Influence of a breakwater on nearby rocky intertidal community structure
Gustavo M. Martins, André F. Amaral, Francisco M. Wallenstein, Ana I. Neto

To cite this version:

HAL Id: hal-00482201
https://hal.science/hal-00482201
Submitted on 10 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Influence of a breakwater on nearby rocky intertidal community structure

Gustavo M. Martins, André F. Amaral, Francisco M. Wallenstein, Ana I. Neto

PII: S0141-1136(09)00028-2
DOI: 10.1016/j.marenvres.2009.03.002
Reference: MERE 3321

To appear in: Marine Environmental Research

Received Date: 25 November 2008
Revised Date: 27 February 2009
Accepted Date: 2 March 2009

Please cite this article as: Martins, G.M., Amaral, A.F., Wallenstein, F.M., Neto, A.I., Influence of a breakwater on nearby rocky intertidal community structure, Marine Environmental Research (2009), doi: 10.1016/j.marenvres.2009.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
INFLUENCE OF A BREAKWATER ON NEARBY ROCKY INTERTIDAL COMMUNITY STRUCTURE

Gustavo M. Martins \(^{1,2,3}\)*, André F. Amaral \(^1\), Francisco M. Wallenstein \(^{1,3,4}\), Ana I. Neto \(^{1,3}\)

Author affiliation:

\(^1\) Secção Biologia Marinha, Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal

\(^2\) Marine Biology and Ecology Research Centre, Marine Institute, University of Plymouth, Plymouth PL4 8AA, UK

\(^3\) CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragás 289, 4050-123 Porto, Portugal

\(^4\) Heriot-Watt University, School of Life Sciences, John Muir Building, Edinburgh EH14 4AS, UK

* gustavo.martins@plymouth.ac.uk

Tel.: (+351) 296 650 000

Fax.: (+351) 296 650 100
ABSTRACT

It is widely recognised that coastal defence structures generally affect the structure of the assemblages they support, yet their impact on adjacent systems has been largely ignored. Breakwaters modify the nearby physical environment (e.g. wave-action) suggesting a local impact on biological parameters. In the present study, an ACI (After-Control-Impact) design was used to test the general hypothesis that the artificial sheltering of an exposed coast has a strong effect on the structure and functioning of adjacent systems. The effects of a reduction in hydrodynamics were clear for a number of taxa and included the replacement of barnacles, limpets and frondose algae by an increasing cover of ephemeral algae. These effects were evident both at early and late successional stages. Results suggest that the artificial sheltering of naturally exposed coasts can have a strong impact promoting a shift from consumer- to producer-dominated communities, which has important ecological and energetic consequences for the ecosystem.

Keywords: sea defence structure, environmental impact, benthic assemblages, wave-exposure, recruitment, ACI (After-Control-Impact) design.
1. Introduction

Since the 1960’s there has been an unprecedented rate of habitat loss, modification or degradation with some European countries reporting reductions over 50% of the original coastal habitat (Airoldi and Beck, 2007). Coastal urbanisation including the replacement of natural substrata by artificial ones or the deployment of artificial structures to protect the flooding of low-lying lands and to prevent coastal erosion is likely to increase in the next decades due to sea-level rise or increased storm frequency (Thompson et al., 2002). There is an increasing awareness that coastal urbanisation leads to important changes in the structure and functioning of marine ecosystems including the loss of keystone taxa and associated reductions of local diversity (e.g. Benedetti-Cecchi et al., 2001; Mangialajo et al., 2008). Although similarities exist between assemblages on natural and built reefs, patterns of species distribution are generally modified in the latter (Bulleri et al., 2004; Bulleri and Chapman, 2004) and the assemblages are characterised by a reduced subset of species that commonly occur on natural shores (e.g. Chapman, 2003; Chapman and Bulleri, 2003). Patterns of species recruitment to seawalls also tend to differ from that on natural shores (Bulleri, 2005). In addition, artificial structures can also facilitate the colonisation and spread of non-indigenous species (Bulleri and Airoldi, 2005; Glasby et al., 2007), acting as stepping-stones. Thus, sea defence structures seem to act as functional different habitats.

