorbed redox couple that can be represented by following reaction scheme:

A (adsorbed) + ne -⇔ B (adsorbed) (II)
It is assumed that all participants in the electrode mechanism (II) are strongly adsorbed on the electrode surface. During the voltammetric experiment the mass transport of all species is neglected. The electrode mechanism (II) is mathematically represented by the following set of equations:

dΓ(A)/dt = -I/(nFS) (10) 
dΓ(B)/dt = I/(nFS) (11)

t = 0; Γ(A) = Γ(A)*; Γ(B) = 0 (12) t > 0; Γ(A) + Γ(B) = Γ(A)* (13) 
.
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Γ is a symbol of the surface concentration, which is a function of time t, whereas Γ(A)*

is the total surface concentration of all species. The solutions are:

∫ - = t nFS I Γ Γ 0 d ) ( * (A) (A) τ τ (14) ∫ = t nFS I Γ 0 d ) ( (B) τ τ (15).
Considering again the Buttler-Volmer formalism, at the electrode surface the following condition applies:

[ ] ) B ( ) exp( ) A ( ) exp( Γ Γ k nFS I s φ αφ - - = (16), 
where k s (s -1 ) is the heterogeneous electron exchange rate constant corresponding to the 13) and ( 14) into the equation (15) yields:

      - - - = ∫ ∫ t t s nFS I nFS I Γ k nFS I 0 0 d ) ( ) exp( d ) ( * (A) ) exp( τ τ φ τ τ αφ (17) 
Integral equation ( 16) is a general mathematical solution of the simple surface electrode mechanism. Numerical solution according to the method of Nicholson and Olmstead [START_REF] Nicholson | Olmsetad Electrochemistry: Calculations, Simulation and Instrumentation[END_REF] is:

[ ] ) exp( 1 50 ) exp( 1 50 ) exp( 1 1 ) exp( 1 1 m m m j j m m Ψ K Ψ φ φ φ αφ + - +       + - - = ∑ - = (18). A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 19 
In this case, the dimensionless redox kinetic parameter K is defined as K = k s /f, while the dimensionless currentΨ is normalized as

f nFSΓ I Ψ * (A) = .
All the simulations have been performed with help of the MATHCAD software. *for the theoretical calculations, we used the experimentally determined values for electron transfer coefficient α provided in the corresponding references. 

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

  experimentally determined and the theoretically calculated data of k s in Tables 3.1 and 3.2 fall within the range of statistical errors of the applied experimental

  relies to the previously determined values of the electron transfer coefficient α (by both considered redox mechanisms), and the diffusion coefficient D (by the redox A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 14 reaction from dissolved state). For the determination of electron transfer coefficient α one can use the theoretical equations and approaches described at the figure 4 and figure 8, which are also explained in more details in our recent publication [27b]. For the estimation of the values of the diffusion coefficient D one is advised to use the methodologies proposed in references [2,3].

  . c(A) and c(B) are the concentrations of the species A and B, while c(A)* is the bulk concentration of A. I is symbol of the current, S is the electrode surface area (cm 2 ), and D is the diffusion coefficient (cm 2 s -1 ) which is assumed to be equal for both A and B. In the case of the charge transfer controlled redox reaction, at the electrode surface the following condition holds:[START_REF] Scholz | Electrochemistry of Immobilized Particles and Droplets[END_REF] with k s (cm s -1 ) is assigned the heterogeneous electron exchange rate constant corresponding to the standard redox potential o A/B E of the electrode reaction (I), α is the cathodic electron transfer coefficient, and )relative electrode potential. The symbols for n, F, R and T are the number of exchanged electrons, the Faraday constant, the universal gas constant and the temperature, respectively. The solutions for c(A) and c(B) at the electrode surface have been obtainedwith help of Laplace transformations and they read:

∫

  

Figure 1 .

 1 Figure 1. Theoretical net square-wave voltammogram of a simple redox reaction taking place from dissolved state. The simulation conditions were: n = 1, E sw = 50 mV; ∆E = 4 mV, α = 0.4; T = 298 K, D = 5x10 -6 cm 2 s -1 . The value of the kinetic parameter was ln(K) = -1.21.

Figure 2 .

 2 Figure 2. Redox reaction from dissolved state: ln(K) = -0.068, while all the other conditions

Figure 3 .

 3 Figure 3. Redox reaction from dissolved state: ln(K) = -0.83, while all the other conditions

Figure 4 .

 4 Figure 4. Redox reaction from dissolved state: Temperature dependence of the net SW halfpeak widths ∆E p/2 simulated for various electron transfer coefficients in the region of very

Figure 5 .

 5 Figure 5. Redox reaction from dissolved state: Theoretical dependence of the half-peak

Figure 6 .

 6 Figure 6. Redox reaction from dissolved state: A) Effect of the kinetic parameter K to the

Figure 7 .

 7 Figure 7. Surface redox reaction: Theoretical dependence of the half-peak widths of the net

Figure 8 .

