
HAL Id: hal-00482396
https://hal.science/hal-00482396v3

Submitted on 17 Jul 2010 (v3), last revised 4 Feb 2014 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Computational Complexity of Dominance Links
in Grammatical Formalisms

Sylvain Schmitz

To cite this version:
Sylvain Schmitz. On the Computational Complexity of Dominance Links in Grammatical Formalisms.
ACL 2010, 2010, Uppsala, Sweden. pp.514–524. �hal-00482396v3�

https://hal.science/hal-00482396v3
https://hal.archives-ouvertes.fr

Revision 94, July 17, 2010.

On the Computational Complexity of Dominance

Links in Grammatical Formalisms∗

Sylvain Schmitz

LSV, ENS Cachan & CNRS, France
sylvain.schmitz@lsv.ens-cachan.fr

Abstract

Dominance links were introduced in grammars to model long distance
scrambling phenomena, motivating the definition of multiset-valued linear
indexed grammars (MLIGs) by Rambow (1994b), and inspiring quite a
few recent formalisms. It turns out that MLIGs have since been redis-
covered and reused in a variety of contexts, and that the complexity of
their emptiness problem has become the key to several open questions
in computer science. We survey complexity results and open issues on
MLIGs and related formalisms, and provide new complexity bounds for
some linguistically motivated restrictions.

1 Introduction

Scrambling constructions, as found in German and other SOV languages (Becker
et al., 1991; Rambow, 1994a; Lichte, 2007), cause notorious difficulties to linguis-
tic modeling in classical grammar formalisms like HPSG or TAG. A well-known
illustration of this situation is given in the following two German sentences for
“that Peter has repaired the fridge today” (Lichte, 2007),

dass [Peter] heute [den Kühlschrank] repariert hat
that Peternom today the fridgeacc repaired has

dass [den Kühlschrank] heute [Peter] repariert hat
that the fridgeacc today Peternom repaired has

with a flexible word order between the two complements of repariert, namely
between the nominative Peter and the accusative den Kühlschrank.

Rambow (1994b) introduced a formalism, unordered vector grammars with
dominance links (UVG-dls), for modeling such phenomena. These grammars
are defined by vectors of context-free productions along with dominance links
that should be enforced during derivations; for instance, Figure 1 shows how a
flexible order between the complements of repariert could be expressed in an
UVG-dl. Similar dominance mechanisms have been employed in various tree
description formalisms (Rambow et al., 1995, 2001; Candito and Kahane, 1998;
∗Published in the Proceedings of the 48th Annual Meeting of the Association for Compu-

tational Linguistics (ACL 2010), pages 686–696, 2010.

1

mailto:sylvain.schmitz@lsv.ens-cachan.fr

VP

NPnom VP

VP

NPacc VP

VP

repariert

Figure 1: A vector of productions for the verb repariert together with its two
complements.

Kallmeyer, 2001; Guillaume and Perrier, 2010) and TAG extensions (Becker
et al., 1991; Rambow, 1994a).

However, the prime motivation for this survey is another grammatical for-
malism defined in the same article: multiset-valued linear indexed grammars
(Rambow, 1994b, MLIGs), which can be seen as a low-level variant of UVG-dls
that uses multisets to emulate unfulfilled dominance links in partial derivations.
It is a natural extension of Petri nets, with broader scope than just UVG-dls;
indeed, it has been independently rediscovered by de Groote et al. (2004) in
the context of linear logic, and by Verma and Goubault-Larrecq (2005) in that
of equational theories. Moreover, the decidability of its emptiness problem has
proved to be quite challenging and is still uncertain, with several open questions
depending on its resolution:
• provability in multiplicative exponential linear logic (de Groote et al.,

2004),
• emptiness and membership of abstract categorial grammars (de Groote

et al., 2004; Yoshinaka and Kanazawa, 2005),
• emptiness and membership of Stabler (1997)’s minimalist grammars with-

out shortest move constraint (Salvati, 2010),
• satisfiability of first-order logic on data trees (Bojańczyk et al., 2009), and

of course
• emptiness and membership for the various formalisms that embed UVG-

dls.

Unsurprisingly in the light of their importance in different fields, several au-
thors have started investigating the complexity of decisions problems for MLIGs
(Demri et al., 2009; Lazić, 2010). We survey the current state of affairs, with a
particular emphasis on two points:

1. the applicability of complexity results to UVG-dls, which is needed if we
are to conclude anything on related formalisms with dominance links,

2. the effects of two linguistically motivated restrictions on such formalisms,
lexicalization and boundedness/rankedness.

The latter notion is imported from Petri nets, and turns out to offer interesting
new complexity trade-offs, as we prove that k-boundedness and k-rankedness
are ExpTime-complete for MLIGs, and that the emptiness and membership
problems are ExpTime-complete for k-bounded MLIGs but PTime-complete
in the k-ranked case. This also implies an ExpTime lower bound for emptiness
and membership in minimalist grammars with shortest move constraint.

We first define MLIGs formally in Section 2 and review related formalisms
in Section 3. We proceed with complexity results in Section 4 before concluding
in Section 5.

2

Notations In the following, Σ denotes a finite alphabet, Σ∗ the set of finite
sentences over Σ, and ε the empty string. The length of a string w is noted |w|,
and the number of occurrence of a symbol a in w is noted |w|a. A language is
formalized as a subset of Σ∗. Let Nn denote the set of vectors of positive integers
of dimension n. The i-th component of a vector x in Nn is x(i), 0 denotes the null
vector, 1 the vector with 1 values, and ei the vector with 1 as its i-th component
and 0 everywhere else. The ordering ≤ on Nn is the componentwise ordering:
x ≤ y iff x(i) ≤ y(i) for all 0 < i ≤ n. The size of a vector refers to the size of
its binary encoding: |x| =

∑n
i=1 1 + max(0, blog2 x(i)c).

We refer the reader unfamiliar with complexity classes and notions such as
hardness or LogSpace reductions to classical textbooks (e.g. Papadimitriou,
1994).

2 Multiset-Valued Linear Indexed Grammars

Definition 1 (Rambow, 1994b). An n-dimensional multiset-valued linear in-
dexed grammar (MLIG) is a tuple G = 〈N,Σ, P, (S, x0)〉 where N is a finite set of
nonterminal symbols, Σ a finite alphabet disjoint from N , V = (N×Nn)]Σ the
vocabulary, P a finite set of productions in (N×Nn)×V ∗, and (S, x0) ∈ N×Nn

the start symbol. Productions are more easily written as

(A,x)→ u0(B1,x1)u1 · · ·um(Bm,xm)um+1 (?)

with each ui in Σ∗ and each (Bi, xi) in N × Nn.
The derivation relation ⇒ over sequences in V ∗ is defined by

δ(A,y)δ′ ⇒ δu0(B1,y1)u1 · · ·um(Bm,ym)um+1δ
′

if δ and δ′ are in V ∗, a production of form (?) appears in P , x ≤ y, for each
1 ≤ i ≤ m, xi ≤ yi, and y − x =

∑m
i=1 yi − xi.

The language of a MLIG is the set of terminal strings derived from (S, x0),
i.e.

L(G) = {w ∈ Σ∗ | (S, x0)⇒∗ w}
and we denote by L(MLIG) the class of MLIG languages.

