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Abstract. Underdetermined source separation is often carried out by
modeling time-frequency source coefficients via a fixed sparse prior. This
approach fails when the number of active sources in one time-frequency
bin is larger than the number of channels or when active sources lie
on both sides of an inactive source. In this article, we partially address
these issues by modeling time-frequency source coefficients via Gaussian
priors with free variances. We study the resulting maximum likelihood
criterion and derive a fast non-iterative optimization algorithm that finds
the global minimum. We show that this algorithm outperforms state-of-
the-art approaches over stereo instantaneous speech mixtures.

1 Introduction

Underdetermined source separation is the problem of recovering the single-
channel source signals sj(t), 1 ≤ j ≤ J , underlying a multichannel mixture
signal xi(t), 1 ≤ i ≤ I, with I < J . The mixing process can be modeled in the
time-frequency domain via the Short-Term Fourier Transform (STFT) as

x(n, f) = A(f)s(n, f) (1)

where s(n, f) is the vector of source STFT coefficients in time-frequency bin
(n, f), x(n, f) is the vector of mixture STFT coefficients in that bin, and A(f)
is a complex mixing matrix. This problem can be addressed by first estimating
the mixing matrices then computing the Maximum A Posteriori (MAP) source
coefficients given some prior distribution and inverting the STFT. For audio
data, a common sparse prior such as the Laplacian [1], a mixture of Gaussians
[2] or a generalized Gaussian [3], is usually assumed for all source coefficients.
This model suffers from two issues. Firstly, a maximum number of I nonzero
coefficients can often be recovered in each time-frequency bin, with the J − I
remaining coefficients being estimated as zero [1,3]. Secondly, the corresponding
columns of the mixing matrix must point towards the closest directions to the
observed mixture direction. A proof is given in [4] for a Laplacian prior.

In this paper, we aim to overcome both issues in the popular setting of stereo
(I = 2) instantaneous mixtures, where the mixing matrices A(f) are equal to
the same real-valued matrix A for all f . We assume that A is known and that its



columns are pairwise linearly independent, i.e. the sources have different direc-
tions. We build upon the Statistically Sparse Decomposition Principle (SSDP)
presented in [4], which addresses the second issue using the correlation between
the mixture channels but provides poor separation performance due to time-
domain modeling and constraining of the number of nonzero sources per bin.

The structure of the paper is as follows. We apply the SSDP to the time-
frequency domain in Section 2 and prove that it implicitly assumes a local Gaus-
sian source model in Section 3. In Section 4, we extend this model to a larger
number of nonzero sources and derive a new source separation algorithm. We
evaluate its performance on speech data in Section 5 and conclude in Section 6.

2 Time-frequency statistically sparse decomposition

The SSDP is based on the empirical multichannel covariance matrix of the mix-
ture over short time frames. In the time-frequency domain, we define this quan-
tity over the neighborhood of each time-frequency bin (n, f) instead as

R̂xx(n, f) =
1

∑
n′,f ′ w(n′ − n, f ′ − f)

∑

n′,f ′

w(n′ − n, f ′ − f)x(n′, f ′)x(n′, f ′)H

(2)
where w is a bi-dimensional window specifying the shape of the neighborhood
and H denotes the conjugate transpose of a matrix. In the rest of the paper,
bin indexes (n, f) are dropped for the sake of legibility. The quantity (2) has
long been exploited by mixing matrix estimation methods, e.g. [5,6], to obtain
accurate direction estimates by selecting the bins where a single source is active.
These bins are characterized by the fact that the cross-correlation between the
mixture channels, also termed interchannel coherence, is high.

More generally, the cross-correlation is higher when the active sources have
close directions. This fact can be exploited for source separation as follows. Let
us assume that the number of active sources in each time-frequency bin is equal
to two. For each pair of source indexes (j1, j2), the empirical covariance matrix
of these sources may be defined as [4]

R̂sj1j2
sj1j2

= A−1

j1j2
R̂xx (A−1

j1j2
)T (3)

where Aj1j2 is the 2 × 2 matrix composed of the columns Aj of A indexed by
j ∈ {j1, j2} and T denotes transposition. The best pair of active sources may be
selected via the SSDP [4]

(ĵ1, ĵ2) = arg min
j1,j2

|R̂sj1
sj2

|
√

R̂sj1
sj1

R̂sj2
sj2

(4)

with R̂sjk
sjl

denoting the (k, l)-th entry of R̂sj1j2
sj1j2

. The source STFT coeffi-
cients are then estimated by local mixing inversion as

{
ŝbj1bj2

(n, f) = A−1

bj1bj2
x(n, f)

ŝj(n, f) = 0 for all j /∈ {ĵ1, ĵ2}.
(5)



