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Light Algorithms for Maintaining Max-RPC During Search

This article presents two new algorithms whose purpose is to maintain the Max-RPC domain filtering consistency during search with a minimal memory footprint and implementation effort. Both are sub-optimal algorithms that make use of support residues, a backtrack-stable and highly efficient data structure which was successfully used to develop the stateof-the-art AC-3 rm algorithm. The two proposed algorithms, Max-RPC rm and L-Max-RPC rm are competitive with best, optimal Max-RPC algorithms, while being considerably simpler to implement. L-Max-RPC rm computes an approximation of the Max-RPC consistency, which is guaranteed to be strictly stronger than AC with the same space complexity and better worst-case time complexity than Max-RPC rm . In practice, the difference in filtering power between L-Max-RPC rm and standard Max-RPC is nearly indistinguishable on random problems. Max-RPC rm and L-Max-RPC rm are implemented into the Choco Constraint Solver through a strong consistency global constraint. This work opens new perspectives upon the development of strong consistency algorithms into constraint solvers.

Introduction

This paper presents a new algorithm for enforcing the Max-RPC consistency [START_REF] Debruyne | Domain filtering consistencies[END_REF], called Max-RPC rm . It is a coarse-grained algorithm that makes use of support residues [START_REF] Likitvivatanavong | Arc consistency in MAC: a new perspective[END_REF]) in a way similar to the state-of-the-art AC-3 rm algorithm [START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF]. We also propose L-Max-RPC rm , a simpler, lightweight version of the algorithm that computes an approximation of Max-RPC with good practical behavior and low space complexity.

The most successful techniques for solving problems with CP are based on local consistencies. Local consistencies remove values or instantiations that cannot belong to a solution. The most used, studied and versatile local consistency is Arc Consistency (AC), which removes values that do not appear in the instantiations a given constraint allows. AC is the highest level of consistency that can be obtained by considering the constraints separately. (i, j)-consistencies [START_REF] Freuder | A sufficient condition for backtrack-free search[END_REF] and their variants take into account many constraints at once to achieve higher levels of consistency.

Background

A constraint network (CN) N consists of a set of variables X , a set of domains D, where the domain dom(X) ∈ D of variable X ∈ X is the finite set of at most d values that variable X can take, and a set C of e constraints that specify the allowed combinations of values for given subsets of variables. An instantiation I is a set of variable/value couples, (X, v), denoted X v . I is valid iff for any variable X involved in I, v ∈ dom(X). A relation R of arity k is any set of instantiations of the form {X a , Y b , . . . , Z c }, where a, b, . . . , c are values from a given universe U (∀X ∈ X , dom(X) ⊆ U ). A constraint C of arity k is a pair (vars(C), rel(C)), where vars(C) is a set of k variables and rel(C) is a relation of arity k. I[X] denotes the value of X in the instantiation I. For binary constraints, C XY denotes the constraint s.t. vars(C) = {X, Y }. Given a constraint C, an instantiation I of vars(C) = {X, . . . , Z} (or of a superset of vars(C), considering only the variables in vars(C)), satisfies C iff I ∈ rel(C). We say that I is allowed by C. A solution of a CN N (X , D, C ) is an instantiation I S of all variables in X s.t. (1.) ∀X ∈ X , I S [X] ∈ dom(X) (I S is valid), and (2.) I S satisfies (is allowed by) all the constraints in C .

Local consistencies

Définition 1 (Support, Arc-Consistency). Let C be a constraint and X ∈ vars(C). A support for a value a ∈ dom(X) w.r.t. C is an instantiation

I ∈ rel(C) s.t. I[X] = a. A value a ∈ dom(X) is arc-consistent w.r.t. C iff it has a support w.r.t. C. dom(X) is arc-consistent w.r.t. C iff ∀a ∈ dom(X), a has a support w.r.t. C. C is arc-consistent iff ∀X ∈ vars(C), dom(X) is arc-consistent. A support I sup w.r.t. a constraint C of an instanciation I is an instanciation I sup ∈ rel(C) | I ⊂ I sup . I sup is a support of X a w.r.t. C iff I sup is a support of the singleton instanciation {X a } w.r.t. C.
Définition 2 (Closure). Let N (X , D, C ) be a CN, Φ a local consistency (e.g. AC). Φ(N ) is the closure of N for Φ, i.e. the CN obtained from N where all allowed instantiations (resp. values in the case of domain filtering consistencies) that are not Φ-consistent have been removed.