Example 2. To illustrate this definition, and its relevance for free word order
languages, consider the 3-dimensional MLIG with productions

(S, 0)→ ε | (S, 1), (S, e1)→ a (S, 0),

(S, e2)→ b (S, 0), (S, e3)→ c (S, 0)

and start symbol (S, 0). It generates the MIX language of all sentences with the
same number of a, b, and c’s (see Figure 2 for an example derivation):

Lmix = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} .

The size |G| of a MLIG G is essentially the sum of the sizes of each of its
productions of form (?):

|G| = |x0|+
∑
P

(
m+ 1 + |x|+

m∑
i=1

|xi|+
m+1∑
i=0

|ui|

)
.

3

S, (0, 0, 0)

S, (1, 1, 1)

b S, (1, 0, 1)

S, (2, 1, 2)

c S, (2, 1, 1)

a S, (1, 1, 1)

a S, (0, 1, 1)

b S, (0, 0, 1)

c S, (0, 0, 0)

ε

Figure 2: A derivation for bcaabc in the grammar of Example 2.

2.1 Normal Forms

A MLIG is in extended two form (ETF) if all its productions are of form
terminal (A, 0)→ a or (A, 0)→ ε, or
nonterminal (A, x)→ (B1, x1)(B2, x2) or (A, x)→ (B1, x1),

with a in Σ, A, B1, B2 in N , and x, x1, x2 in Nn. Using standard constructions,
any MLIG can be put into ETF in linear time or logarithmic space.

A MLIG is in restricted index normal form (RINF) if the productions in P
are of form (A,0) → α, (A,0) → (B,ei), or (A,ei) → (B,0), with A, B in N ,
0 < i ≤ n, and α in (Σ∪(N×{0}))∗. The direct translation into RINF proposed
by Rambow (1994a) is exponential if we consider a binary encoding of vectors,
but using techniques developed for Petri nets (Dufourd and Finkel, 1999), this
blowup can be avoided:

Proposition 3. For any MLIG, one can construct an equivalent MLIG in RINF
in logarithmic space.

2.2 Restrictions

Two restrictions on dominance links have been suggested in an attempt to reduce
their complexity, sometimes in conjunction: lexicalization and k-boundedness.
We provide here characterizations for them in terms of MLIGs. We can combine
the two restrictions, thus defining the class of k-bounded lexicalized MLIGs.

Lexicalization Lexicalization in UVG-dls reflects the strong dependence be-
tween syntactic constructions (vectors of productions representing an extended
domain of locality) and lexical anchors. We define here a restriction of MLIGs
with similar complexity properties:

4

Definition 4. A terminal derivation α ⇒p w with w in Σ∗ is c-lexicalized for
some c > 0 if p ≤ c · |w|.1 A MLIG is lexicalized if there exists c such that
any terminal derivation starting from (S, x0) is c-lexicalized, and we denote by
L(MLIG`) the set of lexicalized MLIG languages.

Looking at the grammar of Example 2, any terminal derivation (S, 0)⇒p w

verifies p = 4·|w|
3 + 1, and the grammar is thus lexicalized.

Boundedness As dominance links model long-distance dependencies, bound-
ing the number of simultaneously pending links can be motivated on com-
petence/performance grounds (Joshi et al., 2000; Kallmeyer and Parmentier,
2008), and on complexity/expressiveness grounds (Søgaard et al., 2007; Kallmeyer
and Parmentier, 2008; Chiang and Scheffler, 2008). The shortest move constraint
(SMC) introduced by Stabler to enforce a strong form of minimality also falls
into this category of restrictions.

Definition 5. A MLIG derivation α0 ⇒ α1 ⇒ · · · ⇒ αp is of rank k for some
k ≥ 0 if, no vector with a sum of components larger than k can appear in any
αj , i.e. for all x in Nn such that there exist 0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N
with αj = δ(A, x)δ′, one has

∑n
i=1 x(i) ≤ k.

A MLIG is k-ranked (noted kr-MLIG) if any derivation starting with α0 =
(S, x0) is of rank k. It is ranked if there exists k such that it is k-ranked.

A 0-ranked MLIG is simply a context-free grammar (CFG), and we have
more generally the following:

Lemma 6. Any n-dimensional k-ranked MLIG G can be transformed into an
equivalent CFG G′ in time O(|G| · (n+ 1)k3

).

Proof. We assume G to be in ETF, at the expense of a linear time factor. Each
A in N is then mapped to at most (n+ 1)k nonterminals (A, y) in N ′ ⊆ N ×Nn

with
∑n

i=1 y(i) ≤ k. Finally, for each production (A, x)→ (B1, x1)(B2, x2) of P ,
at most (n+ 1)k3

choices are possible for productions (A, y)→ (B1, y1)(B2, y2)
with (A, y), (B1, y1), and (B2, y2) in N ′.

A definition quite similar to k-rankedness can be found in the Petri net
literature:

Definition 7. A MLIG derivation α0 ⇒ α1 ⇒ · · · ⇒ αp is k-bounded for some
k ≥ 0 if, no vector with a coordinate larger than k can appear in any αj , i.e.
for all x in Nn such that there exist 0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N with
αj = δ(A, x)δ′, and for all 1 ≤ i ≤ n, one has x(i) ≤ k.

A MLIG is k-bounded (noted kb-MLIG) if any derivation starting with α0 =
(S, x0) is k-bounded. It is bounded if there exists k such that it is k-bounded.

The SMC in minimalist grammars translates exactly into 1-boundedness of the
corresponding MLIGs (Salvati, 2010).

Clearly, any k-ranked MLIG is also k-bounded, and conversely any n-dimen-
sional k-bounded MLIG is (kn)-ranked, thus a MLIG is ranked iff it is bounded.
The counterpart to Lemma 6 is:

1This restriction is slightly stronger than that of linearly restricted derivations (Rambow,
1994b), but still allows to capture UVG-dl lexicalization.

5

Lemma 8. Any n-dimensional k-bounded MLIG G can be transformed into an
equivalent CFG G′ in time O(|G| · (k + 1)n2

).

Proof. We assume G to be in ETF, at the expense of a linear time factor.
Each A in N is then mapped to at most (k + 1)n nonterminals (A, y) in N ′ =
N × {0, . . . , k}n. Finally, for each production (A, x) → (B1, x1)(B2, x2) of P ,
each nonterminal (A, y) of N ′ with x ≤ y, and each index 0 < i ≤ n, there are at
most k+1 ways to split (y(i)−x(i)) ≤ k into y1(i)+y2(i) and span a production
(A, y) → (B1, x1 + y1)(B2, x2 + y2) of P ′. Overall, each production is mapped
to at most (k + 1)n2

context-free productions.

One can check that the grammar of Example 2 is not bounded (to see this,
repeatedly apply production (S, 0) → (S, 1)), as expected since MIX is not a
context-free language.

2.3 Language Properties

Let us mention a few more results pertaining to MLIG languages:

Proposition 9 (Rambow, 1994b). L(MLIG) is a substitution closed full ab-
stract family of languages.

Proposition 10 (Rambow, 1994b). L(MLIG`) is a subset of the context-sensitive
languages.

Natural languages are known for displaying some limited cross-serial de-
pendencies, as witnessed in linguistic analyses, e.g. of Swiss-German (Shieber,
1985), Dutch (Kroch and Santorini, 1991), or Tagalog (Maclachlan and Ram-
bow, 2002). This includes the copy language

Lcopy = {ww | w ∈ {a, b}∗} ,

which does not seem to be generated by any MLIG:

Conjecture 11 (Rambow, 1994b). Lcopy is not in L(MLIG).