The above mentioned studies have generally compared the assemblage structure on artificial and natural shores while little is known on how these structures affect the structure of adjacent rocky intertidal communities (but see Goodsell et al., 2007). Work done on other systems including mangrove forests (Kelaher et al., 1998), fish assemblages (Clynick et al., 2008) and soft-sediment habitats (see Bertasi et al., 2007...
and references therein) has shown that the influence of artificial structures can extend well beyond the very communities they support.

Breakwaters are deployed for reducing wave action and preventing coastal erosion. Breakwaters also modify near-shore water circulation (Zyserman et al., 2005) and sediment transport (Thomalla and Vincent, 2003; Cuadrado et al., 2005). Changes in the physical environment produced by the deployment of breakwaters will likely affect the structure of assemblages under their influence. For instance, wave-action conditions have recurrently been shown to affect the distribution and abundance of intertidal organisms (e.g. Underwood and Jernakoff, 1984), organism settlement (e.g. Abelson and Denny, 1997), mortality (e.g. McQuaid and Lindsay, 2000), and biological interactions (e.g. Jonsson et al., 2006). Sedimentation has also been shown to influence rocky intertidal community structure of intertidal assemblages (reviewed by Airoldi, 2003). Specifically, sedimentation increases disturbance leading to a reduction in the vertical structure of algal assemblages and thus the replacement of frondose by turf-forming algae (Airoldi, 1998). In addition, sedimentation interferes with grazing gastropod activities and thus reducing their abundance (Airoldi and Hawkins, 2007).

In the present study we compared the rocky intertidal structure of assemblages sheltered by an existing breakwater to that of control areas. Specific hypothesis were that the increased sediment deposition in the area sheltered by the breakwater will lead to a reduction in the abundance of frondose algae promoting the proliferation of turf-forming species lower on the shore and a reduction in the abundance of grazing gastropods upper on the shore. *Chthamalus stellatus*, a barnacle which dominates on wave-exposed shores (Jenkins, 2005) is predicted to decrease in cover in response to the reduction in wave-action and to abrasion by the increased sedimentation in the sheltered area. In addition, changes in the water-circulation caused by the presence of the
breakwater are hypothesised to affect macroalgae and/or invertebrate recruitment (Abelson and Denny, 1997). However, and except for the recruitment of *Chthamalus stellatus*, there is no directional hypothesis as to how early successional assemblages will differ between the impacted and control locations.

2. Materials and methods

2.1. Study site and community

The present study was done on a moderate to highly exposed rocky platform on the south coast of Pico, Azores (Fig. 1). Unlike most shores on the remainder of the Azores archipelago, Lajes do Pico is a large and gentle sloping reef with a variety of habitats (Morton et al., 1998) that support a diverse community of plants and animals (for details on the composition and community structure of this reef see Morton et al., 1998; Ávila et al., 2005; Martins et al., 2008). The uniqueness of this area has contributed to its classification as SCI (*site of community interest*) and SAC (*special area of conservation*). The main economic activity of the small village of Lajes do Pico is agriculture and, to a smaller extent, fishing and tourism (whale-watching). Extractive activities on the coastal area include angling, crabbing and harvesting of octopus and limpets. The rocky platform is divided in two by a small lagoon in which the inner part is used as an anchorage point harbouring small fishing and recreational boats. Due to high wave action in winter, an already existing, but small, breakwater was extended ~100 m offshore towards the north in order to protect the entrance of the lagoon. The breakwater runs parallel to the northern rock platform at approximately 50 m away from the shore and is made of large, regularly sized concrete blocks that rise approximately 4 m above seawater level. The construction resulted in the artificial sheltering of the northern area of the rocky platform, locally denominated as Lajido, previously exposed...
to open swell. Besides the presence of the breakwater, there are no apparent differences (e.g. geomorphology) between the northern and southern rock platforms and the impact of the small harbour is expected to be small. The study began one year following the completion of the breakwater. During the course of study, occasional construction work was done in the inner part of the lagoon close to the harbour. Although the harbour is ~200 m away this may have led to pulse increases in sediment load. The southern platform is protected from such disturbances due to the ground elevation separating the two areas.

