
HAL Id: hal-00482558
https://hal.science/hal-00482558v1

Preprint submitted on 10 May 2010 (v1), last revised 29 Jul 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heavy quark flavour dependence of multiparticle
production in QCD jets

Redamy Perez Ramos, Vincent Mathieu, Miguel-Angel Sanchis-Lozano

To cite this version:
Redamy Perez Ramos, Vincent Mathieu, Miguel-Angel Sanchis-Lozano. Heavy quark flavour depen-
dence of multiparticle production in QCD jets. 2010. �hal-00482558v1�

https://hal.science/hal-00482558v1
https://hal.archives-ouvertes.fr


Report: IFIC/10-15, FTUV-10-0510

Heavy quark flavour dependence of multiparticle productionin QCD jets
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1 Introduction

Since the very beginning of cosmic and accelerator physics,the study of jets has been playing a promi-

nent role in the rise and development of the Standard Model (SM) [1]. For example, the observation

of three-jet events in electron-positron collisions at DESY provided a direct experimental evidence of

the existence of gluons. Nowadays, QCD furnishes the theoretical framework for jet analysis, and

conversely, jet studies furnish precise tests of both perturbative and non-perturbative QCD, as well as

constraints and determinations of QCD parameters.

While high-energy hadronic interactions are dominated by the production of secondaries with rather low

transverse momentum (pt) with respect to the beam axis, high-pt jets are expected to become one of

the cleanest signatures for New Physics (NP) to be discovered at the LHC. On the other hand, QCD

processes often are the most important background of such NPsignatures, therefore requiring a good

understanding of QCD jet rates and features.

High-pt jets can be initiated either in a short-distance interaction among partons of the colliding hadrons,

or via electroweak (or new physics) processes. One well-known example is given by the decay chain of

the top quarkt → H+ b, where theb quark should start a jet. Thus the ability to identify jets from

the fragmentation and hadronization ofb quarks becomes very important for such Higgs boson searches.

Needless to say, the relevance ofb-tagging extends over many other channels in the quest for new physics

at hadron colliders.

The experimental identification ofb-jets relies upon several of their properties in order to reject back-

ground, e.g. jets initiated by lighter quarks or gluons. First, the fragmentation is hard and the leading

b-hadron retains a large part of the originalb quark momentum. In addition, the weak decay products

may have a large transverse momentum with respect to the jet axis therefore allowing separation from

the rest of the cascade particles. Lastly, the relatively long lifetime of b-hadrons leading to displaced

vertices which can be identified by using well-known impact parameter techniques [2]. Still, a fraction

of light jets could be mis-identified asb-jets, especially at large transverse momentum of the jet.

Now, let us point out that an essential difference between heavy and light quark jets results from kine-

matics constraints: the gluon radiation off a quark of massm and energyE >> m is suppressed inside

a forward cone with an opening angleΘm = m/E, the so-calleddead-cone phenomenon [3].

In this paper, we compute the average (charged) multiplicity and multiplicity fluctuations of a jet initiated

by a heavy quark. For this purpose, we extend the modified leading logarithmic approximation (MLLA)

evolution equations [7] to the case where the jet is initiated by a heavy (charm, bottom) quark. We include

the dead-cone phenomenon into the massless quark equations by using the massive splitting functions,

and by replacing the massless quark propagator1/k2
⊥

by the massive one1/(k2
⊥
+m2), as it was carried

out for the evaluation of jet rates in thee+e− annihilation [4]. Furthermore, we demonstrate that the

whole phase space of the heavy quark dipole dipoleQQ̄ produced in thee+e− annihilation [3] reduces

to that of the heavy quark jet event in the collinear and soft limits.

We will see that under the assumption of local parton hadron duality (LPHD) as hadronization model

[5, 6], light- and heavy-quark initiated jets show significant differences regarding particle multiplicities

as a consequence of soft gluon suppression inside the dead cone. Such differences could be exploited

by using auxiliary criteria complementingb-tagging procedures to be applied to jets with very large

transverse momentum, as advocated in this paper.
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2 Kinematics and variables

As known from jet calculus for light quarks, the evolution time parameter determining the structure of

the parton branching of the primary gluon is given by (for a review see [7] and references therein)

y = ln

(

k⊥
Q0

)

, k⊥ = zQ ≥ Q0, Q = EΘ ≥ Q0, (1)

wherek⊥ is the transverse momentum of the gluon emitted off the lightquark,Q is the virtuality of the

jet (or jet hardness),E the energy of the leading parton,Q0/E ≤ Θ ≤ Θ0 is the emission angle of the

gluon (Θ ≪ 1), Θ0 the total half opening angle of the jet being fixed by experimental requirements, and

Q0 is the collinear cut-off parameter.

Let us define in this context the variableY as

y = Y + ln z, Y = ln

(

Q

Q0

)

. (2)

The appearance of this scale is a consequence of angular ordering (AO) of successive parton branchings

in QCD cascades [5, 7]. An important difference in the structure of light (ℓ ≡ q = u, d, s) versus heavy

quark (h ≡ Q = c, b) jets stems from the dynamical restriction on the phase space of primary gluon

radiation in the heavy quark case, where the gluon radiationoff an energetic quarkQ with massm and

energyE ≫ m is suppressed inside the forward cone with an opening angleΘm = m/E, the above-

mentioned dead-cone phenomenon [3]. This effect is in closeanalogy to QED, where photon radiation is

also suppressed at small angles with respect to a moving massive charged particle (e.g.tau versus muon).

The corresponding evolution time parameter for a jet initiated by a heavy quark with energyE and mass

m appears in a natural way and reads [3]

ỹ = ln

(

κ⊥
Q0

)

, κ2⊥ = k2⊥ + z2m2, (3)

which for collinear emissionsΘ ≪ 1 can also be rewritten in the form

κ⊥ = zQ̃, Q̃ = E
(

Θ2 +Θ2
m

)
1
2 , (4)

with Θ ≥ Θm (see Fig. 1).