 8 Figure 8. Surface redox reaction: Temperature dependence of the net SW half-peak widths ∆E p/2 simulated for various electron transfer coefficients in the region of very slow electron

Figure 9 .

 9 Figure 9. Surface redox reaction: A) Effect of the kinetic parameter K to the shape of the

  theoretical calculations, we used the experimentally determined values for electron transfer coefficient α and diffusion coefficients D provided in the corresponding references.A C C E P T E DM A N U S C R I P T
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 3 2., together with the k s values from the square-wave voltammetric experiments determined by other authors. Obviously, the estimated k s values are consistent with those

derived from other square-wave voltammetric methods. The small discrepancies that

Table 1 . 1

 11 Simple redox reaction from dissolved state: Equations of the linear dependences between the SW half-peak width ∆E p/2 and ln(K) in quasireversible region.SW voltammograms were simulated for T = 298 K, ∆E = 4mV, n = 1;

	nE sw / mV	α	Equation of the dependence ∆E p/2 -ln(K)
		0.3	∆E p/2 /mV = -43.73 ln(K) + 105
		0.4	∆E p/2 /mV = -37.94 ln(K) + 105
	30	0.5	∆E p/2 /mV = -27.85 ln(K) + 105
		0.6	∆E p/2 /mV = -15.87 ln(K) + 105
		0.7	∆E p/2 /mV = -10.90 ln(K) + 105
		0.3	∆E p/2 /mV = -49.50 ln(K) + 115
		0.4	∆E p/2 /mV = -32.10 ln(K) + 115
	40	0.5	∆E p/2 /mV = -16.05 ln(K) + 115
		0.6	∆E p/2 /mV = -14.62 ln(K) + 115
		0.7	∆E p/2 /mV = -05.40 ln(K) + 115
		0.3	∆E p/2 /mV = -49.23 ln(K) + 120
		0.4	∆E p/2 /mV = -32.06 ln(K) + 120
	50	0.5	∆E p/2 /mV = -16.70 ln(K) + 120
		0.6	∆E p/2 /mV = -15.78 ln(K) + 120
		0.7	∆E p/2 /mV = -10.60 ln(K) + 120

Table 1 . 2 .

 12 Simple redox reaction from dissolved state: n = 2; All the other conditions are same as those by Table1.1.

	nE sw / mV	α	Equation of the dependence ∆E p/2 -ln(K)
		0.3	∆E p/2 /mV = -32.60 ln(K) + 70
		0.4	∆E p/2 /mV = -16.30 ln(K) + 70
	30	0.5	∆E p/2 /mV = -10.80 ln(K) + 70
		0.6	∆E p/2 /mV = -08.70 ln(K) + 70
		0.7	∆E p/2 /mV = -05.40 ln(K) + 70
		0.3	∆E p/2 /mV = -32.60 ln(K) + 75
		0.4	∆E p/2 /mV = -19.00 ln(K) + 75
	40	0.5	∆E p/2 /mV = -10.85 ln(K) + 75
		0.6	∆E p/2 /mV = -08.70 ln(K) + 75
		0.7	∆E p/2 /mV = -05.40 ln(K) + 75
		0.3	∆E p/2 /mV = -32.56 ln(K) + 80
		0.4	∆E p/2 /mV = -21.80 ln(K) + 80
	50	0.5	∆E p/2 /mV = -10.85 ln(K) + 80
		0.6	∆E p/2 /mV = -07.05 ln(K) + 80
		0.7	∆E p/2 /mV = -05.60 ln(K) + 80

Table 2 .

 2 [START_REF] Osteryoung | Square-Wave Voltammetry[END_REF]. Simple surface redox reaction: Equations of the linear dependences between the SW half-peak width ∆E p/2 and ln(K) in quasireversible region. SW voltammograms were simulated for T = 298 K, ∆E = 2 mV, n = 1

	T / K	α	nE sw / mV	Equation of the dependence ∆E p/2 -ln(K)
			30	∆E p/2 /mV = -18.40 ln(K) + 85.00
		0.3	40	∆E p/2 /mV = -18.80 ln(K) + 100.00
			50	∆E p/2 /mV = -17.40 ln(K) + 105.00
			30	∆E p/2 /mV = -16.90 ln(K) + 85.00
		0.4	40	∆E p/2 /mV = -16.60 ln(K) + 100.00
			50	∆E p/2 /mV = -13.70 ln(K) + 105.00
			30	∆E p/2 /mV = -11.20 ln(K) + 85.00
	298.15	0.5	40	∆E p/2 /mV = -08.80 ln(K) + 95.00
			50	∆E p/2 /mV = -08.10 ln(K) + 100.00
			30	∆E p/2 /mV = -12.40 ln(K) + 85.00
		0.6	40	∆E p/2 /mV = -10.90 ln(K) + 95.00
			50	∆E p/2 /mV = -10.30 ln(K) + 100.00
			30	∆E p/2 /mV = -7.40 ln(K) + 85.00
		0.7	40	∆E p/2 /mV = -8.90 ln(K) + 95.00
			50	∆E p/2 /mV = -7.10 ln(K) + 95.00
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 22 Simple surface redox reaction: n = 2. All the other conditions are same as those by Table2.1.