For AC and for most consistencies, the closure is unique. If this is not the case, the consistency is said to be nonmonotonous.

Restricted Path Consistencies

(i, j)-consistency [START_REF] Freuder | A sufficient condition for backtrack-free search[END_REF]) is a generic concept that captures many local consistencies. A binary CN is (i, j)consistent iff it has no empty domain and any consistent instantiation of i variables can be extended to a consistent instantiation involving j additional variables. Thus, AC is (1, 1)-consistency.

All consistencies with i > 1 are relational consistencies: they identify inconsistent instantiations (nogoods of size i).

In order to apply it, one needs to remove these nogoods from the CN. This requires to add and/or update extensional constraints in the CN. (2, 1)-consistency (e.g., Path Consistency [START_REF] Montanari | Network of constraints : Fundamental properties and applications to picture processing[END_REF]) is one of the most studied local consistencies.

Définition 3 (Path Consistency). A binary instantiation

{X a , Y b } is Path Consistent iff ∀Z ∈ X \{X, Y }, ∃c ∈ dom(Z) s.t. {X a , Z c } and {Y b , Z c } are valid and allowed.
Restricted Path Consistencies (RPC, k-RPC and Max-RPC) are designed to catch some of the properties of Path Consistency in order to achieve strong domain filtering consistencies [START_REF] Debruyne | Domain filtering consistencies[END_REF], which only prune values from domains and leave the structure of the CN unchanged. Max-RPC is the strongest and most promising of these consistencies [START_REF] Debruyne | From restricted path consistency to max-restricted path consistency[END_REF].

Définition 4 (Max-RPC).

A binary CN N is Max-Restricted Path Consistent (Max-RPC) iff it is arc-consistent and for each value X a , and each variable Y ∈ X \X, at least one support {X a , Y b } of X a is PC. [START_REF] Debruyne | From restricted path consistency to max-restricted path consistency[END_REF] propose Max-RPC-1, a fine-grained algorithm that enforces Max-RPC on a given binary CN. Max-RPC-1 is close to AC-6, a fine-grained AC algorithm that does not exploit the bidirectionnality of constraints. Max-RPC-1 has a worst-case time complexity in O(eg + ed 2 + cd 3 ) and is proved to be optimal. It has a space complexity in O(ed + cd).

An enhanced version of Max-RPC-1, called Max-RPC-En1 is proposed in [START_REF] Debruyne | A strong local consistency for constraint satisfaction[END_REF]. By exploiting the bidirectionnality of constraint in a manner similar to AC-7, Max-RPC-En1 manages to enforce a consistency stronger than Max-RPC with the same worst-case complexities (Max-RPC-En1 is still slightly slower than Max-RPC-1 in practice).

None of these articles show how these algorithms perform when maintaining Max-RPC during search. The Quick search algorithm, that maintains Max-RPC-EnR (a slightly weaker variant of Max-RPC-En1) during search is described in (Debruyne 1998) (PhD Thesis in French).

A new coarse grained algorithm for Max-RPC

This section presents Max-RPC rm , a new coarse-grained algorithm for Max-RPC. This algorithm use support residues [START_REF] Likitvivatanavong | Arc consistency in MAC: a new perspective[END_REF]), which were successfully used to develop the state-of-the-art AC-3 rm algorithm [START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF]. rm stands for multidirectional residues; a residue is a support which has been stored during the execution of the procedure that proves that a given value is AC. During forthcoming calls, this procedure simply checks whether that support is still valid before searching for another support from scratch. The data structures are stable on backtrack (they do not need to be reinitialized nor restored), hence a minimal overhead on the management of data. Despite being theoretically suboptimal in the worst case, Lecoutre & Hemery showed in [START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF]) that AC-3 rm behaves better than the optimal algorithm in most cases.

Max-RPC rm

Coarse-grained means that the propagation in the algorithm is managed on a variable or a constraint level, whereas finegrained algorithms such as AC-7 or Max-RPC-1 manage the propagation on a value level. Propagation queues for coarsegrained algorithms are lighter, can be implemented very efficiently and do not require to manage extra data structures for recording which values a given instantiation supports. Moreover, variable-oriented propagation schemes permit to implement revision ordering heuristics very efficiently [START_REF] Wallace | Ordering heuristics for arc consistency algorithms[END_REF][START_REF] Boussemart | Revision ordering heuristics for the Constraint Satisfaction Problem[END_REF]). In the following, when a variable is picked from the constraint queue, the variable with the smallest domain is selected first.