Finally, we obtain the following result as a consequence of Lemmas 6 and 8:

Corollary 12. L(kr-MLIG) = L(kb-MLIG) = L(kb-MLIG`) is the set of
context-free languages.

3 Related Formalisms

We review formalisms connected to MLIGs, starting in Section 3.1 with Petri
nets and two of their extensions, which turn out to be exactly equivalent to
MLIGs. We then consider various linguistic formalisms that employ dominance
links (Section 3.2).

6

S

e1 e2 e3

a b cε

ε

Figure 3: The labeled Petri net corresponding to the right linear MLIG of
Example 2.

3.1 Petri Nets

Definition 13 (Petri, 1962). A marked Petri net2 is a tuple N = 〈S, T, f,m0〉
where S and T are disjoint finite sets of places and transitions, f a flow function
from (S × T) ∪ (T × S) to N, and m0 an initial marking in NS . A transition
t ∈ T can be fired in a marking m in NS if f(p, t) ≥ m(p) for all p ∈ S, and
reaches a new marking m′ defined by m′(p) = m(p) − f(p, t) + f(t, p) for all
p ∈ S, written m [t〉 m′. Another view is that place p holds m(p) tokens, f(p, t)
of which are first removed when firing t, and then f(t, p) added back. Firings
are extended to sequences σ in T ∗ by m [ε〉 m, and m [σt〉 m′ if there exists m′′

with m [σ〉 m′′ [t〉 m′.
A labeled Petri net with reachability acceptance is endowed with a labeling

homomorphism ϕ : T ∗ → Σ∗ and a finite acceptance set F ⊆ NS , defining the
language (Peterson, 1981)

L(N , ϕ, F) = {ϕ(σ) ∈ Σ∗ | ∃m ∈ F,m0 [σ〉 m} .

Labeled Petri nets (with acceptance set {0}) are notational variants of right
linear MLIGs, defined as having production in (N×Nn)×(Σ∗∪(Σ∗ ·(N×Nn))).
This is is case of the MLIG of Example 2, which is given in Petri net form
in Figure 3, where circles depict places (representing MLIG nonterminals and
indices) with black dots for initial tokens (representing the MLIG start symbol),
boxes transitions (representing MLIG productions), and arcs the flow values.
For instance, production (S,e3) → c (S,0) is represented by the rightmost, c-
labeled transition, with f(S, t) = f(e3, t) = f(t, S) = 1 and f(e1, t) = f(e2, t) =
f(t, e1) = f(t, e2) = f(t, e3) = 0.

Extensions The subsumption of Petri nets is not innocuous, as it allows to
derive lower bounds on the computational complexity of MLIGs. Among sev-
eral extensions of Petri net with some branching capacity (see e.g. Mayr, 1999;
Haddad and Poitrenaud, 2007), two are of singular importance: It turns out
that MLIGs in their full generality have since been independently rediscovered
under the names vector addition tree automata (de Groote et al., 2004, VATA)
and branching VASS (Verma and Goubault-Larrecq, 2005, BVASS).

2Petri nets are also equivalent to vector addition system (Karp and Miller, 1969, VAS) and
vector addition systems with states (Hopcroft and Pansiot, 1979, VASS).

7

Semilinearity Another interesting consequence of the subsumption of Petri
nets by MLIGs is that the former generate some non semilinear languages, i.e.
with a Parikh image which is not a semilinear subset of N|Σ| (Parikh, 1966).
Hopcroft and Pansiot (1979, Lemma 2.8) exhibit an example of a VASS with
a non semilinear reachability set, which we translate as a 2-dimensional right
linear MLIG with productions3

(S, e2)→ (S, e1), (S, 0)→ (A, 0) | (B, 0),

(A, e1)→ (A, 2e2), (A, 0)→ a (S, 0),

(B, e1)→ b (B, 0) | b, (B, e2)→ b (B, 0) | b

and (S, e2) as start symbol, that generates the non semilinear language

Lnsm = {anbm | 0 ≤ n, 0 < m ≤ 2n} .

Proposition 14 (Hopcroft and Pansiot, 1979). There exist non semilinear
Petri nets languages.

The non semilinearity of MLIGs entails that of all the grammatical for-
malisms mentioned next in Section 3.2; this answers in particular a conjecture
by Kallmeyer (2001) about the semilinearity of V-TAGs.

3.2 Dominance Links

UVG-dl Rambow (1994b) introduced UVG-dls as a formal model for scram-
bling and tree description grammars.

Definition 15 (Rambow, 1994b). An unordered vector grammars with domi-
nance links (UVG-dl) is a tuple G = 〈N,Σ,W, S〉 where N and Σ are disjoint
finite sets of nonterminals and terminals, V = N ∪ Σ is the vocabulary, W is a
set of vectors of productions with dominance links, i.e. each element of W is a
pair (P,D) where each P is a multiset of productions in N × V ∗ and D is a re-
lation from nonterminals in the right parts of productions in P to nonterminals
in their left parts, and S in N is the start symbol.

A terminal derivation of w in Σ∗ in an UVG-dl is a context-free derivation
of form S

p1=⇒ α1
p2=⇒ α2 · · ·αp−1

pp=⇒ w such that the control word p1p2 · · · pp is
a permutation of a member of W ∗ and the dominance relations of W hold in
the associated derivation tree. The language L(G) of an UVG-dl G is the set of
sentences w with some terminal derivation. We write L(UVG-dl) for the class
of UVG-dl languages.

An alternative semantics of derivations in UVG-dls is simply their translation
into MLIGs: associate with each nonterminal in a derivation the multiset of
productions it has to spawn. Figure 4 presents the two vectors of an UVG-dl for
the MIX language of Example 2, with dashed arrows indicating dominance links.
Observe that production S → S in the second vector has to spawn eventually
one occurrence of each S → aS, S → bS, and S → cS, which corresponds
exactly to the MLIG of Example 2.

3Adding terminal symbols c in each production would result in a lexicalized grammar, still
with a non semilinear language.

8

S

ε

S

S

S

a S

S

b S

S

c S

Figure 4: An UVG-dl for Lmix.

The ease of translation from the grammar of Figure 4 into a MLIG stems
from the impossibility of splitting any of its vectors (P,D) into two nonempty
ones (P1, D1) and (P2, D2) while preserving the dominance relation, i.e. with
P = P1]P2 and D = D1]D2. This strictness property can be enforced without
loss of generality since we can always add to each vector (P,D) a production
S → S with a dominance link to each production in P . This was performed on
the second vector in Figure 4; remark that the grammar without this addition
is an unordered vector grammar (Cremers and Mayer, 1974, UVG), and still
generates Lmix.

Theorem 16 (Rambow, 1994b). Every MLIG can be transformed into an equiv-
alent UVG-dl in logarithmic space, and conversely.
Proof sketch. One can check that Rambow (1994b)’s proof of the inclusion
L(MLIG) ⊆ L(UVG-dl) incurs at most a quadratic blowup from a MLIG in
RINF, and invoke Proposition 3. More precisely, given a MLIG in RINF, pro-
ductions of form (A,0)→ α with A in N and α in (Σ∪(N×{0}))∗ form singleton
vectors, and productions of form (A,0)→ (B,ei) with A, B in N and 0 < i ≤ n
need to be paired with a production of form (C,ei)→ (D,0) for some C and D
in N in order to form a vector with a dominance link between B and C.

The converse inclusion and its complexity are immediate when considering
strict UVG-dls.