An additional comment is in order concerning the AO for gluons emitted off the heavy quark. In (4),Θ is

the emission angle of the primary gluong being emitted off the heavy quark. Now letΘ′ be the emission

angle of a second gluong′ relative to the primary gluon with energyω′ ≪ ω andΘ′′ the emission angle

relative to the heavy quark; in this case theincoherence conditionΘ′2 ≤ (Θ2 + Θ2
m) (see appendix A)

together withΘ′′ > Θm (the emission angle of the second gluon should still be larger than the dead

cone) naturally leads (4) to become the proper evolution parameter for the gluon subjet (for more details

see [3]). ForΘm = 0, the standard AO (Θ′ ≤ Θ) is recovered. Therefore, for a massless quark, the

virtuality of the jet simply reduces toQ = EΘ as given above. The same quantityκ⊥ determines the

scale of the running couplingαs in the gluon emission off the heavy quark. It can be related tothe

anomalous dimension of the process by

γ20(κ⊥) = 2Nc
αs(κ⊥)

π
=

1

β0(ỹ + λ)
, β0(nf ) =

1

4Nc

(

11

3
Nc −

2

3
nf

)

, λ = ln
Q0

ΛQCD
, (5)
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wherenf is the number of active flavours andNc the number of colours. The variation of the effective

couplingαs asnf → nf + 1 over the heavy quarks threshold has been suggested by next-to-leading

order calculations [6], but this effect is subleading in theevaluation [8]. In this contextβ0(nf ) will be

evaluated at the total number of quarks we consider in our application. The four scales of the process are

related as follows,

Q̃ ≫ m ≫ Q0 ∼ ΛQCD,

whereQ0 ∼ ΛQCD corresponds to the limiting spectrum approximation. Finally, the dead-cone phe-

nomenon imposes the following bounds to the perturbative regime in a heavy quark jet

m

Q̃
≤ z ≤ 1− m

Q̃
, m2 ≤ Q̃2 ≤ E2(Θ2

0 +Θ2
m). (6)

The last inequality states that the minimal transverse momentum of the jetQ̃ = EΘm = m is given by

the mass of the heavy quark, which enters the game as the natural cut-off parameter of the perturbative

approach.

3 Definitions and notation

The multiplicity distribution is defined by the formula

Pn =
σn

∑∞

n=0 σn
=

σn
σinel

,

∞
∑

n=0

Pn = 1 (7)

whereσn denotes the cross section of ann-particle yield process,σinel is the inelastic cross-section, and

the sum runs over all possible values ofn.

It is often more convenient to represent multiplicity distributions by their moments. All such sets can be

obtained from the generating functionalZ(y, u) [7] defined by

Z(y, u) =

∞
∑

n=0

Pn(y) (1 + u)n

at the energy scaley. For fixedy, we can drop this variable from theazimuthally averaged generating

functionalZ(u); the moments are then calculated from the MLLA master equation as

Fq =
1

〈n〉q
dqZ(u)

duq

∣

∣

∣

u=0
, Kq =

1

〈n〉q
dq lnZ(u)

duq

∣

∣

∣

u=0
, Cq =

1

〈n〉q
dqZ(eu − 1)

duq

∣

∣

∣

u=0

where the average multiplicity is defined by the formula,

〈n〉 ≡ N =
∞
∑

n=0

Pnn, Pn =
1

n!

dnZ(u)

dun

∣

∣

∣

u=−1
.

Fq are respectively the factorial moments, often called multiplicity correlators,Kq are the cumulants

of rank q andCq, the moments of the multiplicity distributionPn. The multiplicity correlator and the

moment of rankq = 2 are related as follows,

F2 =
〈N(N − 1)〉

N2
= C2 −N−1.
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Moreover, the widthD2 =
〈

N2
〉

−N2 of the multiplicity distributionPn can be written in the equivalent

forms,

D2 = (F2 − 1)N2 +N = K2N
2 +N = (C2 − 1)N2.

In terms of Feynman diagrams,Fq correspond to the set of all graphs whileKq describe the connected

diagrams. Therefore,Kq are more suited for the construction of the evolution equations.

Specifically, we will compute the mean average multiplicityof partons in jets to be denoted hereafter as

NA, with A = Q, q, g, corresponding to a heavy, light quark or gluon initiated jet respectively. Likewise,

we will compute the second rank multiplicity correlator inside the same jet.

Once arrived at his point, let us make an important distinction between two different particle sources

populating heavy-quark initiated jets. On the one hand, parton cascade from gluon emission yields the

QCD component of the total jet multiplicity (the main objectof our present study),excluding weak

decay products of the leading primary quark at the final stage of hadronization. On the other hand, the

latter products coming from the leading flavoured hadron should be taken into account in the measured

multiplicities of jets. We shall denote the average chargedhadron multiplicity from the latter source as

Ndc
A . Hence the total charged average multiplicity,N total

A , reads

N total
A = N ch

A +Ndc
A ; A = q,Q. (8)

As a consequence of the LPHD,N ch
A = Kch × NA [5, 6], where the free parameterKch normalizes the

mean average multiplicity of partons to the mean average multiplicity of charged hadrons. For charm

and bottom quarks, we will respectively set the valuesNdc
c = 2.60± 0.15 andNdc

b = 5.55± 0.09 [3,9],

while in light quark jets one expectsNdc
q = 1.2± 0.1 [10].

Now let us point out the distinct trends from each contribution to (8) as the quark mass increases. The

dead cone effect suppressesNQ for heavier quark masses. Conversely,Ndc
Q becomes more significant

for bottom jets. As we shall later see, the former will ultimately dominate the behaviour of the total

average multiplicityN total
Q of heavy quark jets for highQ values. In this paper, we advocate the use of

such a difference between average jet multiplicities as a signature to distinguisha posteriori heavy from

light quark jets, particularly inb-tagging techniques applied to the analysis of many interesting decay

channels.