3 Interpretation as constrained local Gaussian modeling

This algorithm admits the following probabilistic interpretation. Let us assume
that the source coefficients follow independent zero-mean Gaussian priors over
the neighborhood of each time-frequency bin (n, f) whose variances vj depend
on that bin. This assumption appears well suited to audio signals, which are
typically non-sparse over small time-frequency regions but non-stationary hence
sparse over larger regions. Given this model, the mixture coefficients in a given
neighborhood follow a zero-mean Gaussian prior with covariance matrix

Rxx = ADiag(v)AT . (6)

where the operator Diag applied to a vector denotes the diagonal matrix whose
entries are those of the vector. The log-likelihood of the source variances is equal
up to a constant to minus the Kullback-Leibler (KL) divergence KL(R̂xx|Rxx)
between the empirical and expected mixture covariances [7]1 with

KL(R̂|R) =
1

2
[tr(R−1R̂) − log det(R−1R̂)] − 1. (7)

Assuming that at most two sources have nonzero variance, their indexes and
variances may be estimated in the Maximum Likelihood (ML) sense by

(ĵ1, ĵ2, v̂bj1bj2
) = arg min

j1,j2,vj1j2
≥0

KL(R̂xx|Rxx). (8)

The KL divergence is invariant under invertible linear transforms. When applied
to A−1

j1j2
, this property yields

KL(R̂xx|Rxx) = KL(R̂sj1j2
sj1j2

|Diag(vj1j2)) (9)

=
1

2

[
R̂sj1

sj1

vj1

+
R̂sj2

sj2

vj2

− log
R̂sj1

sj1
R̂sj2

sj2
− |R̂sj1

sj2
|2

vj1vj2

]

− 1.

(10)

By finding the zeroes of the partial derivatives of this expression with respect to
vj1 and vj2 , we get






v̂j1 = R̂sj1
sj1

and v̂j2 = R̂sj2
sj2

(ĵ1, ĵ2) = arg min
j1,j2

−
1

2
log

(

1 −
|R̂sj1

sj2
|2

R̂sj1
sj1

R̂sj2
sj2

)

.
(11)

This criterion is equivalent to (4), hence the SSDP does estimate the two sources
with nonzero variance in the ML sense. In addition, the ML variances of these
sources are equal to the diagonal entries of the empirical source covariance ma-
trix. It can also be shown that the MAP source coefficients given the ML source
variances are obtained via (5).

1 This relation holds provided that bRxx has full rank. We consider the KL divergence
because of its well-known invariance and nonnegativity properties. However it can
be shown from the expression of the log-likelihood that the following derivations
remain true otherwise.



4 Minimally constrained local Gaussian modeling

While the SSDP allows the separation of sources not pointing to close directions,
the number of nonzero source coefficients that can be estimated in each time-
frequency bin remains constrained to two. The above probabilistic interpretation
provides a natural way of relaxing this constraint by assuming that the source
coefficients follow independent zero-mean Gaussian priors over the neighborhood
of each time-frequency bin, whose variances vj are free. This model has been
exploited in the context of determined mixtures, albeit with the different goal of
estimating the mixing matrix given estimates of the source variances [7]. In the
under-determined context, ML variance estimates are obtained by

v̂ = arg min
v≥0

KL(R̂xx|Rxx) (12)

and MAP source coefficients are classically derived via the Wiener filter

ŝ(n, f) = Diag(v̂)AT (ADiag(v̂)AT )−1 x(n, f). (13)

The above vector minimization problem may be solved via standard iterative
optimization techniques based on the gradient. However these methods are com-
putationally intensive and the result may be a local minimum or one of several
possible global minima. We avoid these issues by characterizing the minima. We
show below that global minima with three or more nonzero entries satisfy the
equality Rxx = %(R̂xx), where % denotes the real part of a complex matrix. If no
vector satisfies this equality, the global minima consequently have two nonzero
entries and can be obtained via the SSDP as shown in Section 3. This suggests
an efficient way of computing the global minima: find the vectors v ≥ 0 such
that Rxx = %(R̂xx) and, if none exists, apply the SSDP instead. We also study
below the cases where several solutions arise and propose minimal constraints to
select a single solution. The reader is advised to skip the proofs of the following
lemmas on first reading and to proceed directly with the details of Algorithm 1
at the end of this section.

Lemma 1. The KL divergence criterion is always larger than KL(R̂xx|%(R̂xx))

and equal to that value if and only if Rxx = %(R̂xx).