2.2. Sampling design

In order to examine the effects of the breakwater on the adjacent algal and animal assemblages, a beyond-BACI design (see Underwood, 1991, 1992, 1993 and 1994 for revision) was not possible due to the lack of a priori data. However, beyond-BACI designs can be modified and applied to situations where no before data exist and have been widely used (e.g. Chapman et al., 1995; Terlizzi et al., 2005). These designs allow the determination of consistent differences between the disturbed and several control locations although it is generally not possible to attribute causation to a particular event (see Terlizzi et al., 2005, Glasby, 1997 for discussion).

In the present study, we used an asymmetrical ACI design to compare the abundance of conspicuous eulittoral taxa in a putatively disturbed location (a rocky platform artificially sheltered by a breakwater) and three control locations. All locations (the disturbed and controls) are on the same rocky platform and at least 150 m apart from each other. The disturbed location is located in the northern part of this platform whereas all control locations were located south to this. Although the non-interspersion of control locations introduces an issue of spatial confounding which may affect the
interpretation of results (Underwood, 1994), this situation was compulsory as north of
the disturbed location the rocky platform gives rise to a vertical wall falling directly into
the water. As mentioned above, this specific rocky platform is unique on the Azorean
shores, which are characterised by steep slopes. Since the slope of the shore can
significantly affect the processes structuring intertidal communities (Knott et al., 2004)
these were not considered appropriate controls to the disturbed location (see Underwood
(1994) for the desirable characteristics that control locations must have). Analyses of
spatial correlation (data not shown) showed that the abundance of organisms was only
weekly correlated with the location of controls and hence suggesting that no discernible
horizontal gradients were operating along this platform, which could interfere with the
interpretation of results.

At each location (disturbed and controls), sampling of mature assemblages was
done by means of 10 random quadrats (25 x 25 cm) located at least 1 m apart at the
lower algal dominated shore (~0.6 m above Chart Datum) and upper animal dominated
shore (~1.8 m above CD). Sampling was done at 4 different times of the year (July ‘06,
October ‘06, January ‘07, March ‘07) to provide an estimate of temporal variability in
the abundance of organisms. Quadrats were not permanent and were randomly selected
on each sampling occasion so as to guarantee independence of data. The percentage
cover of algal species was estimated from 36 uniformly distributed points and expressed
as percentage cover. An arbitrary value of 0.5 percentage cover was given to species
whose position did not match any of the intersections. Barnacle cover was estimated by
giving a score from 0 (absent) to 4 (100% cover) in each of the 25 sub-quadrats (Dethier
et al., 1993), while mobile animals (limpets and littorinids) were counted and expressed
as density per quadrat. Other animals present (e.g. chitons, whelks) were rare in the
sampled areas and, although their presence was recorded, they were not further
analysed. Sampling of algae was done at the highest taxonomic resolution achievable in
the field. This included the identification of several organisms to species level, although
others were identified to genera. Algae were later grouped into distinct
morphological/functional groups which included: leathery and corticated erect algae
(e.g. Fucoids, Stypocaulon scoparium; hereafter referred to as frondose algae), coarsely
branched algae (e.g. Osmundea spp., articulated coralline algae; hereafter referred to as
turf-forming algae), filamentous algae (e.g. Ceramium spp.), ephemeral algae (e.g.
Enteromorpha (Ulva) spp., Rivularia sp.) and crustose algae (e.g. Nemoderma sp.,
encrusting coralline algae).

The influence of the breakwater on organism recruitment was examined by
means of 10 x 10 cm recruitment plates (n = 5 per combination of location and tidal
height). The selected locations and shore height were as described above. Plates were
preferred over experimental clearings since these constitute suitable colonisation
substrates for a variety of organisms (at least in the short-term) and eliminate the
influence of non-evident processes that could affect the interpretation of results between
the impacted and control locations (Chapman and Underwood, 2008). Hence, if
recruitment in the impacted location differs from that of control locations, this is most
likely due to the presence of the breakwater and consequent changes in the local
physical environment (e.g. water circulation). The plates were made of basaltic rock, the
natural substratum in the area, perforated in the centre and screwed to the shore with
stainless steel screws at least 1 m apart. In order to provide temporal replication, after
first deployment in July ‘07, plates were retrieved and replaced every three months. A
total of three sets of plates were thus available for analysis corresponding to the periods
of colonisation of July ‘06 – October ‘06, October ‘06 - January ‘07 and January ‘07 –
April ‘07. The percentage cover of algae on recruitment plates was done under a
dissecting microscope by overlaying a translucent sheet with 50 uniformly-spaced
points and recording the species underneath. A space of 1 cm was left between the
edges of the plate and the beginning of the quantification points as well as to the central
hole (used to attach the plate to the shore) to reduce edge effects. Barnacles were
counted and expressed as density per 100 cm². Four sub-samples of 1 cm² were used
where these were too abundant to be counted and the mean of the 4 sub-samples
standardized to 100 cm². Other animals present were either too rare to be analysed (e.g.
bryozoans) or were mobile (limpets and littorinids) and thus it was not possible to be
sure in ascribing their presence on plates to recruitment.