4 QCD evolution equations

Let us start by considering the the splitting process,Q → Q̄g, Q being a heavy quark andg the emitted

gluon which is displayed in Fig.1; the corresponding splitting function reads [4]

PQg(z) =
CF

Nc

[

1

z
− 1 +

z

2
− z(1− z)m2

k2
⊥
+ z2m2

]

, PQQ(z) = PQg(1− z) (9)

wherek⊥ ≈ min(zEΘ, (1− z)EΘ) is the transverse momentum of the soft gluon being emitted off the

heavy quark. The previous formula (9) has the following physical interpretation, fork⊥ ≪ z2m2, the

corresponding limit readsPQg(z) → CF

2Nc
z and that is why, at leading logarithmic approximation, the

forward emission of soft and collinear gluons off the heavy quark becomes suppressed onceΘ ≪ Θm,

while the emission of hard and collinear gluons dominates inthis region.
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Θ0

E Q=(c, b)

g

Θ
D−C

1

(1−z)

z

h

m EΘm=

Figure 1: Parton splitting in the processQ → Q̄g: adead cone with opening angleΘm is schematically

shown.

For the massless processg → gg, we adopt the standard three gluon vertex kernel [7,11]

Pgg(z) =
1

z
− (1− z)[2− z(1 − z)], (10)

and finally forg → QQ̄, we take [4]

PgQ(z) =
1

4Nc

[

1− 2z(1 − z) +
2z(1 − z)m2

k2
⊥
+m2

]

, (11)

which needs to be resummed together with the three gluon vertex contribution. However, as a first

approach to this problem, we neglect the production of heavyquark pairs inside gluon and quark jets,

making use of [7,11]

Pgq(z) = PgQ(z)|m=0 =
1

4Nc
[1− 2z(1 − z)] . (12)

Including mass effects in the evolution equations also requires the replacement of the massless quark

propagator1/k2
⊥

by the massive quark propagator1/(k2
⊥
+ z2m2) [4], such that the phase space for soft

and collinear gluon emissions off the heavy quark can be written in the form [4]

d2σQg ≃ γ20
dk2

⊥

k2
⊥
+ z2m2

dzPQg(z), (13)

wherePQg(z) is given by (9). Working out the structure of (9) and settingk⊥ ≈ zEΘ one has

PQg(z) =
CF

Nc

[

1

z

Θ2

Θ2 +Θ2
m

− 1 +
z

2
+

Θ2
m

Θ2 +Θ2
m

]

, (14)

such that, one can recover the phase space for the soft and collinear gluon emission in the double loga-

rithmic approximation (DLA)

d2σQg ≃
CF

Nc
γ20

Θ2dΘ2

(Θ2 +Θ2
m)2

dz

z
. (15)

Notice that the overall multiplicity of the processe+e− → QQ̄g cannot be represented simply as the

sum of three independent parton multiplicities [3]. As stressed in [7], the accompanying multiplicity off

the quark dipole becomes dependent on the geometry of the whole jet ensemble in a Lorentz invariant

way and should be treated as a different problem. However, assuggested in [7] and demonstrated in the

appendix B, we recover the correct limit of the one jet event (13,14) from the heavy quark dipole [3], for

small the energy and the gluon emission angle.
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According to the Low-Barnett-Kroll theorem, thedz/z part of the radiation density has a classical origin

and is, therefore, universal, independent of the intrinsicquantum numbers and the process, while the

other terms are quantum corrections [3]. The system of two-coupled evolution equations for the gluon

and quark jets average multiplicity in the massless case at MLLA simplifies to the following in the hard

splitting regionk⊥ ∼ EΘ (z ∼ 1− z ∼ 1) [11,12]

d

dY
Nq(Y ) =

∫ 1−Q0/Q

Q0/Q
dz γ20(z)Pqg(z)Ng(Y + ln z), (16)

d

dY
Ng(Y ) =

∫ 1−Q0/Q

Q0/Q
dz γ20(z) [Pgg(z)Ng(Y + ln z) + nfPgq(z) (2Nq(Y )−Ng(Y ))] , (17)

wherePqg(z) = PQg(z)|m=0 andPgq(z) = PgQ(z)|m=0 in (9) and (11) respectively. It is obtained

from the MLLA master equation for the azimuthally averaged generating functionalZ(y, u), by taking

the functional derivative overu (see section 3). The arguments ofNA in the right hand side of the

equations do not depend onz because for hard partonsz ∼ 1, the original argumentsY + ln z and

Y + ln(1 − z) of these functions can be approximated toY after ln z and ln(1 − z) are neglected.

Substituting (14) into (16), after replacingEΘ by E(Θ2 + Θ2
m)1/2 in the argument of all logs, which

is equivalent to replacing the massless propagator by the massive one and the argument of the running

coupling byκ⊥ = zE(Θ2 +Θ2
m)1/2. Finally, taking the bounds (6) and integrating over the regular part

of the splitting function (14), one has

Nc

CF

dNQ

dỸ
=

Θ2

Θ2 +Θ2
m

∫ Ỹev

Ỹm

dyγ20(ỹ)Ng(ỹ)−
(

3

4
− 3Θm

2(Θ2 +Θ2
m)

1
2

− Θ2
m

Θ2 +Θ2
m

)

γ20(Ỹ )Ng(Ỹ ),

(18)

where

Ỹm = Lm, Ỹev ≈ Ỹ ,

finally, introducing the chain of transformations

Θ2

Θ2 +Θ2
m

= 1− Θ2
m

Θ2 +Θ2
m

= 1− e−2Ỹ+2Lm , Lm = ln
m

Q0
,

where theLm logarithms are new in this context and provide power suppressed corrections to the solution

of the evolution equations. Since massless, in the gluon jethowever, the evolution time variable remains

the same (1) as that in the massless quark jet. Nevertheless,the argument of the average multiplicity in

the gluon subjetNg(ỹ) in (18), depends on the same argumentỹ. That is why, in the following, we insert

the mass of the heavy quark in the argument of all logs in (17) and take the same integration bounds (6)

correspondingly. The system of QCD evolution equations nowreads

Nc

CF

dNQ

dỸ
= ǫ1(Ỹ , Lm)