The restrictions to k-ranked and k-bounded grammars find natural counter-
parts in strict UVG-dls by bounding the (total) number of pending dominance
links in any derivation. Lexicalization has now its usual definition: for every
vector ({pi,1, . . . , pi,ki}, Di) in W , at least one of the pi,j should contain at least
one terminal in its right part—we have then L(UVG-dl`) ⊆ L(MLIG`).

More on Dominance Links Dominance links are quite common in tree de-
scription formalisms, where they were already in use in D-theory (Marcus et al.,
1983) and in quasi-tree semantics for fbTAGs (Vijay-Shanker, 1992). In particu-
lar, D-tree substitution grammars are essentially the same as UVG-dls (Rambow
et al., 2001), and quite a few other tree description formalisms subsume them
(Candito and Kahane, 1998; Kallmeyer, 2001; Guillaume and Perrier, 2010).
Another class of grammars are vector TAGs (V-TAGs), which extend TAGs and
MCTAGs using dominance links (Becker et al., 1991; Rambow, 1994a; Cham-
pollion, 2007), subsuming again UVG-dls.

4 Computational Complexity

We study in this section the complexity of several decision problems on MLIGs,
prominently of emptiness and membership problems, in the general (Section 4.2),

9

k-bounded (Section 4.3), and lexicalized cases (Section 4.4). Table 1 sums up
the known complexity results. Since by Theorem 16 we can translate between
MLIGs and UVG-dls in logarithmic space, the complexity results on UVG-dls
will be the same.

4.1 Decision Problems

Let us first review some decision problems of interest. In the following, G denotes
a MLIG 〈N,Σ, P, (S, x0)〉:
boundedness given 〈G〉, is G bounded? As seen in Section 2.2, this is equiva-

lent to rankedness.
k-boundedness given 〈G, k〉, k in N, is G k-bounded? As seen in Section 2.2,

this is the same as (kn)-rankedness. Here we will distinguish two cases
depending on whether k is encoded in unary or binary.

coverability given 〈G, F 〉, G ε-free in ETF and F a finite subset of N×Nn, does
there exist α = (A1, y1) · · · (Am, ym) in (N × Nn)∗ such that (S, x0)⇒∗ α
and for each 0 < j ≤ m there exists (Aj , xj) in F with xj ≤ yj?

reachability given 〈G, F 〉, G ε-free in ETF and F a finite subset of N × Nn,
does there exist α = (A1, y1) · · · (Am, ym) in F ∗ such that (S, x0)⇒∗ α?

non emptiness given 〈G〉, is L(G) non empty?
(uniform) membership given 〈G, w〉, w in Σ∗, does w belong to L(G)?

Boundedness and k-boundedness are needed in order to prove that a gram-
mar is bounded, and to apply the smaller complexities of Section 4.3. Cover-
ability is often considered for Petri nets, and allows to derive lower bounds on
reachability. Emptiness is the most basic static analysis one might want to per-
form on a grammar, and is needed for parsing as intersection approaches (Lang,
1994), while membership reduces to parsing. Note that we only consider uniform
membership, since grammars for natural languages are typically considerably
larger than input sentences, and their influence can hardly be neglected.

There are several obvious reductions between reachability, emptiness, and
membership. Let→log denote LogSpace reductions between decision problems;
we have:

Proposition 17.

coverability→log reachability (1)
↔log non emptiness (2)
↔log membership (3)

Proof sketch. For (1), construct a reachability instance 〈G′, {(E, 0)}〉 from a
coverability instance 〈G, F 〉 by adding to G a fresh nonterminal E and the pro-
ductions

{(A, x)→ (E, 0) | (A, x) ∈ F}
∪ {(E, ei)→ (E, 0) | 0 < i ≤ n} .

For (2), from a reachability instance 〈G, F 〉, remove all terminal productions
from G and add instead the productions {(A, x) → ε | (A, x) ∈ F}; the new

10

Problem Lower bound Upper bound

Petri net k-Boundedness PSpace (Jones et al., 1977) PSpace (Jones et al., 1977)

Petri net Boundedness ExpSpace (Lipton, 1976) ExpSpace (Rackoff, 1978)

Petri net {Emptiness, Membership} ExpSpace (Lipton, 1976) Decidable, not primitive re-
cursive (Mayr, 1981; Kosaraju,
1982)

{MLIG, MLIG`} k-Boundedness ExpTime (Corollary 20) ExpTime (Corollary 20)

{MLIG, MLIG`} Boundedness 2ExpTime (Demri et al., 2009) 2ExpTime (Demri et al., 2009)

{MLIG, MLIG`} Emptiness
2ExpSpace (Lazić, 2010) Not known to be decidable

MLIG Membership

{kb-MLIG, kb-MLIG`} Emptiness
ExpTime (Theorem 19) ExpTime (Theorem 19)

kb-MLIG Membership

{MLIG`, kb-MLIG`} Membership NPTime (Koller and Rambow, 2007) NPTime (trivial)

kr-MLIG {Emptiness, Membership} PTime (Jones and Laaser, 1976) PTime (Lemma 6)

Table 1: Summary of complexity results.

grammar G′ has a non empty language iff the reachability instance was positive.
Conversely, from a non emptiness instance 〈G〉, put the grammar in ETF and
define F to match all terminal productions, i.e. F = {(A, x) | (A, x) → a ∈
P, a ∈ Σ ∪ {ε}}, and then remove all terminal productions in order to obtain a
reachability instance 〈G′, F 〉.

For (3), from a non emptiness instance 〈G〉, replace all terminals in G by
ε to obtain an empty word membership instance 〈G′, ε〉. Conversely, from
a membership instance 〈G, w〉, construct the intersection grammar G′ with
L(G′) = L(G) ∩ {w} (Bar-Hillel et al., 1961), which serves as non emptiness
instance 〈G′〉.

4.2 General Case

Verma and Goubault-Larrecq (2005) were the first to prove that coverability
and boundedness were decidable for BVASS, using a covering tree construction
à la Karp and Miller (1969), thus of non primitive recursive complexity. Demri
et al. (2009, Theorems 7, 17, and 18) recently proved tight complexity bounds
for these problems, extending earlier results by Rackoff (1978) and Lipton (1976)
for Petri nets.

Theorem 18 (Demri et al., 2009). Coverability and boundedness for MLIGs
are 2ExpTime-complete.

Regarding reachability, emptiness, and membership, decidability is still open.
A 2ExpSpace lower bound was recently found by Lazić (2010). If a decision
procedure exists, we can expect it to be quite complex, as already in the Petri net
case, the complexity of the known decision procedures (Mayr, 1981; Kosaraju,
1982) is not primitive recursive (Cardoza et al., 1976, who attribute the idea to
Hack).

4.3 k-Bounded and k-Ranked Cases

Since k-bounded MLIGs can be converted into CFGs (Lemma 8), emptiness
and membership problems are decidable, albeit at the expense of an exponential

11

blowup. We know from the Petri net literature that coverability and reacha-
bility problems are PSpace-complete for k-bounded right linear MLIGs (Jones
et al., 1977) by a reduction from linear bounded automaton (LBA) member-
ship. We obtain the following for k-bounded MLIGs, using a similar reduction
from membership in polynomially space bounded alternating Turing machines
(Chandra et al., 1981, ATM):

Theorem 19. Coverability and reachability for k-bounded MLIGs are
ExpTime-complete, even for fixed k ≥ 1.