As proposed in [START_REF] Bessière | Arc consistency for general constraint networks: preliminary results[END_REF] for the GAC-Schema algorithm, we refer to the firstSup and nextSup methods, that permit to iterate over supports of a given value in an user-defined way. In this way, fast adhoc algorithms (e.g. for arithmetical or positive table constraints) can be specified. firstSup has two parameters: C and I, and returns the first support found for I in rel(C). nextSup has an additional parameter: we give to the method the last support found, so as it can find the first support strictly after the last one given a static ordering of rel(C).

Algorithms 1 to 4 describe Max-RPC rm , O-Max-RPC rm and L-Max-RPC rm . Lines 8-14 of Algorithm 1 and Lines 6-11 and 14-15 of Algorithm 3 are added to a standard AC-3 rm algorithm. The greyed parts correspond to elements to be removed in order to apply L-Max-RPC rm , which is described in a further section.

Algorithm 1 contains the main loop of the algorithm. It is based on a queue containing variables that have been modified (i.e. have lost some values), which may cause some values in the neighbor variables to lose their supports. In the example depicted on Figure 1 (considering only constraints in C Φ ), if the variable X is modified, then the algorithm must check whether all values in T still have a support w.r.t. the constraint C XT , all values in V have a support w.r.t. C XV , and so on for Y and Z. This is performed by Lines 4-7 of 

Q ← Y ; 2 while Q = ∅ do 3 pick X from Q ; 4 foreach Y ∈ X | ∃CXY ∈ C do 5 foreach v ∈ dom(Y ) do 6 if revise(CXY , Yv, true) then 7 Q ← Q ∪ {Y }; 8 foreach (Y, Z) ∈ X 2 | ∃(CXY , CY Z , CXZ) ∈ C 3 do 9 foreach v ∈ dom(Y ) do 10 if revisePC(CY Z , Yv, X) then 11 Q ← Q ∪ {Y }; 12 foreach v ∈ dom(Z) do 13 if revisePC(CY Z , Zv, X) then 14 Q ← Q ∪ {Z};
Algorithm 1. The revise function depicted in Algorithm 3 controls the existence of such supports. It removes the value and returns true iff it does not have any (so false if the value has not been removed).

The domain of the (modified) variable that has been picked is also likely to have contained values that used to make supports in constraints situated on the opposite side of a 3-clique Path Consistent. In Figure 1, if X is modified, then the supports of V and Z w.r.t. C V Z , the supports of Y and Z w.r.t. C Y Z and the supports of T and Z w.r.t. C T Z need to be checked. This is the purpose of Lines 8-14 of Algorithm 1 and of the function revisePC (Algorithm 2).

Algorithm 3 iterates over the supports (X b ) of the value to revise (Y a ), on Lines 3 and 17, in search of a PC instantiation {X b , Y a }. The Path Consistency of the instantiation is checked on Lines 6-11 by calling findPCSupport (Algorithm 4) on each variable Z that forms a 3-clique with X and Y . findPCSupport returns either a support of the instantiation {X b , Y a } in Z, or the special value ⊥ if none can be found. Iff no PC support for Y a can be found, the value is removed and the function returns true.

Residues. The revise function firstly checks the validity of the residue (Lines 1-2). Residues are stored in the global data structure res[C, X a ], which has an O(ed) space complexity. The algorithm also makes use of residues for the PC supports, stored in the structure pcRes with an O(cd) space complexity (c is the number of 3-cliques in the CN).

Algorithm 2: revisePC (CY Z , Ya, X): boolean Y : the variable to revise because PC supports in X may have been lost The idea is to associate the residue found by the revise function with the found PC value for each third variable of the 3-clique. In this way, at the end of the processing, (X a , res[C XY , X a ], pcRes[C XY , X a ][Z]) forms a 3clique in the micro-structure of the constraint graph for all 3-cliques (X, Y, Z) of the CN and for all a ∈ dom(X).