Plaster discs were used to examine the effect of the breakwater on the
hydrodynamics of the adjacent reef. This was done by screwing three replicate plaster
discs (~5 m apart) of known weight per site to mid-shore tidal heights. The loss of mass
(dry weight) after one high tide was used as a surrogate for water motion or wave action
(e.g. Lindegarth and Gamfeldt, 2005). Wave action was estimated three times during the
study - in July ‘06, October ‘06 and April ‘07. Although the typical large small-scale
variation in water-motion suggests that the number of plaster discs used is small, the
small size of error bars (see Fig. 6) indicates replication was enough to provide a precise
estimate of this variable. We also aimed at quantifying the level of sedimentation by
deploying sediment traps in July ‘07 (Airoldi, 2003) but this methodology proved rather
unfruitful in the intertidal since the majority of the sediment traps were lost after 5 days,
probably due to the high resistance of the containers to wave action. As an alternative,
the abundance of sediment was estimated as percentage cover while sampling for
mature assemblages in subsequent sampling events.

2.3. Data analysis
To test for differences in the abundance of the different taxa between the disturbed and control locations, data were analysed using 2-way asymmetrical ANOVAs with time and location as random factors and orthogonal to each other. A general model of the analysis as well as the calculation of the expected mean squares and the consequent determination of denominators for each test was adapted from Terlizzi et al., (2005) and is presented in Table 1. Generally, the factor location was partitioned into two components: one contrasting the impacted and control locations (I vs. C's) and the other contrasting control locations among each other (C's). This was also true for the time x location interaction and for the residuals associated with variability among quadrats respectively within I and C’s (see Terlizzi et al., 2005 for a detailed description of these procedures). Prior to analysis, Cochran’s test was used to check for problems of heteroscedascity and data were transformed where appropriate (Underwood, 1997). Where heterogeneity of variances persisted, data were analysed untransformed but a more conservative P-value was used (Underwood, 1997, Blockley and Chapman, 2006).

3. Results

3.1. Mature assemblages

Patterns of distribution in the disturbed and control locations were variable among the different taxa examined. As expected, on the lower shore algal dominated assemblage (Fig. 2, Table 2) the cover of frondose algae was lower in the disturbed location and this was consistent in time despite variability among control locations. Crustose algae also occurred at lower abundances in the disturbed location although this was temporally variable. The space released by the reduction in cover of frondose and crustose algae in the disturbed location was occupied by ephemeral algae, which increased in cover
although its cover varied with time. Turf-forming and filamentous algae showed no clear variation being similarly distributed across the rocky platform.

On the upper animal dominated shore (Fig. 3, Table 3), both the cover of barnacles and the number of limpets were consistently lower in the disturbed location. Again, ephemerals seemed to take advantage from the release in competition and were consistently more abundant in the upper shore of the disturbed location. Although the abundance of littorinids in the disturbed locations tended to be lower than the mean abundance among control locations, this was not statistically significant.

3.2. Early successional assemblages

Recruitment of organisms to lower shore settlement plates was also variable and depended on taxa (Fig. 4, Table 4). Recruitment to panels was dominated by ephemeral species and this was similar in the disturbed and control locations. The colonisation of turf-forming algae was temporally variable among control locations although no clear difference was detected between the disturbed and its overall mean abundance in control locations. In contrast, the abundance of filamentous algae was consistently lower in the disturbed location. The abundance of crustose algae also differed between the disturbed and control locations, but this was variable in time. The barnacle *Chthamalus stellatus* also recruited to lower shore plates, albeit at lower abundances compared to that recorded on upper shore plates. However, although recruitment tended to be lower in the disturbed location, this was not statistically significant.