The lower bound is obtained through an encoding of an instance of the
membership problem for ATMs working in polynomial space into an instance
of the coverability problem for 1-bounded MLIGs. The upper bound is a direct
application of Lemma 8, coverability and reachability being reducible to the
emptiness problem for a CFG of exponential size. Theorem 19 also shows the
ExpTime-hardness of emptiness and membership in minimalist grammars with
SMC.

Corollary 20. Let k ≥ 1; k-boundedness for MLIGs is ExpTime-complete.

Proof. For the lower bound, consider an instance 〈G, F 〉 of coverability for a
1-bounded MLIG G, which is ExpTime-hard according to Theorem 19. Add to
the MLIG G a fresh nonterminal E and the productions

{(A, x)→ (E, x) | (A, x) ∈ F}
∪ {(E, 0)→ (E, ei) | 0 < i ≤ n} ,

which make it non k-bounded iff the coverability instance was positive.
For the upper bound, apply Lemma 8 with k′ = k + 1 to construct an

O(|G|·2n2 log2(k′+1))-sized CFG, reduce it in polynomial time, and check whether
a nonterminal (A, x) with x(i) = k′ for some 0 < i ≤ n occurs in the reduced
grammar.

Note that the choice of the encoding of k is irrelevant, as k = 1 is enough
for the lower bound, and k only logarithmically influences the exponent for the
upper bound.

Corollary 20 also implies the ExpTime-completeness of k-rankedness, k en-
coded in unary, if k can take arbitrary values. On the other hand, if k is known
to be small, for instance logarithmic in the size of G, then k-rankedness becomes
polynomial by Lemma 6.

Observe finally that k-rankedness provides the only tractable class of MLIGs
for uniform membership, using again Lemma 6 to obtain a CFG of polynomial
size—actually exponential in k, but k is assumed to be fixed for this problem. An
obvious lower bound is that of membership in CFGs, which is PTime-complete
(Jones and Laaser, 1976).

4.4 Lexicalized Case

Unlike the high complexity lower bounds of the previous two sections, NPTime-
hardness results for uniform membership have been proved for a number of for-
malisms related to MLIGs, from the commutative CFG viewpoint Huynh (1983);
Barton (1985); Esparza (1995), or from more specialized models (Søgaard et al.,
2007; Champollion, 2007; Koller and Rambow, 2007). We focus here on this last

12

proof, which reduces from the normal dominance graph configurability prob-
lem (Althaus et al., 2003), as it allows to derive NPTime-hardness even in
highly restricted grammars.

Theorem 21 (Koller and Rambow, 2007). Uniform membership of 〈G, w〉 for
G a 1-bounded, lexicalized, UVG-dl with finite language is NPTime-hard, even
for |w| = 1.

Proof sketch. Set S as start symbol and add a production S → aA to the
sole vector of the grammar G constructed by Koller and Rambow (2007) from
a normal dominance graph, with dominance links to all the other productions.
Then G becomes strict, lexicalized, with finite language {a} or ∅, and 1-bounded,
such that a belongs to L(G) iff the normal dominance graph is configurable.

The fact that uniform membership is in NPTime in the lexicalized case is
clear, as we only need to guess nondeterministically a derivation of size linear
in |w| and check its correctness.

The weakness of lexicalized grammars is however that their emptiness prob-
lem is not any easier to solve! The effect of lexicalization is indeed to break the
reduction from emptiness to membership in Proposition 17, but emptiness is as
hard as ever, which means that static checks on the grammar might even be
undecidable.

5 Conclusion

Grammatical formalisms with dominance links, introduced in particular to model
scrambling phenomena in computational linguistics, have deep connections with
several open questions in an unexpected variety of fields in computer science.
We hope this survey to foster cross-fertilizing exchanges; for instance, is there a
relation between Conjecture 11 and the decidability of reachability in MLIGs?
A similar question, whether the language Lpal of even 2-letters palindromes was
a Petri net language, was indeed solved using the decidability of reachability
in Petri nets (Jantzen, 1979), and shown to be strongly related to the latter
(Lambert, 1992).

A conclusion with a more immediate linguistic value is that MLIGs and
UVG-dls hardly qualify as formalisms for mildly context-sensitive languages,
claimed by Joshi (1985) to be adequate for modeling natural languages, and
“roughly” defined as the extensions of context-free languages that display

1. support for limited cross-serial dependencies: seems doubtful, see Conjec-
ture 11,

2. constant growth, a requisite nowadays replaced by semilinearity : does not
hold, as seen with Proposition 14, and

3. polynomial recognition algorithms: holds only for restricted classes of
grammars, as seen in Section 4.

Nevertheless, variants such as k-ranked V-TAGs are easily seen to fulfill all the
three points above.

13

Acknowledgements Thanks to Pierre Chambart, Stéphane Demri, and Alain
Finkel for helpful discussions, and to Sylvain Salvati for pointing out the relation
with minimalist grammars.

References

Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., and Thiel, S.,
2003. An efficient graph algorithm for dominance constraints. Journal of
Algorithms, 48(1):194–219. doi:10.1016/S0196-6774(03)00050-6.

Bar-Hillel, Y., Perles, M., and Shamir, E., 1961. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und
Kommunikationsforschung, 14:143–172.

Barton, G.E., 1985. The computational difficulty of ID/LP parsing. In ACL’85 ,
pages 76–81. ACL Press. doi:10.3115/981210.981220.

Becker, T., Joshi, A.K., and Rambow, O., 1991. Long-distance scrambling
and tree adjoining grammars. In EACL’91 , pages 21–26. ACL Press. doi:
10.3115/977180.977185.

Bojańczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L., 2009. Two-
variable logic on data trees and XML reasoning. Journal of the ACM, 56(3):
1–48. doi:10.1145/1516512.1516515.

Candito, M.H. and Kahane, S., 1998. Defining DTG derivations to get semantic
graphs. In TAG+4, pages 25–28.

Cardoza, E., Lipton, R.J., and Meyer, A.R., 1976. Exponential space complete
problems for Petri nets and commutative semigroups: Preliminary report. In
STOC’76 , pages 50–54. ACM Press. doi:10.1145/800113.803630.

Champollion, L., 2007. Lexicalized non-local MCTAG with dominance links is
NP-complete. In MOL 10 .

Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., 1981. Alternation. Journal
of the ACM, 28(1):114–133. doi:10.1145/322234.322243.

Chiang, D. and Scheffler, T., 2008. Flexible composition and delayed tree-
locality. In TAG+9.

Cremers, A.B. and Mayer, O., 1974. On vector languages. Journal of Computer
and System Sciences, 8(2):158–166. doi:10.1016/S0022-0000(74)80053-X.

de Groote, P., Guillaume, B., and Salvati, S., 2004. Vector addition tree au-
tomata. In LICS 2004 , pages 64–73. IEEE Computer Society. ISBN 0-7695-
2192-4. doi:10.1109/LICS.2004.51.

Demri, S., Jurdziński, M., Lachish, O., and Lazić, R., 2009. The covering and
boundedness problems for branching vector addition systems. In Kannan,
R. and Narayan Kumar, K., editors, FSTTCS 2009 , volume 4 of Leibniz
International Proceedings in Informatics, pages 181–192. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2009.2317.