1 if pcRes[CY Z , Ya][X] ∈ dom(X) then 2 return false ; 3 b ← findPCSupport(Ya, Z res[C Y Z ,
In the example depicted on Figure 2, at the end of the processing we have res

[C XY , X a ] = b, pcRes[C XY , X a ][Z] = a, pcRes[C XY , Y a ][Z ′ ] = a,
and so on. The algorithm exploits the bi-directionnality of the constraints: if Y b is a support for X a with {Z a , Z ′ a } as PC supports, then X a is also a support for Y b with the same PC supports. This is done on Lines 13-15 of Algorithm 3.

If a lost PC support is detected on Line 1 of revisePC, then an alternative support is searched. If none can be found, then the current support of the current value is no longer PC, and another one must be found. This is done by a call to revise on Line 5 of Algorithm 2.

Algorithm 4: findPCSupport (Xa, Y b , Z): value 

1 c1 ← firstSup(CXZ, {Xa})[Z] ; c2 ← firstSup(CY Z , {Y b })[Z] ; 2 while c1 = ⊥ ∧ c2 = ⊥ ∧ c1 = c2 do 3 if c1 < c2 then 4 c1 ← nextSup(CXZ, {Xa}, {Xa, Zc 2 -1})[Z] ; 5 else 6 c2 ← nextSup(CY Z , {Y b }, {Y b , Zc 1 -1})[Z] ; 7 if c1 = c2 then return c1 ; 8 return ⊥ ;

One-pass Max-RPC

One common way to define approximation of a strong consistency Φ is to remove the propagation process in the algorithm. The strong consistency property is thus checked only once for each value of the CN. This process ensures that all the values that were not Φ-consistent before the first call to the algorithm will be filtered. One example of this idea is proposed in [START_REF] Freuder | Neighborhood inverse consistency preprocessing[END_REF] for the Neighborhood Inverse Consistency property.

With our Max-RPC rm algorithm, this can be achieved by removing the foreach do loop on Lines 8-14 of Algorithm 1. The revisePC function and pcRes data structure are no longer useful and can be removed, together with Lines 11 and 14-15 of Algorithm 3 (all greyed lines in the algorithms), as well as Line 7 of Algorithm 1. We call the obtained algorithm O-Max-RPC rm . The same approximation can be used to define the O-Max-RPC-1 algorithm. The obtained consistency is not monotonous and will depend on the order in which the modified variables are picked from Q. As the loss of AC supports is not propagated, O-Max-RPC is incomparable with AC: there exists CNs that are not AC after applying O-Max-RPC on them, and AC CNs on which O-Max-RPC can filter some values. O-Max-RPC is not incremental.

Light Max-RPC

We propose another approximation of Max-RPC, that lies between one-pass and full Max-RPC. The idea is to keep the propagation process of the original Max-RPC algorithm, but only to propagate the loss of AC supports. The algorithm can be obtained by removing all the greyed parts in Algorithms 1-3 and keeping Line 7 of Algorithm 1. We call this algorithm L-Max-RPC rm . The same approximation can be Figure 3: Comparing the consistencies. An arrow means "is strictly stronger than" and the crossed line means "is incomparable with". used to define the L-Max-RPC-1 algorithm. L-Max-RPC is strictly stronger than AC: any CN on which L-Max-RPC has been applied is either empty or AC, and there exists at least one AC CN on which L-Max-RPC can filter some values. L-Max-RPC is not monotonous, L-Max-RPC is also strictly stronger than O-Max-RPC given the same initial ordering of variables in Q.

Experiments we conducted (see below) show empirically that the filtering power of L-Max-RPC is only slightly weaker than that of Max-RPC on random problems, despite the significant gains in space and time complexities. A summary of the different consistencies defined in this paper is given on Figure 3.

Complexity issues

We use these additional notations: c is the number of 3cliques in the constraint graph (c ≤ n 3 ∈ O(n 3 )), g is the maximum degree of a variable and s is the maximum number of 3-cliques that share the same single constraint in the constraint graph. If the constraint graph is not empty (at least two variables and one constraint), we have the following relation: s < g < n. Let us remind here that in a binary CN, e ≤ ng/2. The complexities are devised in terms of constraint checks (assumed in constant time).

Proposition 1. After an initialization phase in O(eg), Max-RPC rm has a worst-case time complexity in O(ed 3 + csd 4 ) and a space complexity in O(ed + cd).