∫ Ỹev

Ỹm

dỹγ20(ỹ)Ng(ỹ)− ǫ2(Ỹ , Lm)γ20(Ỹ )Ng(Ỹ ), (19)

dNg

dỸ
=

∫ Ỹev

Ỹm

dỹγ20(ỹ)Ng(ỹ)−A(Ỹ , Lm)γ20(Ỹ )Ng(Ỹ ), (20)

where

A(Ỹ , Lm) = a(nf )−
[

2 +
nf

2Nc

(

1− 2
CF

Nc

)]

e−Ỹ+Lm+
1

2

[

1 +
nf

Nc

(

1− 2
CF

Nc

)]

e−2Ỹ +2Lm, (21)
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with

a(nf ) =
1

4Nc

[

11

3
Nc +

2

3
nf

(

1− 2
CF

Nc

)]

(22)

and

ǫ1(Ỹ , Lm) = 1− e−2Ỹ+2Lm , ǫ2(Ỹ , Lm) =
3

4
− 3

2
e−Ỹ+Lm − e−2Ỹ +2Lm . (23)

There are the following kinds of power suppressed corrections to the heavy quark multiplicity: the lead-

ing integral term of (19) isO(m
2

Q̃2
) suppressed, while subleading MLLA corrections appear in the stan-

dard formO(
√
αs) like in the massless case, finallyO(m

Q̃

√
αs) andO(m

2

Q̃2

√
αs), which are new in this

context. Similar corrections have been found in the treatment of multiparticle production off the heavy

quark dipole [7] and in the computation of the heavy quark content inside gluon jets [13].

Similar power suppressed corrections proportional toe−Ỹ+Lm in A(Ỹ , Lm) and ǫ2(Ỹ , Lm) were re-

ported in [12] for the massless case. Indeed, such results can be recovered after settingm/Q̃ → Q0/Q

in (21) and (23). For massive particles however, these termsare somewhat larger and can not be ne-

glected in our approach unless they are evaluated for much higher energies than at present colliders. On

top of that, the corresponding massless equations in the high energy limit are obtained from (19) and

(20) simply by setting̃y → y, Ỹ → Y , Yev → Y , Ym → 0, ǫ1 → 1,

ǫ2 → ǫ̃2 =
3

4
− 3

2
e−Y +O

(

e−2Y
)

, A → Ã = a(nf )−
[

2 +
nf

2Nc

(

1− 2
CF

Nc

)]

e−Y +O
(

e−2Y
)

,

and are written in the standard form [11,12]

Nc

CF

dNq

dY
=

∫ Y

0
dyγ20(y)Ng(y)− ǫ̃2(Y )γ20(Y )Ng(Y ), (24)

dNg

dY
=

∫ Y

0
dyγ20(y)Ng(y)− Ã(Y )γ20(Y )Ng(Y ), (25)

with the initial conditionNg,q(Y = 0) = 1 at threshold. Notice that (19) and (20) are valid only for

m ≫ Q0 and thereforem → 0 does not reproduce the correct limit, which has to be smooth as given by

the massless equations (24) and (25).

As can be seen from (19), the functionǫ1 also gives the power suppressed contribution∝ −e−2Ỹ+2Lm

which decreases the production of soft and collinear gluonsoff the heavy quark, however, this contri-

bution is power suppressedO(m
2

Q̃2
) and turns out to be rather small as the energy scale increases. Since

heavy quarks are less sensible to recoil effects, the subtraction terms∝ e−Ỹ+Lm and∝ e−2Ỹ +2Lm in

ǫ2 (̃̃Y,Lm) diminish the role of energy conservation as compared to massless quark jets. As a consistency

check, upon integration over̃Y of the DLA term in Eq.(19), the phase space structure of the radiated

quanta in (15) is recovered:

NQ(ln Q̃) ≈ 1 +
CF

Nc

∫ Θ2
0

0

Θ2dΘ2

(Θ2 +Θ2
m)2

∫ 1−m/Q̃

m/Q̃

dz

z

[

γ20Ng

]

(ln zQ̃). (26)

Notice that the lower bound overΘ2 in (26) (Ỹ in (19)) can be taken down to “0” (Ym = Lm in (19))

because the heavy quark mass plays the role of collinear cut-off parameter.
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4.1 Towards the solution of the evolution equations

First we solve the self-contained equation for the gluon jet(20). The second and third exponential terms

in (21) are slowly varying functions of the variablẽY at high energy scales. In the same limit and for

the sake of simplicity we set the bound of integration over(z, ỹ) to Ỹev → Ỹ , Ỹm → 0 and solve the

equation by performing the Mellin transform

Ng(Ỹ ) =

∫

C

dω

2πi
eωỸ Ñg(ω), (27)

where the contourC lies to the right of all singularities in the complex plane ofω. Replacing (27) into

(20) leads the first order differential equation in Mellin space:

dÑg

dω
=

(

λω − 1

β0ω
−A

)

Ñg, A
Ỹ≫1
= A(Ỹ , Lm), (28)

which upon inversion leads to the following solution

Ng(Ỹ , Lm) = const× (Ỹ + λ)−Σ exp



2

√

Ỹ + λ

β0



 . (29)

Then, the initial condition at threshold, which is reached when the jet virtuality approaches the mass of

the heavy quark yields

Ng(Lm) = 1 =⇒ const = (Ỹm + λ)Σ exp



−2

√

Ỹm + λ

β0



 (30)

and finally,

Ng(Ỹ , Lm) ≈
(

Ỹ + λ

Ỹm + λ

)−Σ

exp



2

√

Ỹ + λ

β0
− 2

√

Ỹm + λ

β0



 , (31)

with

Σ
Ỹ≫1
= Σ(Ỹ , Lm) =

A(Ỹ , Lm)

2
− β0

4
.