14

http://dx.doi.org/10.1016/S0196-6774(03)00050-6
http://dx.doi.org/10.3115/981210.981220
http://dx.doi.org/10.3115/977180.977185
http://dx.doi.org/10.3115/977180.977185
http://dx.doi.org/10.1145/1516512.1516515
http://dx.doi.org/10.1145/800113.803630
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1016/S0022-0000(74)80053-X
http://dx.doi.org/10.1109/LICS.2004.51
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2317

Dufourd, C. and Finkel, A., 1999. A polynomial λ-bisimilar normalization
for reset Petri nets. Theoretical Computer Science, 222(1–2):187–194. doi:
10.1016/S0304-3975(98)00351-X.

Esparza, J., 1995. Petri nets, commutative context-free grammars, and basic
parallel processes. In Reichel, H., editor, FCT’95 , volume 965 of Lecture Notes
in Computer Science, pages 221–232. Springer. doi:10.1007/3-540-60249-6 54.

Guillaume, B. and Perrier, G., 2010. Interaction grammars. Research on Lan-
guage and Computation. doi:10.1007/s11168-010-9066-x. To appear.

Haddad, S. and Poitrenaud, D., 2007. Recursive Petri nets. Acta Informatica,
44(7–8):463–508. doi:10.1007/s00236-007-0055-y.

Hopcroft, J. and Pansiot, J.J., 1979. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 8(2):
135–159. doi:10.1016/0304-3975(79)90041-0.

Huynh, D.T., 1983. Commutative grammars: the complexity of uniform
word problems. Information and Control, 57(1):21–39. doi:10.1016/
S0019-9958(83)80022-9.

Jantzen, M., 1979. On the hierarchy of Petri net languages. RAIRO Theoretical
Informatics and Applications, 13(1):19–30.

Jones, N.D. and Laaser, W.T., 1976. Complete problems for determinis-
tic polynomial time. Theoretical Computer Science, 3(1):105–117. doi:
10.1016/0304-3975(76)90068-2.

Jones, N.D., Landweber, L.H., and Lien, Y.E., 1977. Complexity of some
problems in Petri nets. Theoretical Computer Science, 4(3):277–299. doi:
10.1016/0304-3975(77)90014-7.

Joshi, A.K., 1985. Tree-adjoining grammars: How much context sensitivity is
required to provide reasonable structural descriptions? In Dowty, D.R., Kart-
tunen, L., and Zwicky, A.M., editors, Natural Language Parsing: Psycholog-
ical, Computational, and Theoretical Perspectives, chapter 6, pages 206–250.
Cambridge University Press.

Joshi, A.K., Becker, T., and Rambow, O., 2000. Complexity of scrambling: A
new twist to the competence-performance distinction. In Abeillé, A. and Ram-
bow, O., editors, Tree Adjoining Grammars. Formalisms, Linguistic Analysis
and Processing, chapter 6, pages 167–181. CSLI Publications.

Kallmeyer, L., 2001. Local tree description grammars. Grammars, 4(2):85–137.
doi:10.1023/A:1011431526022.

Kallmeyer, L. and Parmentier, Y., 2008. On the relation between multicom-
ponent tree adjoining grammars with tree tuples (TT-MCTAG) and range
concatenation grammars (RCG). In Mart́ın-Vide, C., Otto, F., and Fernau,
H., editors, LATA 2008 , volume 5196 of Lecture Notes in Computer Science,
pages 263–274. Springer. doi:10.1007/978-3-540-88282-4 25.

15

http://dx.doi.org/10.1016/S0304-3975(98)00351-X
http://dx.doi.org/10.1016/S0304-3975(98)00351-X
http://dx.doi.org/10.1007/3-540-60249-6_54
http://dx.doi.org/10.1007/s11168-010-9066-x
http://dx.doi.org/10.1007/s00236-007-0055-y
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1016/0304-3975(77)90014-7
http://dx.doi.org/10.1023/A:1011431526022
http://dx.doi.org/10.1007/978-3-540-88282-4_25

Karp, R.M. and Miller, R.E., 1969. Parallel program schemata. Jour-
nal of Computer and System Sciences, 3(2):147–195. doi:10.1016/
S0022-0000(69)80011-5.

Koller, A. and Rambow, O., 2007. Relating dominance formalisms. In FG 2007 .

Kosaraju, S.R., 1982. Decidability of reachability in vector addition systems.
In STOC’82 , pages 267–281. ACM Press. doi:10.1145/800070.802201.

Kroch, A.S. and Santorini, B., 1991. The derived constituent structure of the
West Germanic verb-raising construction. In Freidin, R., editor, Principles
and Parameters in Comparative Grammar, chapter 10, pages 269–338. MIT
Press.

Lambert, J.L., 1992. A structure to decide reachability in Petri nets. Theoretical
Computer Science, 99(1):79–104. doi:10.1016/0304-3975(92)90173-D.

Lang, B., 1994. Recognition can be harder than parsing. Computational Intel-
ligence, 10(4):486–494. doi:10.1111/j.1467-8640.1994.tb00011.x.

Lazić, R., 2010. The reachability problem for branching vector addition systems
requires doubly-exponential space. Information Processing Letters, 110(17):
740–745. doi:10.1016/j.ipl.2010.06.008.

Lichte, T., 2007. An MCTAG with tuples for coherent constructions in German.
In FG 2007 .

Lipton, R., 1976. The reachability problem requires exponential space. Technical
Report 62, Yale University.

Maclachlan, A. and Rambow, O., 2002. Cross-serial dependencies in Tagalog.
In TAG+6, pages 100–107.

Marcus, M.P., Hindle, D., and Fleck, M.M., 1983. D-theory: talking about
talking about trees. In ACL’83 , pages 129–136. ACL Press. doi:10.3115/
981311.981337.

Mayr, E.W., 1981. An algorithm for the general Petri net reachability problem.
In STOC’81 , pages 238–246. ACM Press. doi:10.1145/800076.802477.

Mayr, R., 1999. Process rewrite systems. Information and Computation, 156
(1–2):264–286. doi:10.1006/inco.1999.2826.

Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley. ISBN
0-201-530821.

Parikh, R.J., 1966. On context-free languages. Journal of the ACM, 13(4):
570–581. doi:10.1145/321356.321364.

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems. Prentice
Hall.

Petri, C.A., 1962. Kommunikation mit Automaten. PhD thesis, University of
Bonn.

16

http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1111/j.1467-8640.1994.tb00011.x
http://dx.doi.org/10.1016/j.ipl.2010.06.008
http://dx.doi.org/10.3115/981311.981337
http://dx.doi.org/10.3115/981311.981337
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1006/inco.1999.2826
http://dx.doi.org/10.1145/321356.321364

Rackoff, C., 1978. The covering and boundedness problems for vector ad-
dition systems. Theoretical Computer Science, 6(2):223–231. doi:10.1016/
0304-3975(78)90036-1.

Rambow, O., 1994a. Formal and Computational Aspects of Natural Language
Syntax. PhD thesis, University of Pennsylvania.

Rambow, O., 1994b. Multiset-valued linear index grammars: imposing dom-
inance constraints on derivations. In ACL’94 , pages 263–270. ACL Press.
doi:10.3115/981732.981768.

Rambow, O., Vijay-Shanker, K., and Weir, D., 1995. D-tree grammars. In
ACL’95 , pages 151–158. ACL Press. doi:10.3115/981658.981679.

Rambow, O., Weir, D., and Vijay-Shanker, K., 2001. D-tree substitu-
tion grammars. Computational Linguistics, 27(1):89–121. doi:10.1162/
089120101300346813.