Proof sketch. The initialization phase consists in detecting and linking all 3-cliques to their associated constraints and variables, which can be done in O(eg).

The main loop of the algorithm depends on the variable queue Q. Since variables are added to Q when they are modified, they can be added at most d times in the queue, which implies that the main loop can be performed O(nd) times. This property remains true when the algorithm is called multiple times, removing one value from the domain of one variable every time. The algorithm is incremental, especially when maintaining Max-RPC in a systematic search algorithm. We consider separately the two parts of the main loop. 

the foreach do loop at

+ sd 2 )) = O(csd 4 ).
The algorithm uses three data structures: storing the 3cliques in Θ(c), storing the AC residues in O(ed) (res data structure) and storing the PC residues in O(cd) (pcRes data structure), hence a space complexity in O(ed + cd).

If revise is called due to the removal of a value that does not appear in any support, its complexity falls down to O(sd). In practice, this happens very regularly, which explains the good practical behavior of the algorithm.

Proposition 2. After an initialization phase in O(eg), L-Max-RPC rm has a worst-case time complexity in O(ed 3 + cd 4 ) and a space complexity in O(c + ed).

Proof sketch. As L-Max-RPC rm skips the 2 nd part of the algorithm, the O(csd 4 ) term is removed. As the pcRes data structure is removed, the remaining data structures are in O(c + ed).

Proposition 3. After an initialization phase in O(eg),

Max-RPC rm has a worst-case time complexity in O(ed 2 + cd 3 ) and a space complexity in O(c + ed).

Proof sketch. As O-Max-RPC rm prevents the modifications in revise to be propagated, every variable is revised only once. The main loop of the algorithm is thus performed n times instead of O(nd). Thus the worst-case complexity is reduced by an O(d) factor w.r.t. L-Max-RPC rm . O-Max-RPC rm has the same data structures as L-Max-RPC rm .

Note that with all variants of the algorithm, the initialization phase in O(eg) is performed previously to the first call to Algorithm 1 and only once when maintaining the Max-RPC property throughout the search. Table 1 gives a summary of the complexities of the different algorithms studied in this paper, as well as those of AC-3 rm and Max-RPC-En for reference.

Implementation

Many solvers use an AC-5 based propagation scheme [START_REF] Van Hentenryck | A generic arc-consistency algorithm and its specializations[END_REF]. Propagators are associated with constraints to enforce a given level of local consistency. We call them event-based solvers. Each propagator is called according to the events that occur in domains of the variables involved in its constraint. Most often, an event is a value deleted by another constraint. At each node of the search tree, the pruning is performed within the constraints. The fix-point is obtained by propagating events among all the constraints. A propagator is complete when it eliminates all the values that cannot satisfy the constraint. In this context, generalized arc-consistency (GAC) is, a priori, the highest level of local consistency that can be enforced (all propagators are complete).

In order to integrate strong consistency algorithms into an event-based solver such as Choco (Laburthe, Jussien, and others 2008), we designed a new global constraint [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF][START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF][START_REF] Bessière | To be or not to be... a global constraint[END_REF], and an object-oriented generic scheme, as detailed in [START_REF] Vion | Integrating strong consistencies in constraint solvers[END_REF]. Given a local consistency Φ, the principle is to deal with the subset C Φ of constraints on which Φ should be applied, within a new global constraint C Φ added to the CN. Constraints in C Φ are connected to C Φ instead of being included into the initial CN N (see Figure 4). In this way, events related to constraints in C Φ are handled in a closed world, independently from the propagation queue of the solver. This permits to implement any (strong) consistency algorithm in an event-based constraint solver with minimal implementation effort. As a side effect, this scheme permits to easily apply different levels of consistency in the same CN.

Experiments

We implemented the algorithms using our own binary constraint solver, and in the general-purpose Choco Solver (Laburthe, Jussien, and others 2008), using the method described above. On the Figures 56, each point is the average result over 100 generated binary random problem of various characteristics solved using our binary constraint solver. A binary random problem is characterized by a quadruple (n, d, γ, t) whose elements respectively represent the number of variables, the number of values, the density1 of the constraint graph and the tightness2 of the constraints.

