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The kinematics of particles refer to events and
tangent vectors, while that of waves refer to dual
gradient planes. Special relativity [1–3] applies
to both objects alike. Here we show that space-
time exchange symmetry [7] implicit in the SI-
definition of length based on the universal con-
stant c has profound consequences at low veloci-
ties. Galilean physics, exact in the limit c → ∞,
is mirrored by a dual so-called Carrollian super-
luminal kinematics [4–6] exact in the limit c→ 0.
Several new results follow. The Galilean limit ex-
plains mass conservation in Newtonian mechan-
ics, while the dual limit is a kinematical prereq-
uisite for wavelike tachyonic motion [8, 9]. As
an example, the Landé paradox [19, 20] of wave-
particle duality has a natural resolution within
special relativity in terms of superluminal, par-
ticlelike waves. It is emphasized that internal
particle energy mc2 can not be ignored, while ki-
netic energy leads to an extended Galilei group.
We also demonstrate that Maxwell’s equations
have magnetic and electric limits covariant under
Galilean and Carrollian symmetry.
Recent essays on the status of special relativity have

stressed the importance of spacetime symmetries and the
associated group properties [1–3]. Inertial symmetry,
leading to the principle of relativity, may be stated in
terms of the familiar Galilei transformation

r′ = r− v0t, t′ = t, (1)

where v0 = v0v̂ is the velocity of the primed frame mea-
sured in the laboratory and v̂ is a unit vector. Transla-
tional invariance means that only spacetime intervals are
meaningful, and the boost (1) can be viewed as a shift
of origin r′ = r − r0 with time dependent displacement
r0 = v0t. The universal constant c appears only indi-
rectly via the SI-definition of length, and the timelike
condition r ≪ ct must be satisfied for (1) to be valid.
Spacelike events r ≫ ct behave according to the Car-
roll transformation [4–6] first introduced by Jean-Marc
Lévy-Leblond

r′ = r, t′ = t− v0 · r/c
2, (2)

where the temporal translation t′ = t − t0 implies loss
of global simultaneity, because the offset t0 depends on
position. Coordinates normal to v̂ are invariant, while
space-time exchange [7] along the direction of motion

r‖ ↔ ct, r⊥ ↔ r⊥ (3)

allows (2) to be obtained from (1) and vice-versa, in short
G ↔ C. In practice, signals transmitted from a reference
clock located at the origin at time t = 0 synchronize
remote clocks according to the time of travel. Using the
Galilei transformation, time t′ = r′/c given as

r′2/c2 = r2/c2 + β2

0
t2 − 2v0 · rt/c

2, (4)

can be approximated as

t′ ∼ t(1 +
1

2
β2

0
)− v0 · r/c

2, (5)

where β0 = v0/c ≪ 1. Because coordinate transforma-
tions are linear, this result also holds for events that are
not lightlike. For r‖ ≪ ct, absolute time will be correct
to first order in β0. For r‖ ≫ ct, the t0 term must be
retained, while the Galilean shift can be neglected pro-
ducing (2). Both results are compatible with Lorentz
covariance at low velocity, while the β2

0
-term in (5) rep-

resent proper time effects. Duality (3) implies the rela-
tions v‖ ↔ V‖ and v⊥ ↔ c tanα, where v‖V‖ = c2 and
tanα = v⊥/v‖ specifies direction. Low-velocity Galilean
motion thus has a dual Carrollian kinematics which is
superluminal [8, 9]. Lightlike motion is self-dual. The
Lorentz transformation itself can be written in terms of
dual parameters v0V0 = c2

r′‖ = γ0(r‖ − v0t), r′⊥ = r⊥, t′ = γ0(t− r‖/V0), (6)

where γ0 = 1/
√

1− β2

0
and β2

0
= v0/V0. Superluminal

frame velocities introduce complex numbers, because sig-
naling will no longer be possible [10].
Infinitesimal transformation.—The first-order trans-

formation of four-events (r, ct) can be written in matrix
form as I − βL, where the identity I and the generator
L = G + C are 4 × 4 matrices. The Galilean part G
has the components of v̂ as spatial entries in the fourth
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column, zero otherwise, while the Carrollian part is its
transpose C = GT . The full Lorentz transformation can
be obtained by iteration, while G and C subgroups may
be contracted from the Poincaré group [3–6] in the sin-
gular limit β → 0. The vector (r, t) transforms as