Salvati, S., 2010. Minimalist grammars in the light of logic. Manuscript.

Shieber, S.M., 1985. Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8(3):333–343. doi:10.1007/BF00630917.

Søgaard, A., Lichte, T., and Maier, W., 2007. The complexity of linguistically
motivated extensions of tree-adjoining grammar. In RANLP 2007 , pages
548–553. http://www.sfs.uni-tuebingen.de/∼wmaier/pub/ranlp07.pdf.

Stabler, E.P., 1997. Derivational minimalism. In Retoré, C., editor, LACL’96 ,
volume 1328 of Lecture Notes in Computer Science, pages 68–95. Springer.
doi:10.1007/BFb0052147.

Verma, K.N. and Goubault-Larrecq, J., 2005. Karp-Miller trees for a
branching extension of VASS. Discrete Mathematics and Theoretical Com-
puter Science, 7(1):217–230. http://www.dmtcs.org/volumes/abstracts/
dm070113.abs.html.

Vijay-Shanker, K., 1992. Using descriptions of trees in a tree adjoining gram-
mar. Computational Linguistics, 18(4):481–517. http://www.aclweb.org/
anthology/J92-4004.

Yoshinaka, R. and Kanazawa, M., 2005. The complexity and generative capacity
of lexicalized abstract categorial grammars. In Blache, P., Stabler, E., Bus-
quets, J., and Moot, R., editors, LACL 2005 , volume 3492 of Lecture Notes
in Computer Science, pages 330–346. Springer. doi:10.1007/11422532 22.

17

http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.3115/981732.981768
http://dx.doi.org/10.3115/981658.981679
http://www.aclweb.org/anthology/J01-1004
http://www.aclweb.org/anthology/J01-1004
http://dx.doi.org/10.1007/BF00630917
http://www.sfs.uni-tuebingen.de/~wmaier/pub/ranlp07.pdf
http://dx.doi.org/10.1007/BFb0052147
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html
http://www.aclweb.org/anthology/J92-4004
http://www.aclweb.org/anthology/J92-4004
http://dx.doi.org/10.1007/11422532_22

A Complements to Section 2

This section details the proof of the following proposition, which was omitted
from the main text:
Proposition 3. For any MLIG, one can construct an equivalent MLIG in RINF
in logarithmic space.

As explained in Section 2, the difficulty lies in avoiding an exponential
blowup when constructing the MLIG in RINF. The idea is to proceed in two
steps, first by constructing a grammar in ordinary form (OF) (Lemma 23), and
then by translating this grammar in OF into a grammar in RINF (Lemma 24).
This construction is akin to the normalization presented by Dufourd and Finkel
(1999) for reset Petri nets.

Definition 22. A MLIG is in ordinary form if, for any production of form (?)
in P , for any vector y in {x0} ∪ {x} ∪ {xj | 1 ≤ j ≤ m} that appears in the start
symbol or in this production, and for any index 0 < i ≤ n, y(i) ≤ 1.

Lemma 23. For any MLIG, one can construct an equivalent MLIG in OF in
logarithmic space.

Proof. Let us fix a MLIG G = 〈N,Σ, P, (S, x0)〉. We first define the maximal
vector value of G as the minimum integer maxG such that, for any production
of form (?) in P , for any vector y in {x0} ∪ {x} ∪ {xj | 1 ≤ j ≤ m} that
appears in the start symbol or in this production, and for any index 0 < i ≤ n,
y(i) ≤ maxG . Thus a MLIG in OF is one where maxG ≤ 1.

Let n′ = |maxG | (thus of logarithmic size); the idea in the following is to
increase the dimension to n(n′ + 1) and use the additional indices to encode
vector values in binary.

Let us fix some notation: each index 0 < i ≤ n of G is associated with n′+ 1
indices in the constructed grammar G′. The index (i, j) denotes the jth such
index, 0 ≤ j ≤ n′, with the convention (i, 0) = i. For every nonterminal A of
N , and every 0 < i ≤ n, and every 0 < j ≤ n′, we add the nonterminals Ai,j

and A′i,j : let

N ′ = N ∪ {Ai,j | 0 < i ≤ n, 0 < j ≤ n′}
∪ {A′i,j | 0 < i ≤ n, 0 < j ≤ n′} .

These nonterminals will handle the conversions to and from binary: we define
the productions

PA,i = {(A, ei,0)→ (Ai,1, 0)}
∪ {(Ai,j , ei,j)→ (Ai,j+1, 0) | 0 < j ≤ n′}
∪ {(Ai,j , 0)→ (A, ei,j) | 0 < j ≤ n′}

P ′A,i = {(A, ei,j)→ (A′i,j , 0) | 0 < j ≤ n′}
∪ {(A′i,j , 0)→ (A′i,j−1, ei,j−1) | 1 < j ≤ n′}
∪ {(A′i,1, 0)→ (A, ei,0)}

for all A in N and 0 < i ≤ n. We want to prove that this set of productions
performs a binary encoding of the contents of the ith index, i.e. that

y(i, 0) +
n′∑

j=1

y(i, j)2j−1 = y′(i, 0) +
n′∑

j=1

y′(i, j)2j−1 (4)

i

holds whenever (A, y)⇒∗ (A, y′) using productions from PA,i ∪ P ′A,i.
Claim 23.1. If (A, y) ⇒p (A, y′), for some p ≥ 0 and using only productions
from PA,i ∪ P ′A,i, then (4) holds.

We prove the claim by induction on p, using productions from PA,i solely;
the case of P ′A,i is symmetric—and there is no possible interference between the
two sets of productions.

The claim holds vacuously for p = 0. For p > 0, we can split the derivation
into

(A, y)⇒p−1 (Ai,j , yp−1)⇒ (A, y′)
with

yp−1(i, j) + 1 = y′(i, j)

for some 0 < j ≤ n′—using the last ruleset of PA,i—, and we can distinguish
two cases:

1. (A, y)⇒p−2 (A, yp−2)⇒ (Ai,j , yp−1), which enforces j = 1, and then

yp−2(i, 0) = yp−1(i, 0) + 1

= y′(i, 0) + 1 and
yp−2(i, 1) + 1 = yp−1(i, 1) + 1

= y′(i, 1) ,

thus (4) holds between y′ and yp−2, and using the induction hypothesis on
derivation (A, y)⇒p−2 (A, yp−2), it also holds for the entire derivation.

2. (A, y)⇒p−2 (Ai,j−1, yp−2)⇒ (Ai,j , yp−1) with yp−2(i, j − 1) = yp−1(i, j −
1) + 1, then (A, y)⇒p−2 (Ai,j−1, yp−2)⇒ (A, y′′) with yp−2(i, j− 1) + 1 =
y′′(i, j − 1) when applying the last ruleset of PA,i to (Ai,j−1, yp−2), thus

yp−1(i, j − 1) + 2 = y′′(i, j − 1)

= y′(i, j − 1) + 2
yp−1(i, j) + 1 = y′′(i, j) + 1

= y′(i, j) ,

and therefore (4) holds between y′ and y′′. Applying the induction hy-
pothesis to (A, y)⇒p−2 (Ai,j−1, yp−2)⇒ (A, y′′) yields the claim.