Pre-processing: Figure 5 compares the time and memory used for the initial propagation on rather large problems (200 variables, 30 values). Left hand figures are results with 5% density, right hand figures are results with 15%. Topmost figures compare Max-RPC-1, Max-RPC rm , their Light variants, and Max-RPC-En1. The two small figures show the percentage of removed values w.r.t. the tightness of the constraints. There is a transition phase from a zone where no values can be removed, to a zone where the inconsistency of the problems are detected during the pre-processing phase. The earliest the transition phase occurs, the strongest the algorithm is. Of course, Max-RPC-1 and Max-RPC rm detect the same inconsistent values. With low densities, Max-RPC-En1 also has the same filtering power. The weaker Light variants nearly coincide between each other. All algorithms show a peak in cpu time near the threshold. Although Max-RPC rm tends to be the slower algorithm, L-Max-RPC rm is the fastest algorithm before the peak and only very slightly slower than L-Max-RPC-1 after the peak. Bottommost pictures show the comparison between one-pass variants, with Max-RPC-1 and L-Max-RPC rm given for reference. The two one-pass algorithms have about the same performances, and are only slightly faster than L-Max-RPC rm despite their lower filtering power.

These graphs show that L-Max-RPC rm is very competitive w.r.t. Max-RPC-1 and Max-RPC-En1 in both speed and filtering power, despite its simplicity and low space complexity.

Maintaining Max-RPC during search: Figure 6 depicts experiments with a systematic search algorithm, where the various levels of consistency are maintained throughout search. The variable ordering heuristic is dom/ddeg. 3 The impact of the number of variables, number of values and the density of the problem on the search time and the number of nodes is evaluated. All runs were done at the threshold point. For each point, we found the tightness t tp where the transition phase occurs, and used that value to generate the instances. The cpu time (in seconds) and number of nodes is shown for each algorithm, using the left hand logarithmic scale. The relative difference in cpu time and number of nodes between running respectively L-Max-RPC rm and Max-RPC-EnR w.r.t. AC-3 rm at each node of the search is shown, using the right hand linear scale. All graphs show a very similar behavior between maintaining Max-RPC-EnR and maintaining L-Max-RPC rm , despite the latter's simplic-ity and low memory usage.

The top left graph shows how the behavior of the different algorithms evolves as the number of variables grows. The density is evaluated using the neighb(g, n) function so that the average degree g of the variables remains constant. 4 The graph shows that the additional filtering of Max-RPC algorithms tends to reduce the number of nodes by about 40% w.r.t. maintaining AC. More time is gained when the number of variables grows, up to 30% less time taken with Max-RPC algorithms at 110-120 variables. Top right graph shows that the number of nodes and time tends to be more reduced as the size of the domains grows, up to 60% nodes less and 30% time less around 60 variables.

The bottom left graph shows that even though the number of nodes is reduced by a stable 45-50% factor when the density grows, it does not longer compensate the additional time spent in the filtering algorithm. With the given characteristics (50 variables, 20 values), maintaining AC is more efficient when the density is above 14%.

These figures tends to show that maintaining Max-RPC is especially efficient on large problems (in terms of number of variables/values) that are not too much dense, and confirms the competitiveness of L-Max-RPC rm over Max-RPC-En.

Mixing local consistencies:5 Table 2 shows the effectiveness of the possibility of mixing two levels of consistency within the same model, using the Choco Solver. The first row corresponds to the median results over 50 instances of problems (35, 17, 44%, 31%), and the second row to (105, 20, 5%, 65%) instances. Given its higher density, the first problem is better resolved by using AC-3 rm while the second one shows better results with Max-RPC. Third row corresponds to instances where two problems are concatenated and linked with a single additional loose constraint. On the last two columns, we maintain AC on the denser part of the model, and (L-)Max-RPC rm on the rest. Mixing the two consistencies entails a faster solving, which emphasizes the interest of our approach. The last two rows present the results with larger problems.

Conclusion & Perspectives

This paper presented Max-RPC rm , a new, simple algorithm for enforcing the Max-RPC domain filtering consistency. Two variants of the algorithm, O-Max-RPC rm and L-Max-RPC rm were proposed, studied, experimented and compared to the legacy Max-RPC algorithms. Experiments showed that L-Max-RPC rm is competitive with state-of-theart, optimal algorithms, although being considerably simpler to implement and requiring less data structures. Max-RPC rm and its variants were implemented into the Choco Solver, exploiting (Vion, Petit, and 
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 2 Figure 2: Example with two 3-cliques (microstructure)
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 4 Figure 4: A strong consistency global constraint C Φ , used to enforce the strong local consistency on a subset of constraints C Φ . N ′ is the new CN obtained when replacing C Φ by the global constraint.