From (31) and by making use ofNg(Ỹ ) ≃ exp
(

∫ Ỹ
dỹγ(ỹ)

)

[7], one gets the rate of multiplicity growth

as a function of̃Y to be,

γ ≈ γ0 − Σγ20 .

A similar solution without power corrections, which was written for the “gluon mass” was given in [13].

Notice that the fact of introducing the “gluon mass” in this context is technical rather than physical.

However, phenomenological observations favour a dynamically generated mass for the gluon [14]. In

order to obtain the approximate solution of (19), as before we consider the functions

ǫ1
Ỹ≫1
= ǫ1(Ỹ , Lm), ǫ2

Ỹ≫1
= ǫ2(Ỹ , Lm)

as constants at high energy scale. Subtracting (19) from (20) and setting

Nc

CF

d

dỸ

(

ǫ−1
1

dNQ

dỸ

)

= γ20Ng(Ỹ )

8



on the right hand side of the outcoming, one has

dNg

dỸ
− Nc

CF
ǫ−1
1

dNQ

dỸ
= −Nc

CF

[

A− ǫ−1
1 ǫ2

] d

dỸ

(

ǫ−1
1

dNQ

dỸ

)

(32)

Working out the structure of (32), so as to obtain the ratio

r =
Ng

NQ
, (33)

we can rewrite it in the form

dNg

dỸ
− Nc

CF

dNQ

dỸ
+

Nc

CF

(

1− ǫ−1
1

) dNQ

dỸ
= −Nc

CF

(

A− ǫ−1
1 ǫ2

) d

dỸ

(

ǫ−1
1

dNQ

dỸ

)

. (34)

Finally, we obtain

r(Ỹ , Lm)
Ỹ≫1≈ Nc

CF
ǫ−1
1 (Ỹ , Lm)

[

1−
(

A(Ỹ , Lm)− ǫ−1
1 (Ỹ , Lm)ǫ2(Ỹ , Lm)

)

γ0

]

, (35)

which becomes valid in the limit

dr1

dỸ

Ỹ≫1≈ 0, r1(Ỹ , Lm)
Ỹ≫1≈

(

A(Ỹ , Lm)− ǫ−1
1 (Ỹ , Lm)ǫ2(Ỹ , Lm)

)

. (36)

Finally, the approximate average multiplicity in a jet initiated by a heavy quark reads

NQ(Ỹ , Lm) =
CF

Nc
ǫ1(Ỹ , Lm)

Ng(Ỹ , Lm)

1− r1(Ỹ , Lm)γ0
, (37)

whereǫ1(Ỹ , Lm) is written in (23) andNg(Ỹ , Lm) is given by (31). Thus, as the mass of the leading

heavy quark increases, the multiparticle yield in the heavyquark jet is affected by power corrections,

by the suppression of the anomalous dimensionγ0 = γ0(m
2) and mainly by the massive suppressed

exponential contribution arising from the initial condition at threshold. However, for the sake of com-

pleteness, we solve the evolution equations numerically and display the energy dependence of the average

multiplicity in Fig.2. The asymptotic behaviour of the distribution is then seen to follow the expected

exponential increase given by (37), withNg in (31). Finally, we estimate the difference between the light

and heavy quark jet multiplicities, which yields,

Nq −NQ
E→∞≈

[

1− exp

(

−2

√

Lm

β0

)]

Nq, Nq ∝ exp 2

√

Ỹ

β0
. (38)

Hence, (38) is exponentially increasing because it is dominated by the leading DLA energy dependence

of Nq. According to (38), the gap arising from the dead cone effectshould be bigger for theb than

for thec quark at the primary state bremsstrahlung radiation off theheavy quark jet. The approximated

solution of the evolution equations leads to the rough behaviour of Nq −NQ in (38), which is not exact

in its present form. In Fig.2, we display the numerical solution of the evolution equations (24) forNq

and (19) forNQ and remark that the gap between the light quark jet multiplicity and the heavy quark

jet multiplicity follows the trends given by (38) asymptotically E → ∞. This behaviour should not

be confused with that followed by theQQ̄ antenna in thee+e− annihilation, where the difference is

roughly constant and energy independent [3,15]. Indeed, (38) can not be extrapolated to the dipole case

by simply settingNQ,Q̄ ≈ 2NQ because the evolution equations do not take into account interference

effects between theQ and theQ̄ jets in thee+e− annihilation. Finally, as expected for massless quarks

Lm = 0, the differenceNq −NQ vanishes.

9
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Figure 2: Massless and massive quark jet average multiplicity NQ as a function of the jet hardnessQ.

5 Heavy quark evolution of second multiplicity correlator

The second multiplicity correlator was first considered formassless quarks in [16]. It is defined in the

form N
(2)
A = 〈NA(NA − 1)〉 in gluon (A = g) and quark (A = q) jets. The normalized second

multiplicity correlator defines the width of the multiplicity distribution and is related to its dispersion

squaredD2
A = 〈N2

A〉 −N2
A by the formula (see definitions and notation in section 3)

D2
A = (FA,2 − 1)N2

A +NA. (39)

The second multiplicity correlators normalized to their own average multiplicity squared are

F2,g ≡ G2 =
〈Ng(Ng − 1)〉

N2
g

, F2,q ≡ Q2 =
〈Nq(Nq − 1)〉

N2
q

, (40)

inside a gluon and a quark jet respectively. These observables are obtained by integrating the double

differential inclusive cross section over the energy fractionsx1 = e1/E andx2 = e2/E of two particles

emitted inside the jet,

〈NA(NA − 1)〉 =
∫∫

dx1dx2

(

1

σ

d2σ

dx1dx2

)

A

.