	T / K	α	nE sw / mV	Equation of the dependence ∆E p/2 -ln(K)
			30	∆E p/2 /mV = -50.00 ln(K) + 60.00
		0.3	40	∆E p/2 /mV = -54.00 ln(K) + 62.00
			50	∆E p/2 /mV = -48.50 ln(K) + 62.00
			30	∆E p/2 /mV = -27.50 ln(K) + 54.00
		0.4	40	∆E p/2 /mV = -27.50 ln(K) + 60.00
			50	∆E p/2 /mV = -25.00 ln(K) + 60.00
			30	∆E p/2 /mV = -15.00 ln(K) + 52.00
	298.15	0.5	40	∆E p/2 /mV = -16.50 ln(K) + 56.00
			50	∆E p/2 /mV = -12.50 ln(K) + 56.00
			30	∆E p/2 /mV = -07.50 ln(K) + 50.00
		0.6	40	∆E p/2 /mV = -10.00 ln(K) + 52.00
			50	∆E p/2 /mV = -07.50 ln(K) + 52.00
			30	∆E p/2 /mV = -05.00 ln(K) + 50.00
		0.7	40	∆E p/2 /mV = -07.00 ln(K) + 52.00
			50	∆E p/2 /mV = -05.00 ln(K) + 50.00
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 31 Experimental and theoretical values of the standard rate constants of electron transfer of some redox systems (from dissolved state). The theoretical values were estimated from the half-peak width of square-wave violtammograms by using corresponding equations given in Table1.

	Compound	Experimental conditions	Experimental k s /cm s -1	Theoretical k s /cm s -1	Reference
	Eu 3+	Mercury electrode, 0.01 M HClO 4	0.006±0.001	0.005±0.001	[32]
		Glassy carbon			
	cercosporin	electrode,	0.019±0.005	0.025±0.004	[33]
		1 M HClO 4 + ACN			
		Mercury electrode,			
	ZnCl +	pH = 2 (NaClO 4 +	0.0045±0.0005	0.0035±0.00045	[34]
		HClO 4 )			
		Tungsten Electrode,			
	La 3+	Molten-chlorides	0.004±0.001	0.006±0.0005	[35]
		mixtures			
		Tungsten Electrode,			
	Y 3+	Molten-chlorides	0.0037±0.001	0.0045±0.0005	[35]
		mixtures			
	Re 6 Se 8 (CH 3 CN) 6 ] 2+	Pt electrode, Propylene carbonate	0.0035±0.0015	0.00315±0.0035	[36]
	Zn 2+	Mercury electrode pH = 7	0.00026±0.0001 6	0.00020±0.0001	[37]
	2-[[2-hydroxyethyl)amino]eth naphtoquinone yl]amino]-1-4-	Mercury electrode dimethylformamide N,N-	0.041±0.014	0.025±0.01	[38]
	2-[[2-dimethyl)amino]ethyl]a naphtoquinone mino]-1-4-	Mercury electrode dimethylformamide N,N-	0.041±0.013	0.025±0.01	[38]

Table 3 . 2 .

 32 Experimental and theoretical values of the standard rate constants of electron transfer of some redox systems (surface reactions). The theoretical values were estimated from the half-peak width of square-wave voltammograms by using corresponding equations given in Table2.

	Compound	Experimental conditions	Experimental k s /s -1	Theoretical k s /s -1	Reference
	Cynolline	Mercury electrode, pH = 7.0	455±110	360±40	[39]
	Azobenzene	Mercury electrode, pH = 4.65	28±10	35±5	[40]
	Mo(VI)-fulvic acid complex in presence of phenantroline	Mercury electrode, pH = 2.0	8±2	18±4	[41]
		Plane pyrolitic graphite			
		electrode modified with			
	Myoglobin	film of	48±2	33±5	[42]
		didodecylmethylammonium			
		bromide			
	Cytochrome C	ITO electrode,	8.4±2	4.80±1.5	[43]
		Pyrolitic graphite electrode			
	Hemoglobin-AQ55	modified with polyester	60±10	39.70±6	[44]
		sulfonic acid			
	2-Hydroxy-5-[(4-sulfophenyl)azo]benzoic acid	Mercury electrode, pH = 4.00	24±6	21.80±4	[45]
	adriamycin	Mercury electrode pH = 4.65	49±12	42.80±8	[46]
	Cd(II)-Ferron complex	Mercury electrode pH = 10.80	0.17±0.01	1.00±0.5	[47]
	4-(dimethylamino)-azobenzene	Mercury electrode pH = 6.00	102±2	119±10	[48]
	Cd(II)-8-OH-quinoline	Mercury electrode pH = 6.70	7±1	8.80±2	[49]
	Cu(II)-8-OH-quinoline	Mercury electrode pH = 6.70	1.5±0.1	2.2±1.5	[49]
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