It remains to modify the productions of P in order to use the new indices.
Let x be a vector of Nn: its binary encoding is the vector bx in Nn(n′+1) such
that, for all 0 < i ≤ n,

x(i) =
n′∑

j=1

bx(i, j)2j−1,

bx(i, 0) = 0, and
bx(i, j) ≤ 1 for all 0 < j ≤ n′ ,

the point being that |bx| is polynomial in |x|. We construct a new set of pro-
ductions accordingly, with a production

(A, bx)→ u0(B1, bx1)u1 · · ·um(Bm, bxm)um+1

ii

for each production of form (?) in P . Let us dub P ′ the set of productions that
gathers these binary encodings and the productions of PA,i ∪P ′A.i for each A in
N and 0 < i ≤ n.
Claim 23.2. The (n(n′ + 1))-dimensional MLIG G′ = 〈N ′,Σ, P ′, (S, bx0)〉 is in
OF and equivalent to G.

The fact that G′ is in OF is immediate by definition of the binary encoding bx
and of the productions of P ′. The equivalence of G and G′ stems from Claim 23.1
and the properties of bx.

We can conclude by noting that, indeed, G′ can be constructed from G in
logarithmic space.

Lemma 24. For any MLIG in OF, one can construct an equivalent MLIG in
RINF in logarithmic space.

Proof. The construction presented by Rambow (1994a, Theorem 3) fits in the
OF case.

B Complements to Section 4

This section contains the proof of the following result:

Theorem 19. Coverability and reachability for k-bounded MLIGs are
ExpTime-complete, even for fixed k ≥ 1.

B.1 Lower Bound

We reduce the membership problem for an alternating Turing machine operating
in polynomial space to the coverability problem for a 1-bounded MLIG, which
yields its ExpTime-hardness (Chandra et al., 1981).

Formally, we are given an ATM M = 〈Q,Σ,Γ, δ, q0, F 〉, an input string w
in Σ∗, and the insurance that M will never visit more than p(|w|) cells of its
tape. Wlog., we consider δ(q, Z) for a state q in Q and a tape content Z in Γ to
be (q1, Z1, d1) op (q2, Z2, d2) with q1, q2 in Q, Z1 6= Z and Z2 6= Z in Γ, d1, d2

in {−1,+1} (standing for a move to the left or to the right), and op in {∨,∧}
(standing for disjunction or conjunction).

Encoding ATM Configurations The total number of different tape con-
tents ofM is bounded by |Γ|p(|w|), which we cannot afford to represent explicitly.
Instead, we store the current tape contents of M as a vector of dimension c =
|Γ| ·p(|w|), and maintain it throughout the simulation by our MLIG. A difficulty
arises with conjunctive transitions δ(q, Z) = (q1, Z1, d1)∧(q2, Z2, d2), which can-
not be directly simulated by MLIG derivations of form (A, y)⇒ (B1, y1)(B2, y2)
with (A, y) encoding the configuration matched by (q, Z), and each (Bj , yj) en-
coding the new configuration corresponding to the (qj , Zj , dj) action. Vector
values from y, encoding the current tape configuration, are scattered nonde-
terministically between y1 and y2. The solution is to construct a 1-bounded
MLIG with enough redundancy to recover “clean” tape configurations after the
simulation of a conjunctive transition.

iii

{([q, i], 〈Z, i〉1 + 〈Z, i〉2 + 〈Zj , i〉1 + 〈Zj , i〉2)→

([qj , i + dj], 〈Z, i〉1 + 〈Z, i〉2 + 〈Zj , i〉1 + 〈Zj , i〉2) | i ≤ p(|w|), j ∈ {1, 2}}

Figure 5: The productions encoding a transition δ(q, Z) = (q1, Z1, d1) ∨
(q2, Z2, d2).

{([q, i], 〈Z, i〉1 + 〈Z, i〉2 + 〈Z1, i〉1 + 〈Z2, i〉2)→

K
j∈{1,2}

0@[qj , i + dj]j , 〈Z, i〉j + 〈Zj , i〉j +
X

Z′∈Γ,m≤p(|w|)

〈Z′, m〉c

1A | i ≤ p(|w|)}

∪ {([q, i]j , 〈Z, i〉j + 〈Z, i〉c)→ ([q, i]j , 〈Z, i〉j + 〈Z, i〉3−j + 〈Z, i〉c | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

∪ {([q, i]j , 〈Z, i〉j + 〈Z, i〉c)→ ([q, i]j , 〈Z, i〉j + 〈Z, i〉3−j + 〈Z, i〉c | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

∪ {([q, i]j ,
X

Z∈Γ,i≤p(|w|)

〈Z, i〉c)→ ([q, i], 0̄) | q ∈ Q, i ≤ p(|w|), j ∈ {1, 2}}

Figure 6: The productions encoding a transition δ(q, Z) = (q1, Z1, d1) ∧
(q2, Z2, d2).

Accordingly, we set our dimension as n = 6c: each (Z, i) pair in Γ ×
{1, . . . , p(|w|)} is associated with a left and a right coordinate (whose unit vec-
tors are denoted as 〈Z, i〉1 and 〈Z, i〉2), their complements (denoted as 〈Z, i〉1
and 〈Z, i〉2), and two counts (denoted as 〈Z, i〉c and 〈Z, i〉c).

We also define our set of nonterminals as

N =
⋃

q∈Q,i≤p(|w|)

{[q, i], [q, i]1, [q, i]2} ,

recording the current state and current head position on the tape. Hence a pair
in N × Nn represents the current configuration of M.

Encoding Disjunctive Transitions The translation of a disjunctive rule
δ(q, Z) = (q1, Z1, d1) ∨ (q2, Z2, d2) is a set of productions shown in Figure 5.
The productions check that the current configuration allows to apply the rule,
and update the configuration accordingly. Nothing in these productions requires
more than c as a dimension (the other coordinates are either redundant or
unused).

Encoding Conjunctive Transitions We exploit the extra indices for con-
junctive rules δ(q, Z) = (q1, Z1, d1)∧ (q2, Z2, d2), see Figure 6. The effect of the
first set of productions is to update the left and right configurations with the
new configurations for each of the two conjuncts. The next three sets ensure
that the nondeterministic splitting between left and right was correct, and copy
back the configuration in the left part into the right one and vice versa. Once
this copy step is completed, and only then—which enforces a verification at the
same time—, the last production set switches back to a normal nonterminal,
thereby allowing the application of more rules.

iv

Start Symbol and Covering Set Define S = ([q0, 1]) as start symbol, while
the initial vector encodes the initial tape contents γ0 = w#p(|w|)−|w| (where #
denotes the blank tape symbol):

x0 =
∑

Z∈Γ,i≤p(|w|),j∈{1,2}

{
〈Z, i〉j if γ0(i) 6= Z

〈Z, i〉j otherwise.

Our covering set C is the union of all pairs ([qf , i], 0) for qf an accepting
state of M and i ≤ p(|w|) a tape position.

B.2 Upper Bound

By Proposition 17, coverability and reachability can be reduced to language
non emptiness. By Lemma 8, a k-bounded MLIG can be converted into an
equivalent CFG in exponential time (and thus of exponential size). Emptiness
in CFGs can be checked in polynomial time, and we have overall an exponential
time algorithm for coverability and reachability in k-bounded MLIGs.

v

	Introduction
	Multiset-Valued Linear Indexed Grammars
	Normal Forms
	Restrictions
	Language Properties

	Related Formalisms
	Petri Nets
	Dominance Links

	Computational Complexity
	Decision Problems
	General Case
	k-Bounded and k-Ranked Cases
	Lexicalized Case

	Conclusion
	Complements to Section 2
	Complements to Section 4
	Lower Bound
	Upper Bound