On the upper shore recruitment plates (Fig. 5, Table 5), the only discernible algal recruitment was that of ephemeral species, which were present at larger abundances in the disturbed location during most of the study period. Filamentous and crustose algae were sporadically recorded but were too rare to be analysed. In contrast, barnacle
recruitment was virtually null in the disturbed location, whilst reaching a mean number of 146 ± 33 (mean \pm 1SE) recruits per plate among control locations during the peak of recruitment.

3.3. Physical environment

As expected, plaster dissolution was 2-fold greater in control sites than in the area sheltered by the breakwater (Fig. 6, Table 6) and this was consistent in time revealing that the breakwater exerts a putative impact on this part of the rocky platform. Accumulation of sediment occurred lower on the shore in the impacted location trapped inside mats of turf-forming algae although this was temporally variable. A peak of sediment accumulation was recorded in October ‘06 with a mean percentage cover of 19.7 ± 4.4 (mean \pm SE), whilst lower abundances were recorded in January ‘07 (3.9% \pm 1.6) and April ‘07 (6.7% \pm 3.7). No sedimentation was recorded on the lower shore of control sites, or on the upper shores of either the disturbed or control locations.

4. Discussion

Generally, the area sheltered by the breakwater supported a structurally and functionally different assemblage than that recorded in control locations and this was especially evident in the upper eulittoral. At this tidal height, ephemeral algae replaced the dominant space occupier, the barnacle *Chthamalus stellatus*, in the disturbed area and persisted throughout the year. The shift between animal dominated and algal dominated assemblages along a decreasing gradient of wave action is common to temperate regions worldwide even though the processes that structure these communities can differ among locations (see Jenkins et al., 2008 and references therein). In European coasts, much experimental work has convincingly shown that
grazing by patellid limpets limits the growth of macroalgae in wave-beaten shores and
that their removal leads to a change in dominance between barnacles and mussels, and
macroalgae (e.g. Hawkins, 1981; Jenkins et al., 2005; Arrontes et al., 2004; Coleman et
al., 2006). Similarly, the reduced abundance of patellid limpet in the sheltered area
probably led to the divergence in structure of assemblages found between the disturbed
and control locations. Such shift in dominance at the upper eulittoral zone has important
ecological and energetic consequences by altering a net consumer ecosystem into one
dominated by producers.

At the lower algal dominated shore, important differences in the assemblage
structure were also clear with ephemeral algae similarly replacing frondose algae in the
disturbed location. The hydrodynamic forces generated by the breaking of waves in the
intertidal are known to limit the size and survival of larger plants so that these generally
become restricted to more sheltered conditions (Blanchette, 1997). However, this was
not the case. While our attempts to estimate the intensity of sedimentation were not
particularly successful, they do suggest that sediment tended to accumulate in the
disturbed area and this is known to negatively affect the colonisation of space by erect
algae, while having no discernible effect on the spatial dominance of algal turfs

(Airoldi, 1998).

Significant differences between the disturbed and control locations were also
evident during the early successional stages of assemblage development. During the
peak of barnacle settlement, these recruited in abundance on upper shore plates in the
control locations but not in the sheltered area, where ephemeral algae composed the
bulk of the early successional assemblage. In the lower shore, recruitment of
filamentous algae was also lower in the disturbed location than on the adjacent exposed
controls. As for adult populations, exposure to wave-action is known to influence the
recruitment and survival of a number of intertidal animals and plants. For instance, low energy waves were shown to remove up to 99% of recently settled zygotes of *Ascophyllum nodosum*, and thus explaining its inability to colonise exposed locations (Vadas et al., 1990). Although populations of the barnacle *Chthamalus stellatus* predominate on wave-exposed shores (e.g. Jenkins, 2005), their ability to colonise sheltered shores does not seem limited by the abundance of larvae, which actually tend to concentrate on sheltered bays (Jenkins and Hawkins, 2003), but by post-settlement processes that limit the ability of barnacles to settle (Jenkins and Hawkins, 2003) or cause the mortality of recently settled animals (e.g. the sweeping of frondose algae, Jenkins et al., 1999). In the present study, barnacle settlement on plates in the sheltered location was probably limited by competition for space with ephemeral algae. Alternatively, both the recruitment of barnacles and filamentous algae in the sheltered areas may have been driven by the breakwater-induced variations in water-motion, which likely influence the dispersion of propagules and nutrients (Mullineaux and Butman, 1991; Abelson and Denny, 1997).