The system of evolution equations for light quarks following from the MLLA master equation can be

written as [7,11],

d

dY
(N (2)

q −N2
q ) =

∫ 1−Q0/Q

Q0/Q
dzγ20(z)Pqg(z)N

(2)
g (Y + ln z), (41)

d

dY
(N (2)

g −N2
g ) =

∫ 1−Q0/Q

Q0/Q
dzγ20(z)Pgg(z)N

(2)
g (Y + ln z)

+ nf

∫ 1−Q0/Q

Q0/Q
dzγ20(z)Pgq(z)

[

2
(

N (2)
q (Y )−N2

q (Y )
)

−
(

N (2)
g (Y )−N2

g (Y )
)

+
(

2Nq(Y )−Ng(Y )
)2
]

, (42)

10



with the following relations at DLA [17,18],

N (2)
q −N2

q =
CF

Nc

(

N (2)
g −N2

g

)

, Nq =
CF

Nc
Ng. (43)

The arguments ofN (2)
A andN2

A in the right hand side of the equations do not depend onz because

for hard partonsz ∼ 1, the original argumentsY + ln z andY + ln(1 − z) of these functions can be

approximated toY afterln z andln(1− z) are neglected. Substituting (14) into (41), after replacing EΘ

by E(Θ2 + Θ2
m)1/2 in the argument of all logs, taking the bounds (6) and integrating over the regular

part of the splitting functions, one has the system

Nc

CF

d

dỸ
(N

(2)
Q −N2

Q) = ǫ1(Ỹ , Lm)

∫ Ỹev

Ỹm

dỹγ20(ỹ)N
(2)
g (ỹ)− ǫ2(Ỹ , Lm)γ20(Ỹ )N (2)

g (Ỹ ), (44)

d

dỸ
(N (2)

g −N2
g ) =

∫ Ỹev

Ỹm

dỹγ20(Ỹ )N (2)
g (ỹ)−A(Ỹ , Lm)γ20(Ỹ )N (2)

g (Ỹ )

+
(

A(Ỹ , Lm)−B(Ỹ , Lm)
)

γ20(Ỹ )N2
g (Ỹ ), (45)

with the initial conditionsN (2)
A (Lm) =

dN
(2)
A

dỸ
(Lm) = 0, where

B(Ỹ , Lm) = b(nf )−
[

2− nf

2Nc

(

1− 2
CF

Nc

)2
]

e−Ỹ+Lm +
1

2

[

1− nf

Nc

(

1− 2
CF

Nc

)2
]

e−2Ỹ+2Lm ,

(46)

with

b(nf ) =
1

4Nc

[

11

3
Nc −

2

3
nf

(

1− 2
CF

Nc

)2
]

.

Accordingly, in the massless limit, (44) and (45) reduce to [19]

Nc

CF

d

dY
(N

(2)
Q −N2

Q) =

∫ Y

0
dyγ20(y)N

(2)
g (y)− ǫ̃2(Y )γ20(Y )N (2)

g (Y ), (47)

d

dY
(N (2)

g −N2
g ) =

∫ Y

0
dyγ20(y)N

(2)
g (y)− Ã(Y )γ20(Y )N (2)

g (Y )

+
(

Ã(Y )− B̃(Y )
)

γ20(Y )N2
g (Y ), (48)

where

B̃(Y ) = b(nf )−
[

2− nf

2Nc

(

1− 2
CF

Nc

)2
]

e−Y +O
(

e−2Y
)

.

The functions̃ǫ2(Y ) andÃ(Y ) are defined above through the equations for the average multiplicity (24)

and (25) in light quark jets.

5.1 Approximate solution of the evolution equations

For the gluon jet, taking into account that at high energy scales one hasA
Ỹ≫1≈ A(Ỹ , Lm) andB

Ỹ≫1≈
B(Ỹ , Lm) (dA,B

dỸ

Ỹ≫1≈ 0), and making use of (31), the solution reads [20]

G2(Ỹ , Lm)− 1
Ỹ≫1≈ 1

3
− C1(Ỹ , Lm)γ0, (49)

11



where,

C1(Ỹ , Lm)
Ỹ≫1≈ −2

9
A(Ỹ , Lm) +

1

9
β0(nf ) +

2

3
B(Ỹ , Lm),

dC1

dỸ

Ỹ≫1≈ 0.

Accordingly, for the quark jet one finds [20]

Q2(Ỹ , Lm)− 1
Ỹ≫1≈ Nc

CF
ǫ−1
1 (Ỹ , Lm)

(

1

3
− C̃1(Ỹ , Lm)γ0

)

, (50)

where

C̃1(Ỹ , Lm)
Ỹ≫1≈ 5

18
A(Ỹ , Lm) +

1

9
β0(nf ) +

1

6
B(Ỹ , Lm),

dC̃1

dỸ

Ỹ≫1≈ 0.

Therefore, the correlatorsG2 (49) andQ2 (50) are mainly affected by power correctionsO(m
Q̃

√
αs) and

O(m
2

Q̃2

√
αs) which diminish the role of energy conservation in a heavy quark jet and make the correlation

stronger as the particle yield gets suppressed inside the dead cone region. Thus, with such effects, the

correlators increase as the mass of the leading heavy quark increases and approach the asymptotic DLA

valuesG2 = 4
3 andQ2 = 1 + Nc

3CF
respectively. However, for realistic energy scales this approximation

fails, in particular because of the integration over the dead-cone term∝ ǫ1(Ỹ , Lm) in the leading order

contribution of (44). That is why, as we further emphasize inthe appendix C, we should rather display

the numerical solution of the equations (44) and (45) in the relevant energy range.

6 Phenomenological consequences

The study of multiplicity distributions (mean and higher rank momenta) and inclusive correlations has

been traditionally employed in the analysis of multiparticle production in high energy hadron collisions,

notably regarding soft (lowpt) physics (see e.g. [11] and references therein). Moreover,the use of

inclusive particle correlations has been recently advocated in the search of new phenomena [21].