I − v0G− V −1

0
C, (7)

where Galilean symmetry [11] requires c, V0 → ∞, while
Carrollian symmetry is obtained for c, v0 → 0. The re-
spective velocity transformations show that c′ = c is in-
variant in both limits as required for a relativistic the-
ory, and matrix expansions of the form e−aX = I − aX ,
where a is the parameter are exact to first order, because
G2 = C2 = 0.
Particlelike versus wavelike four-vectors.—A worldline

has tangent four-velocity γ(v, c), where γ = dt/dτ ap-
pears as a result of proper time derivation. The vector
γ(v, 1) behaves according to (7). The Galilean shift

γ′v′ = γv − v0γ, γ′ = γ, (8)

follows for v ≪ c, Carrollian velocity composition

γ′v′ = γv, γ′ = γ(1− v0 · v/c
2), (9)

is valid for v ≫ c, while v′
⊥ = v⊥ in both cases. Since

|γ(1/β)| = βγ(β) and γ(β) ∼ 1 + 1

2
β2 for β = v/c ≪ 1,

the Lorentz factor vanishes as |γ| ∼ 1/β at the dual speed
β = V/c = c/v ≫ 1. Field-kinematics, on the other
hand, starts from the four-gradient (∇,−∂t/c). As a dual
mathematical object (one-form), it has dimension of in-
verse length like the four-wave vector (k, ω/c). Because
time-components are proportional to 1/c, the first-order
transformation of (k, ω) now takes the form

I − V −1

0
G− v0C, (10)

where coefficients have been interchanged compared to
(7). Similar considerations apply to four-momentum
(p, E/c) and electromagnetic four-potential (A, φ/c).
Timelike or quasi-uniform ck ≪ ω waves propagate at
superluminal phase velocity given as k · vp = ω. An
order-of-magnitude estimate [12] shows that such waves
are particle-like

k′ = k− v0ω/c
2, ω′ = ω, (11)

in the sense that the Doppler effect is absent and wave
vectors are subject to aberration due to relative time.
Spacelike or quasi-stationary components ck ≫ ω

k′ = k, ω′ = ω − v0 · k, (12)

show Doppler effect without aberration, because the con-
cept of equal-time planes is frame independent in abso-
lute time. The group velocity, given as dk · vg = dω,
follows from dispersion k2 − n2ω2/c2 = 0, where n is the
refractive index of the medium.

At first sight, particle kinematics and wave kinemat-
ics appears to be unrelated. Four-vectors deriving from
events (7) are timelike for v ≪ c, but spacelike behav-
ior appears for v ≫ c. On the other hand, four-vectors
of the type (10) are spacelike in the Galilean limit and
timelike in the Carrollian limit. Timelike particles and
spacelike waves constitute subluminal Galilean c → ∞
physics. Spacelike events and timelike wave vectors are
less familiar objects appearing in superluminal Carrollian
c → 0 kinematics. In this sense, the concept of “wave-
particle duality” originally introduced to encompass an
apparent dichotomy [13, 14] takes on a new meaning in
classical special relativity.
Newtonian mechanics.—The relativistic expression for

mechanical four-momentum

(p, E) = mγ(v, c2), (13)

relates a wavelike vector to a particlelike vector as re-
vealed by the factor c2. The dispersion relation p =
Ev/c2 can be written vV = c2, where V = E/p‖ is the
energy velocity. Timelike Carrollian momentum of the
form (11) equivalent to (8)

p′ = p− v0E/c
2, E′ = E, (14)

follows for cp≪ E or v ≪ c. Newtonian momentum p =
mv is intimately related to zero-order internal energy
E = mc2 allowing energy transport to be replaced by
mass transport with dual velocity v. There is no energy
dispersion, since dE/dp = 0. Galilean symmetry implies
mass conservation, since mass-energy conversion becomes
prohibitive for mc2 → ∞. In contrast, spacelike Galilean
momentum of the form (12) equivalent to (9)

p′ = p, E′ = E − v0 · p, (15)