Although the non-interspersion of controls and the disturbed location is a potential confounding factor (Underwood, 1994), the range of responses of individual taxa, or the assemblage as a whole, to the sheltering by the breakwater could easily be interpreted in light of the vast literature examining the influence of wave-action as a structuring process. In addition, the lack of spatial correlation in the abundance of the various taxa among control locations, indicating that no major gradients are affecting the horizontal distribution of organisms on this rocky platform, suggests that results have not been affected by the segregation of controls in relation to the impacted location.
Anecdotal evidence suggests the assemblage that developed as a consequence of the artificial sheltering is similar to that of sheltered shores in warmer-temperate regions (Airoldi, 2001; Boaventura et al., 2002). However, caution is needed as there is evidence that the impacts of natural and artificial rocky reefs on the structure of marine assemblages can differ, while being similar in the way they may affect the environment (e.g. wave exposure) (Barros et al., 2001; Knott et al., 2004; Vaselli et al., 2008).

5. Conclusion

The present study has shown that the construction of breakwaters can have a strong effect on the structure and functioning of adjacent rocky intertidal communities. The artificial sheltering of naturally exposed shores is itself a strong impact and here resulted in the development of a structurally and functionally divergent assemblage. This study adds to the existing literature by showing that anthropogenic activities such as the construction of artificial structures can have important ecological as well as energetic consequences for the functioning of the local ecosystem.

Acknowledgements

The present study was supported by Secretaria Regional do Ambiente e do Mar and Universidade dos Açores. The Câmara Municipal das Lajes do Pico and Escola Básica Integrada e Secundária das Lajes do Pico provided logistic support. G.M. Martins and F.M. Wallenstein were supported by PhD grants from FCT (SFRH/BD/22009/2005 and SFRH/BD/27466/2006, respectively). A.F. Amaral was supported by Secretaria Regional do Ambiente e do Mar.

References

large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series 137, 137-150.

Comparative ecology of North Atlantic shores: Do differences in players matter?

496 Sociedade Afonso Chaves, Ponta Delgada.

Mullineaux, L.S., Butman, C.A., 1991. Initial contact, exploration and attachment of
498 barnacle (Balanus amphitrite) cyprids settling in flow. Marine Biology 110, 93-103.

500 Terlizzi, A., Benedetti-Cecchi, L., Bevilacqua, S., Fraschetti, S., Guidetti, P., Anderson,
502 M.J., 2005. Multivariate and univariate asymmetrical analyses in environmental
504 impact assessment: a case study of Mediterranean subtidal sessile assemblages.
506 Marine Ecology Progress Series 289, 27-42.

508 Thomalla, F., Vincent, C.E., 2003. Beach response to shore-parallel breakwaters at Sea
508 Palling, Norfolk, UK. Estuarine, Coastal and Shelf Science 56, 203-212.

510 environmental changes, present status and predictions for the next 25 years.

514 environmental impacts on temporal variations in natural populations. Australian

520 populations in the real, but variable world. Journal of Experimental Marine

528 Underwood, A.J., 1993. The mechanisms of spatially replicated sampling programmes
532 to detect environmental impact in a variable world. Australian Journal of

546 environmental disturbances. Ecological Applications 4, 3-15.

Fig. 1. Azores archipelago; Pico island; and the study area showing the built breakwater and the impacted (I) and control (C) locations used.

Fig. 2. Mean (+ SE) % cover of lower shore conspicuous taxa in the impacted and control locations.

Fig. 3. Mean (+ SE) % cover of upper shore conspicuous taxa or number of limpets and littorinids per quadrat (625 cm²) in the impacted and control locations.

Fig. 4. Mean (+ SE) % cover of lower shore conspicuous taxa on recruitment plates in the impacted and control locations.

Fig. 5 Mean (+ SE) % cover of upper shore conspicuous taxa on recruitment plates in the impacted and control locations.