On the other hand, it is well known that the study of average charged hadron multiplicities of jets in

e+e− collisions has also become a useful tool for testing (perturbative) QCD calculations (see [3, 15]

and references therein).

In this paper we advocate the role of mean multiplicities of jets as a potentially useful signature of new

physics when combined with other selection criteria. In Fig. 3, we plot as function of the jet hardnessQ4,

the total average jet multiplicity (8), which accounts for the primary state radiation off the heavy quark

together with the decay products from the final-state flavoured hadrons, which were introduced in section

3. For these predictions, we setKch = 0.6 in (8), which we take from [22] andQ0 ∼ ΛQCD = 230 MeV

[7]. Moreover, the flavour decays constantsNdc
c = 2.60± 0.15 andNdc

b = 5.55± 0.09 are independent

of the hard process inside the cascade, such thatNdc
A can be added in the whole energy range. For

instance, such values were obtained by the OPAL collaboration at theZ0 peak of thee+e− annihilation.

In this experiment,D∗ mesons were properly reconstructed in order to provide samples of events with

varying c and b purity. By studying the charged hadron multiplicity in conjunction with samples of

varying b purity, it became possible to measure light and heavy quark charged hadron multiplicities

separately [9]. As compared to the average multiplicities of the primary state radiation displayed in

Fig. 2, after accounting forNdc
A , theb quark jet multiplicity becomes slightly higher than thec quark jet

multiplicity, although both remain suppressed because of the dead-cone effect.

4The energy range100 ≤ Q(GeV) ≤ 200 should be realistic for Tevatron and LHC phenomenology.
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Figure 3: Massless and massive quark jet average multiplicity N total
Q as a function of the jet hardnessQ

including heavy quark flavour decays.

The second quark jet correlator defined in (40) for differentflavours is displayed in Fig. 4 as a function

of the jet hardnessQ. Since contributions to the dispersion from quark flavour decays are negligible

(Ndc
c = 2.60 ± 0.15 andNdc

b = 5.55 ± 0.09) the correlation is the strongest for partons at the primary

state radiation of the process. Notice that, while theu, d, s and thec quark correlators are of the same

order of magnitude for a jet hardnessQ & 40 GeV as relevant energy range, the vertical difference

with the b quark correlator, which is weaker, can still exceed∼ 20%. Therefore, the measurement of

the quark correlator should provide a further signature ofb flavour and associated exotic particles yield

when compared withu, d, s, c correlators.

7 Conclusions

Jet physics has been so far of paramount importance in the rise and development of the SM and ex-

pectedly will keep such a prominent role in the discovery of new phenomena at hadron colliders like

the Tevatron and the LHC. However, QCD jets represent a formidable challenge to disentangle signals of

new physics from hadronic background in most cases. On the other hand, plenty of new physics channels

end with heavy flavours in the final state, before fragmentingand hadronizing.

Thus, our present work focusing on the differences of the average charged hadron multiplicity between

jets initiated by gluons, light or heavy quarks could indeedrepresent a helpful auxiliary criterion to

tag such heavy flavours from background for jet hardnessQ & 40 GeV. Notice that we are suggesting

as a potential signature thea posteriori comparison between average jet multiplicities corresponding

to different samples of events where other criteria to discriminate heavy from light quark initiated jets

were first applied. In other words, one should compare mean multiplicities at different jet-hardnessQ,

in order to check that they agree with QCD predictions. Fig.3plainly demonstrate that the separation

between light quark jets and heavy quark jets is allowed above a few tens of GeV with the foreseen

errors of the experimentally measured average multiplicities of jets. The difference between light quark
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Figure 4: Massless and massive quark jet correlatorQ2 as a function of the jet hardnessQ.

jet multiplicities and heavy quark jet multiplicitiesNq−NQ in one jet is exponentially increasing because

of suppression of forward gluons in the angular region around the heavy quark direction. This result is

not drastically affected after accounting for heavy flavourdecays multiplicities, such that it can still

be used as an important signature for the search of new physics in a jet together with other selection

criteria. However, our result can only be applied to single jets and therefore, it should not be extrapolated

to the phenomenology of theQQ̄ dipole treated in [3] because neither interference effectswith other

jets nor large angle gluon emissions are considered in our case. As a complementary observable, in

particular forb-tagging, the second multiplicity correlator (40) displayed in Fig. 4 should also contribute

to discriminateb quark fromu, d, s, c quark channels. Indeed, while thec quark correlator remains

of the same order of magnitude than the light quark jet correlator, theb quark correlator gets weaker

by 20% and therefore, distinguishable with respect to the other quarks in the relevant energy range.

Furthermore, the inclusion of the heavy quark mass in the evolution equations for the correlator does not

affect the asymptotic energy independent flattening of the slope arising from the KNO (Koba-Nielsen-

Olsen) scaling [23].

Notice that the measurement of such observables require theprevious reconstruction of jets at hadron

colliders. Thanks to important recent developments on jet reconstruction algorithms [24–26], future

analysis such as single inclusive hadron production insidelight and heavy quark jets look very promising.
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A From AO to the incoherence condition of gluon emission off the heavy

quark

In the MLLA, the parton decay probabilities are written in a form [7],

d2Qg ≡ d2σQ→Q̄g =
αs

2π
PQg(z)dzV (~n)

dΩ

8π
, V g′

g(Q)(~n) =
ag′Q + agQ − ag′gf

ag′gag′Q
. (51)

Θ0

E Q=(c, b)

Θ
D−C

1

(1−z)

z

h

m EΘm=
g

Θ’
’g

Figure 5: Second gluon emission off the primary gluon in the processQ → Q̄+ g(f) + g′(s).