Proof. Since the mixing matrix A is real-valued, Rxx is real-valued and admits a

real-valued square root R
1/2
xx . The matrix R

−1/2
xx R̂xxR

−1/2
xx is Hermitian, hence

using the commutativity of the trace tr(R−1
xxR̂xx) = tr(R−1/2

xx R̂xxR
−1/2
xx ) =

tr(R−1/2
xx %(R̂xx)R−1/2

xx ) = tr(R−1
xx%(R̂xx)). By combining this equality with (7),

we get KL(R̂xx|Rxx) = KL(%(R̂xx)|Rxx) + log det(R̂−1
xx%(R̂xx)). The second

term of this equation does not depend on v, while the first term is nonnegative
and equal to zero if and only if Rxx = %(R̂xx) by property of the KL divergence.

'(

Lemma 2. If v is a local minimum of the criterion with K ≥ 3 nonzero entries
vj1 , . . . , vjK

, then v is a global minimum and satisfies Rxx = %(R̂xx).



Proof. The gradient of the criterion is given by

∂KL(R̂xx|Rxx)

∂vj
= 〈E,AjA

T
j 〉 where E =

1

2
[R−1

xx (Rxx −%(R̂xx))R−1
xx ] (14)

and 〈., .〉 is the Euclidean dot product over the space S2(R) of real-valued sym-
metric 2×2 matrices. If v is a local extremum, the gradient is zero for all entries
vj that are not boundaries of the optimization domain. Hence E is orthogonal
to the matrices AjA

T
j , j ∈ {j1, j2, j3}.

Let us consider the 3× 3 matrix Bj1j2j3 whose columns consist of the upper
triangular entries of the latter matrices:

Bj1j2j3 =




A2

1j1
A2

1j2
A2

1j3

A2
2j1

A2
2j2

A2
2j3

A1j1
A2j1

A1j2
A2j2

A1j3
A2j3



 . (15)

By computing and factoring the determinant of Bj1j2j3 , we get

detBj1j2j3 = detAj1j2 detAj2j3 detAj3j1 . (16)

Since the columns Aj of A are pairwise linearly independent, all the terms of
this equation are nonzero and the columns of Bj1j2j3 form a basis of R3. This is
equivalent to AjA

T
j , j ∈ {j1, j2, j3}, being a basis of S2(R).

We deduce from the above results that E = 0 hence Rxx = %(R̂xx). There-
fore v is a global minimum of the criterion according to lemma 1. '(

Lemma 3. The matrix equality Rxx = %(R̂xx) can be equivalently rewritten as

Bj1...jK
vj1...jK

= ŵ (17)

where vj1...jK
is the vector of nonzero entries of v,

Bj1...jK
=




A2

1j1
. . . A2

1jK

A2
2j1

. . . A2
2jK

A1j1
A2j1

. . . A1jK
A2jK



 and ŵ =






R̂x1x1

R̂x2x2

%(R̂x1x2
)




 . (18)

Proof. From (6), Rxx = %(R̂xx) is equivalent to
∑K

k=1
vjk

Ajk
AT

jk
= %(R̂xx).

By rearranging the upper triangular terms of this matrix equality into vectors,
this is in turn equivalent to (17). '(

Lemma 4. With J ≥ 4 sources, if the criterion admits a global minimum with
K ≥ 3 nonzero entries, then there exists a global minimum with K ≤ 3 nonzero
entries. Moreover, if A is nonnegative and there is a global minimum with K = 3
nonzero entries, then there are several global minima with K ≤ 3 nonzero entries.

Proof. Let v be a global minimum of the criterion with K ≥ 4 nonzero entries.
According to lemma 2 and its proof, v satisfies (17) and Bj1...jK

has rank 3. The
null space of Bj1...jK

is therefore of dimension K − 3 > 0. Let z be a vector such



that zj1...jK
+= 0 belongs to that null space and zj = 0 for all j /∈ {j1, . . . , jK}.

We define the vector v′ as

v′ = v −
vjl

zjl

z with l = arg min
k,zjk

$=0

vjk

|zjk
|
. (19)

The entries of this vector are given by v′
jk

= vjk
− vjl

zjk
/zjl

. Clearly, v′
j = 0

for all j /∈ {j1, . . . , jK} and v′
jl

= 0. If zjk
and zjl

have different signs, then
zjk

/zjl
≤ 0 and v′

jk
≥ vjk

≥ 0. If zjk
and zjl

have the same sign, then v′
jk

= vjk
−

vjl
|zjk

|/|zjl
| ≥ 0 given (19). Hence v′ has nonnegative entries and at most K−1

positive entries. In addition, Bj1...jl−1jl+1...jK
v′

j1...jl−1jl+1...jK
= Bj1...jK

v′
j1...jK

=
Bj1...jK

vj1...jK
− vjl

/zjl
Bj1...jK

zj1...jK
= ŵ − vjl

/zjl
0 = ŵ. This shows that v′

is a global minimum of the criterion with K ′ ≤ K − 1 nonzero entries. By
recurrently applying the above construction, we find a global minimum v′′ with
K ′′ ≤ 3 nonzero entries.