Fig. 6. Mean (+ SE) plaster dissolution in g (dry weight) in the impacted and control locations.
Figure 2
Fig. 3

- **Barnacles**

- **Ephemeral algae**

- **Limpets**

- **Littorinids**

Graphs showing the percentage cover and number per quadrat (6.25 cm²) for Barnacles, Ephemeral algae, Limpets, and Littorinids over the periods Jul '06 to Apr '07. Each period is represented by different symbols (C1, C2, C3) with error bars indicating variability.
Figure 5

Ephemeral algae

![Graph showing the percentage cover of ephemeral algae with data points and error bars for different months and conditions.]

Barnacles

![Graph showing the number of barnacles per plate over different time periods and conditions.]

- Jul'06-Oct'06
- Oct'06-Jan'07
- Jan'07-Apr'07
Table 1. Asymmetrical analysis of variance comparing the disturbed (I) and control (C’s) locations, where: a = times of sampling, b = all locations (the disturbed and 3 controls), n = number of replicates. Both time and location are random and orthogonal with each other.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Expected mean square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time = T</td>
<td>$a-1$</td>
<td>$\sigma^2_e + n\sigma^2_{T x L} + bn\sigma^2_T$</td>
</tr>
<tr>
<td>Location = L</td>
<td>$b-1$</td>
<td>$\sigma^2_e + n\sigma^2_{T x L} + an\sigma^2_L$</td>
</tr>
<tr>
<td>^{c}I vs. C’s</td>
<td>1</td>
<td>$\sigma^2_{e-i} + n\sigma^2_{T x L vs. C’s} + an\sigma^2_L + an\beta^2_{I vs. C’s}$</td>
</tr>
<tr>
<td>^{d}C’s</td>
<td>$b-2$</td>
<td>$\sigma^2_{e-C’s} + n\sigma^2_{T x C’s} + an\sigma^2_{C’s}$</td>
</tr>
<tr>
<td>^{c}T x L</td>
<td>$(a-1)(b-1)$</td>
<td>$\sigma^2_e + n\sigma^2_{T x L}$</td>
</tr>
<tr>
<td>^{b}T x I vs. C’s</td>
<td>$(a-1)$</td>
<td>$\sigma^2_{e-I} + n\sigma^2_{T x L} + n\sigma^2_{T x L vs. C’s}$</td>
</tr>
<tr>
<td>^{a}T x C’s</td>
<td>$(a-1)(b-2)$</td>
<td>$\sigma^2_{e-C’s} + n\sigma^2_{T x C’s}$</td>
</tr>
<tr>
<td>Residual</td>
<td>$ab(n-1)$</td>
<td>σ^2_e</td>
</tr>
<tr>
<td>Res I</td>
<td>$a(n-1)$</td>
<td>σ^2_{e-I}</td>
</tr>
<tr>
<td>Res C’s</td>
<td>$a(b-1)(n-1)$</td>
<td>$\sigma^2_{e-C’s}$</td>
</tr>
</tbody>
</table>

a tested over Res C’s

b tested over the Residual if T x C’s can be eliminated from the model (not significant at $\alpha = 0.25$, Underwood, 1997); tested over T x C’s otherwise. These tests assume equivalence among $\sigma^2_{T x L}$ and $\sigma^2_{T x C’s}$ (see Glasby, 1997).

c tested over the Residual

d tested over T x C’s

e tested over the Residual if T x L and C’s can be eliminated from the model; tested over T x L if C’s can be eliminated but not T x L; tested over C’s if this term cannot be eliminated from the model. These tests assume equivalence among $\sigma^2_{T x I vs. C’s}$, $\sigma^2_{T x C’s}$ and $\sigma^2_{T x L}$ and among σ^2_{L} and $\sigma^2_{C’s}$.