  Jussien 2009)'s generic scheme for adding strong local consistencies to the set of features of constraint solvers. This technique allows a solver to use different levels of consistency for different subsets of constraints in the same model. The interest of this feature is validated by our experiments.
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 6 Figure 6: Full search: cpu time and nodes on homogeneous random problems.

  RPC rm O(eg + ed 2 + cd 3 ) O(c + ed) L-Max-RPC rm O(eg + ed 3 + cd 4 ) O(c + ed) Max-RPC rm O(eg + ed 3 + csd 4 ) O(cd + ed) Max-RPC-En O(eg + ed 2 + cd 3 ) O(cd + ed) Thus, revise is in O(d + sd 2 ).The global complexity of this first part is thus O(ed 3 + esd 4 ). The O(es) factor is amortized to O(c), thus a final result in O(ed 3 + cd 4 ). 2. the foreach do loop at Lines 8-14 of Algorithm 1. The number of turns this loop can perform is amortized with the main loop to an O(cd) factor. Each turn executes O(d) calls to revisePC, whose worst-case time complexity is capped by a call to revise on Line 5 of Algorithm 2. This part of the algorithm is thus in O(cd 2 .(d

	Algorithm	Time complexity	Space cplx
	AC-3 rm	O(ed 3 )	O(ed)
	O-Max-Table 1: Summary of complexities
	revise (Algorithm 3) first calls firstSup, which has
	a complexity of O(d) (without any assumption on the
	nature of the constraint). The while do loop can be
	performed O(d) times. Calls to nextSup (Line 17)
	are part of the loop. The foreach do loop on Lines
	6-11 can be performed O(s) times, and involves a call
	to findPCSupport in O(d).	
			Lines 4-7 of Algorithm 1.
			This loop can be performed O(g) times. Since in the
			worst case, the whole CN is explored thoroughly in an
			homogeneous way, it is amortized with the O(n) factor
			of the main loop in a global O(e) complexity. The fore-
			ach do loop at Lines 5-7 involves O(d) calls to revise
			(total O(ed 2 ) revises).

  66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 Figure 5: Initial propagation: cpu time and filtering power on homogeneous random problems (200 variables, 30 values).AC-3 rm Max-RPC rm L-Max-RPC rm AC-3 rm +Max-RPC rm AC-3 rm +L-Max-RPC rm

		(200, 30, 5%, t)			(200, 30, 15%, t)	
	(35, 17, 44%, 31%)	cpu (s) nodes	6.1 21.4k	25.6 5.8k	11.6 8.6k	non applicable	non applicable
	(105, 20, 5%, 65%)	cpu (s) nodes	20.0 38.4 k	19.4 20.4 k	16.9 19.8 k	non applicable	non applicable
	(35, 17, 44%, 31%)	cpu (s)	96.8	167.2	103.2	90.1	85.1
	+(105, 20, 5%, 65%)	nodes	200.9k	98.7k	107.2k	167.8k	173.4k
	(110, 20, 5%, 64%)	cpu (s) nodes	73.0 126.3k	60.7 54.6k	54.7 56.6k	non applicable	non applicable
	(35, 17, 44%, 31%)	cpu (s)	408.0	349.0	272.6	284.1	259.1
	+(110, 20, 5%, 64%)	nodes	773.0k	252.6k	272.6k	308.7k	316.5k

Table 2 :

 2 Mixing two levels of consistency in the same modelThis work opens many perspectives upon the development of strong consistency algorithms. The use of backtrack-stable data structures such as support residues, and the development of non-monotonous approximations of strong consistencies seem very promising. Future works include the development of strong consistency algorithms that can be applied on non-binary CNs.

The density is the proportion of constraints in the graph w.r.t. the maximal number of possible constraints, i.e. γ = e/ n

.2 The tightness is the proportion of instantiations forbidden by each constraint.

The process of weighting constraints for dom/wdeg is not defined when more than one constraint lead to a domain wipeout.

neighb(g, n) = g/(n -1)

These results are extracted from[START_REF] Vion | Integrating strong consistencies in constraint solvers[END_REF]