Let us now assume that A is nonnegative and K ′′ = 3. We denote by j1, j2,
j3 the nonzero entries of v′′ and by j4 any other index. Since the matrix Bj1j2j3j4

is nonnegative and all its 3× 3 submatrices have rank 3, the non-null vectors of
its null space have no zero entry and both positive and negative entries. Let z′

be a vector such that z′j1j2j3j4 += 0 belongs to that null space, z′j4 < 0 and z′j = 0
for all j /∈ {j1, j2, j3, j4}. We define the vector v′′′ as

v′′′ = v′′ −
v′′

jl

z′jl

z′ with l = arg min
k,z′

jk
>0

v′′
jk

z′jk

. (20)

Similarly to above, it can be proved that v′′′ is a global minimum of the criterion
with K ′′′ ≤ 3 nonzero entries indexed by some j ∈ {j1, j2, j3, j4} and j += jl. '(

Lemma 4 shows that ML estimation of the source variances is an ill-posed
problem with J ≥ 4 sources. Appropriate constraints must be set over the source
variances in order to obtain a unique solution. While probabilistic hyperpriors
may model flexible constraints, the resulting MAP solution may not match any
of the ML solutions, so that the benefit of characterizing ML solutions is lost.
Instead, we select the sparsest ML solution: we restrict the optimization domain
to vectors with K ≤ 3 nonzero entries and select the ML solution with minimum
lp norm ‖v̂‖p [3] in case several ML solutions can be found in this domain.

Given these constraints and the characterization of ML source variances in
Section 3 and lemma 3, we perform source separation in each time-frequency bin
(n, f) via the following fast global optimization algorithm.

Algorithm 1

1. Compute the empirical mixture covariance R̂xx in (2) and derive the vector
ŵ in (18).

2. Compute the candidate source variances vj1j2j3 = B−1

j1j2j3
ŵ for all triplets

of source indexes {j1, j2, j3}, with Bj1j2j3 defined in (15).
3. If some candidates have positive entries only, then they are solutions of the

ML estimation problem. Select the one with minimum lp norm among these
and derive the MAP source coefficients via (13).



4. Otherwise, compute the empirical source covariance matrices R̂sj1j2
sj1j2

=

A−1

j1j2
R̂xx (A−1

j1j2
)T for all pairs of source indexes {j1, j2}. Select the ML pair

via (4) and estimate the MAP source coefficients via (5).

5 Experimental results

We evaluated this algorithm over the speech data in [8]. The number of sources
J was varied from 3 to 6. For each J , a nonnegative mixing matrix was computed
from [9], given an angle of 50 − 5J degrees between successive sources, and ten
instantaneous mixtures were generated from different source signals resampled at
8 kHz. The STFT was computed with a sine window of length 512 (64 ms). The
bi-dimensional window w defining time-frequency neighborhoods was chosen as
the outer product of two rectangular or Hanning windows with variable length.
The lp norm exponent was set to p → 0 [3]. The results were evaluated via the
Signal-to-Distortion Ratio (SDR) defined in [10]. The best results were achieved
for w chosen as the outer product of two Hanning windows of length 3. The
computation time was then between 1.8 and 3.7 times the mixture duration
depending on J , using Matlab on a 1.2 GHz dual core CPU.

Figure 1 compares the average SDR achieved by the proposed algorithm, the
time-frequency domain SSDP in Section 2 and two state-of-the-art algorithms:
lp norm minimization [3] and DUET [11]. The proposed algorithm outperforms
all other algorithms whatever the number of sources. Nevertheless, it should
be noted that its performance remains about 10 dB below the theoretical upper
bound obtained by local mixing inversion (5) given the best pair of active sources
[8] and 11 dB below the theoretical upper bound obtained by Wiener filtering
(13) given the true sources variances.

This algorithm was submitted to the 2008 Signal Separation Evaluation Cam-
paign with the same parameters, except a STFT window length of 1024 and step
size of 256. Mixing matrices were estimated via the software in [6].
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Fig. 1. Source separation performance over stereo instantaneous speech mixtures.



6 Conclusion

In this paper, we proposed a new source separation algorithm for stereo instan-
taneous mixtures based on the modeling of source STFT coefficients via local
Gaussian priors with minimally constrained variances. This algorithm can esti-
mate up to three nonzero source coefficients in each bin, as opposed to two for
state-of-the-art methods, and provides improved separation performance. This
suggests that local mixture covariance can be successfully exploited for under-
determined source separation in addition to mixing matrix estimation. Further
work includes the generalization of this algorithm to convolutive mixtures with
I ≥ 2 channels. A larger improvement is expected, since up to I(I+1)/2 nonzero
source coefficients could be estimated in each time-frequency bin. Local nongaus-
sian source priors could also be investigated.
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