requires v ≫ c, a region inaccessible to ordinary particles
because of the light barrier. Instead, relation (15) occurs
frequently in areas described by Galilean wave physics
[15] such as fluid dynamics. We emphasize that Carrol-
lian tachyonic “particles” will be wavelike objects. Using
|γ| ∼ (c/v)(1+ c2/2v2), the value |p| = mc will be a min-
imum value, while |E| = mc3/v = |p|V decreases with
speed. Being particlelike, both quantities vanish in the
limit |γ| → 0.
The action follows from the Lagrangian L = dS/dt =

p · v −H as a Lorentz invariant scalar four-product

dS = p · dr− Edt, (16)

which is also C and G invariant. According to (8), the
free-particle Lagrangian L = −mc2/γ is G invariant, be-
cause γ is invariant at low speed. However, second-order
kinetic energy enters even for γ ∼ 1, because of the c2-
factor. The inclusion of second-order proper time effects
goes beyond G and C symmetry involving terms of the
form 1

2
β2(GC + CG). The second-order Lagrangian is
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semi-invariant L′ = L−dS0/dt, where S0 = p0 ·r−E0t is
the center of mass action with p0 = mv0 and E0 = 1

2
mv2

0
,

while

p′ = p− p0, E′ = E − v0 · p+ E0, (17)

reduces to the wavelike form (15) in the massless limit.
Dispersion E = mc2 + p2/2m with dE/dp = v leads to
an extended Galilei group [16].
Quantum wave-particle duality.—According to Ein-

stein and de Broglie [17, 18] particles and waves ψ ∼ eiϕ

are dual, because phase is proportional to action S = h̄ϕ,
where h̄ is Planck’s constant. Using (16), the relations

(p, E) = h̄(k, ω), (18)

follow, where both sides are wavelike behaving according
to (10). Particle dispersion k = ωv/c2 implies the dualty
relation v · vp = c2. Landé noticed [19] that the space-
like Galilean transformation of de Broglie momentum h̄k
given by (12) differs from that of timelike mechanical
momentum mv. This long-standing paradox is resolved
by space-time duality. A corpuscular Galilean particle
has superluminal phase velocity and its undulatory be-
havior is therefore described by nonlocal Carroll kine-
matics (11). The corresponding momentum (14) does
indeed become Newtonian when E = mc2 is inserted.
Galilean de Broglie components are less likely to appear.
Fluctuations [18] lead to a wave packet, and the relation
p2 = E2/c2 −m2c2 is equivalent to wave dispersion with
index n2 = 1 − ω2

p/ω
2, where h̄ωp = mc2. As is well

known, the relation c2(dk/dω) · (k/ω) = n2+nω(dn/dω)
connects reciprocal group and phase velocities. In this
case, v · dk/dω = 1 showing that vg = v.
Quantum mechanics.—Relativistic energy-momentum

dispersion leads to the Klein-Gordon equation. The
Schrödinger equation is based on E = p2/2m, and the
term S0 therefore enters as a phase factor ψ′ = e−iS0/h̄ψ.
One usually argue that only the norm of the wave func-
tion has physical significance [20] allowing G, C, and L
symmetry to be broken. Proper time and “twin-paradox”
effects have been identified as missing ingredients in the
Galilei transformation by Greenberger [21].
“Nonrelativistic” electrodynamics.—The above sym-

metry considerations are also relevant for electrodynam-
ics. Using Fourier transforms the fields are defined as

E = −ikφ+ iωA, B = ik×A, (19)

where (A, φ) is electromagnetic momentum and energy
per unit charge. Faraday’s law k × E = ωB and quasi-
stationary ck ≫ ω wave components implies the mag-
netic approximation E ≪ cB [22]. From (19) it follows
that the potential is spacelike cA≫ φ [23]. With kφ and
ωA of the same order, (12) leads to the Lorentz force

E′ = E+ v0 ×B, B′ = B, (20)

using also φ′ = φ − v0 · A and A′ = A as well as the
identity a × b × c = (a · c)b − (a · b)c. The vacuum
excitation fields, the displacement D = ǫ0E and the field
H = B/µ0, are given in terms of permittivity and per-
meability related as ǫ0µ0 = 1/c2. The transformation