It describes the processQ → Q̄ + g(f) + g′(s) displayed in Fig.5, where the subscripts mean father

and son. In this case we defineΘ = ΘgQ, Θ′ = Θg′g. For light quarks involved in the same process

q → q̄ + g(f) + g′(s), if “i” and “k” denote the massless particles, then the angular factoraik in the

relativistic case is written as

aik = 1− cosΘik. (52)

After taking the azimuthal average around the “son” gluon direction, one obtains [7],

〈

V g′

g(q)

〉

=

∫ 2π

0

dφ

2π
V g′

g(q)(~n) =
2

ag′g
ϑ(agq − ag′g), (53)

with ϑ the Heaviside function. This leads to the exact AO inside partonic cascades by replacing the

strong AO in the DLAΘ′ ≪ Θ by Θ′ ≤ Θ in the MLLA. For massive particles we may write (51) in

the same form after replacing the standard massless splitting functions [7] by the massive one [4]. If the

leading parton is a heavy quark, the angular factor of the emitted gluon“g” off the heavy quarkQ, can

be checked after some simple kinematics, to be written in theform,

agQ = 1−
√

1−Θ2
m cosΘ, (54)

whereΘm is the angle of the dead cone. In this case, (53) can be rewritten as follows

〈

V g′

g(Q)

〉

=

∫ 2π

0

dφ

2π
V s
g(Q)(~n) =

2

ag′g
ϑ(agQ − ag′g), (55)

imposing thatcosΘ′ ≥
√

1−Θ2
m cosΘ. For small angles, if one setscosΘ ≈ 1− Θ2

2 in both members

of the previous inequality, one gets the incoherent condition:

Θ′2 ≤ Θ2 +Θ2
m. (56)

In the massless caseΘm = 0, (56) simply reduces to the standard exact AOΘ′ ≤ Θ.
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B Accompanying radiated quanta off the heavy quark dipole

In [3, 6], the probability of soft gluon emission of the heavyquark pairQQ̄ produced in thee+e−

annihilation was written in the form,

d2σQQ̄g =
CFαs(κ

2
⊥
)

π

dz

z

β

v
d cos Θc

{

2(1 − z)
β2 sin2 Θc

(1− β2 cos2Θc)2
+ z2

[

1

1− β2 cos2Θc
− 1

2

]

ζ−1
V

}

,

(57)

wherez is the energy fraction of the emitted gluon andΘc the emission angle with respect to the center

of mass of theQQ̄ pair. Moreover, the following notation was introduced:

β2 = 1− 4m2

W 2(1− z)
, v2 = 1− 4m2

W 2
, ζV = 1 + 2

m2

W 2
. (58)

The transverse momentum of the gluon appearing on the argument of the running coupling in (57) was

written in the form,

κ2⊥ =

(

zW

2

)2

(1− β2 cos2 Θc)
2. (59)

With such a notation, we now take interest in the soft (1 − z ∼ 1) and collinear (Θc ≪ 1) limits of (57)

and setW → 2E in order to reduce (57) to the single jet event initiated by a heavy quarkQ. Thus, the

terms take the following form

•
β2 z≪1≈ 1− m2

E2
= 1−Θ2

m, (1− β2 cos2 Θc)
2 z≪1,Θc≪1≈ (Θ2

c +Θ2
m)2,

•
2(1 − z)β2 sin2Θc

(1− β2 cos2Θc)2
z≪1,Θc≪1≈ 2(1− z)Θ2

c

(Θ2
c +Θ2

m)2
,

[

z2

1− β2 cos2 Θc
− 1

2

]

ζ−1
V

z≪1,Θc≪1≈ z2

Θ2
c +Θ2

m

.

The term proportional to−1
2 in the cross section (57) does contribute neither as a soft logarithmic contri-

bution nor as a collinear one, and therefore can be neglectedin this approximation. It should correspond

to a Feynman diagram which only accounts for interference effects between theQ and theQ̄ jets in the

QQ̄ antenna. In this limit, for one jet we setd2σQQ̄g → d2σQg, Θc → Θ and β
v → 1, such that the

dipole cross section (57) can be rewritten in the form

d2σQg ≃ CF

Nc
γ20(κ

2
⊥)

dΘ2

Θ2 +Θ2
m

{

1

z

Θ2

Θ2 +Θ2
m

− 1 +
z

2
+

Θ2
m

Θ2 +Θ2
m

}

dz (60)

≡ γ20(κ
2
⊥)

dκ2
⊥

κ2
⊥

PQg(z)dz,

as given in (13), wherePQg(z) was written in (14), while (59) was reduced to the following,

κ2⊥
z≪1,Θc≪1≈ z2E2(Θ2 +Θ2

m) ≡ z2Q̃2, Q̃2 = E2(Θ2 +Θ2
m).

Therefore, in the soft and collinear approximation, the dipole case (57) reduces to the jet event (60),

which coincides with the expression given in (13). In the massless caseΘm = 0, it simplifies to the

standard DGLAP kernel as explained in [3],

d2σQg ∝
dΘ2

Θ2

{

2(1 − z) + z2
} dz

z
.
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C Analytical versus numerical solution of the heavy quark correlator

equation (44)

In Fig. 6 we display the analytical solution together with the numerical solution of (44) for the second

multiplicity correlatorQ2 defined in (40). As it can be seen, when the mass of the leading heavy quark

increases, the approximated analytical correlator becomes slightly stronger. However, because of forward

gluon suppression taken into account by the integrated function ǫ1(Ỹ , Lm) in the leading DL contribution

of (44), such a behaviour cannot be trusted for lower virtualities than few thousands of GeV. That is why,

even if the shape of the analytical solution may be correct for Q & 100 GeV, we should only trust the

shape and normalization of the numerical solution in a much wider energy rangeQ & 40 GeV in view

of realistic QCD predictions.
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Figure 6: Analytical (left) versus numerical (right) solution of equation (44) for the second multiplicity

correlatorQ2 defined in (40).
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