D′ = ǫ0E
′ = D+ v0 ×H/c2, H′ = H, (21)

valid for cD ≪ H is identical to (20) except that the dual
speed V0 has replaced v0. The magnetic approximation
can be summarized as E ≪ Z0H , where Z0 = cµ0 =
1/cǫ0 =

√

µ0/ǫ0 is the vacuum impedance. The limit
of infinite wave impedance cB → ∞ and cD → 0 is
Galilean for vanishing displacement ǫ0 → 0 at finite µ0

and Carrollian for infinite induction µ0 → ∞ at finite ǫ0.
The electric approximation E ≫ cB is obtained using
quasi-uniform ck ≪ ω wave components and timelike
potential cA≪ φ. The transformation

E′ = E, B′ = B− v0 ×E/c2, (22)

follows using A′ = A− v0φ/c
2 and φ′ = φ. In this case,

D′ = D, H′ = B′/µ0 = H− v0 ×D, (23)

valid for cD ≫ H . The limit of zero impedance cB → 0
and cD → ∞ is Carrollian for ǫ0 → ∞ at finite µ0 and
polarization v0D = E/(µ0V0) and Galilean [22, 23] for
µ0 → 0 at finite ǫ0.
Faraday’s law in a medium can be written ck′× cD′ =

n2ω′H′, where D′ = ǫE′ and H′ = B′/µ are defined
in the medium rest frame and ǫµ = n2/c2. Magnetic
excitation fields cD′ ≪ n2H ′ lead to Minkowski relations
[24]

D = ǫE+ ǫ(1− 1/n2)v0 ×B, B = µH, (24)

in the limit Z0 → ∞, while the electric limit cB′ → 0
and cD′ → ∞ lead to the Minkowski relations

D = ǫE, B = µH− (n2 − 1)v0 ×E/c2, (25)

in the limit Z0 → 0.
The macroscopic Maxwell equations with sources ρs

and js can be written

∇ ·B = 0, ∇×E = −∂tB, (26)

∇ ·D = ρs, ∇×H = js + ∂tD. (27)

Since (26) is covariant under G and C symmetry, this
property is shared by (27) which has the same structure
in source-free regions. The symmetry of the excitation
fields therefore follows from duality transformationsD ↔
B and H ↔ −E. Sources may be timelike js ≪ cρs
dominated by electric charge

j′s = js − ρsv0, ρ′s = ρs, (28)
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or spacelike js ≫ cρs dominated by electric current

j′s = js, ρ′s = ρs − v0 · js/c
2, (29)

as a result of charge cancellation. The Galilean approxi-
mation (28) is particlelike (8) with invariant charge den-
sity due to the absence of length contraction. In contrast,
(29) is a Carrollian transformation of the form (9). If the
particle expression js = ρsvs is applied, superluminal
speeds will result.
The Lorenz [25] gauge can be viewed as a continuity

equation for electromagnetic four-momentum q(A, φ/c),
where q is electric charge. Using p = Ev/c2, the poten-
tials generated by a moving charge satisfy A‖ = φv/c2.
While A⊥ remains unspecified, the field must be sta-
tionary ω′ = 0 in the particle rest frame. The Galilean
Doppler shift ω = k · v therefore implies k ·A = ωφ/c2.
Conclusion.—Because c is very large compared to the

speed of everyday phenomena, our intuition is rooted in
Galilean physics. We are familiar with particle aberra-
tion and Doppler effect as explained by local kinematics
in relative space and absolute time. In contrast, spatially
extended, quasi-uniform waves are nonlocal objects re-
quiring nonlocal kinematics. Obviously, events do not
have to take place in different galaxies to satisfy the con-
dition r ≫ ct, rather the very definition of wave fronts as
equal time events implies superluminal velocities. Wave
aberration without Doppler effect in relative time and ab-
solute space is a less intuitive, particle-like phenomenon
explained by nonlocal Carroll kinematics.
As the quotation marks in the title of this Letter

suggest, nonrelativistic physics reaches far beyond the
simple-minded requirement of low relative frame speed.
The first-order Lorentz transformation is self-dual un-
der space-time exchange, but the Galilei transformation
has the Carroll transformation as its dual and vice-versa.
This observation releases the full kinematic range of spe-
cial relativity needed for a resolution of the Landé para-
dox and shows the fundamental role played by space-time
duality.
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