Adapted from Terlizzi et al., (2005)
Table 2. Asymmetrical analysis of variance comparing the abundance of conspicuous lower shore taxa in the disturbed (I) and control (C’s) locations.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Source</th>
<th>df</th>
<th>Frondose algae</th>
<th>Turf-forming algae</th>
<th>Crustose algae</th>
<th>Filamentous algae</th>
<th>Ephemeral algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>3</td>
<td>MS</td>
<td>0.17</td>
<td>1.49E3</td>
<td>1.72</td>
<td>2.00</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>MS</td>
<td>45.97</td>
<td>153E3</td>
<td>0.66</td>
<td>0.12</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>I vs. C’s</td>
<td>1</td>
<td>MS</td>
<td>126.77</td>
<td>22.76*</td>
<td>3.55E2</td>
<td>0.17</td>
<td>0.11</td>
<td>7.16</td>
</tr>
<tr>
<td>C’s</td>
<td>2</td>
<td>MS</td>
<td>5.57</td>
<td>9.24*</td>
<td>2.11E3</td>
<td>0.17</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>T x L</td>
<td>9</td>
<td>MS</td>
<td>0.44</td>
<td>0.45</td>
<td>1.07E3</td>
<td>0.32</td>
<td>0.24</td>
<td>0.45</td>
</tr>
<tr>
<td>T x I vs. C’s</td>
<td>3</td>
<td>MS</td>
<td>0.12</td>
<td>0.13</td>
<td>1.98E3</td>
<td>0.78</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>T x C’s</td>
<td>6</td>
<td>MS</td>
<td>0.60</td>
<td>0.46</td>
<td>6.20E2</td>
<td>0.10</td>
<td>0.29</td>
<td>0.07</td>
</tr>
<tr>
<td>Residual</td>
<td>144</td>
<td>MS</td>
<td>0.99</td>
<td>3.57E2</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Res I</td>
<td>36</td>
<td>MS</td>
<td>0.05</td>
<td>1.19E2</td>
<td>0.17</td>
<td>0.12</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Res C’s</td>
<td>108</td>
<td>MS</td>
<td>1.30</td>
<td>4.36E2</td>
<td>0.02</td>
<td>0.17</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Transformation: \(\ln(x+1) \) \(x^{0.1} \) \(x^{0.1} \) \(x^{0.1} \)

Cochran’s test:

\(C = 0.17 \) \(C = 0.27^{**} \) \(C = 0.17 \) \(C = 0.15 \) \(C = 0.13 \)

Significant terms in bold: * \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

\(E = x10 \)
Table 3. Asymmetrical analysis of variance comparing the abundance of conspicuous upper shore taxa in the disturbed (I) and control (C’s) locations.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Barnacles</th>
<th>Limpets</th>
<th>Littorinids</th>
<th>Ephemeral algae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MS</td>
<td>F</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>1.25E3</td>
<td>0.60</td>
<td>16.99</td>
<td>0.14</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>2.69E3</td>
<td>1.30</td>
<td>31.93</td>
<td>6.78</td>
</tr>
<tr>
<td>I vs. C’s</td>
<td>1</td>
<td>7.80E3</td>
<td>61.01*</td>
<td>3.54</td>
<td>9.27*</td>
</tr>
<tr>
<td>C’s</td>
<td>2</td>
<td>1.28E3</td>
<td>2.17</td>
<td>3.93</td>
<td>0.18</td>
</tr>
<tr>
<td>T x L</td>
<td>9</td>
<td>4.01E1</td>
<td>0.21</td>
<td>0.38</td>
<td>2.24*</td>
</tr>
<tr>
<td>T x I vs. C’s</td>
<td>3</td>
<td>2.67E0</td>
<td>0.01</td>
<td>0.25</td>
<td>0.57</td>
</tr>
<tr>
<td>T x C’s</td>
<td>6</td>
<td>5.88E1</td>
<td>0.24</td>
<td>0.45</td>
<td>1.99</td>
</tr>
<tr>
<td>Residual</td>
<td>144</td>
<td>1.94E2</td>
<td>0.17</td>
<td>2.53</td>
<td>0.21</td>
</tr>
<tr>
<td>Res I</td>
<td>36</td>
<td>2.83E1</td>
<td>0.01</td>
<td>0.54</td>
<td>0.10</td>
</tr>
<tr>
<td>Res C’s</td>
<td>108</td>
<td>2.50E2</td>
<td>0.22</td>
<td>3.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Transformation Ln (x + 1) Sq-rt $x^{0.1}$

Cochran’s $C = 0.16$ $C = 0.16$ $C = 0.15$ $C = 0.09$

Significant terms in bold: p-values as in Table 2.
Table 4. Asymmetrical analysis of variance comparing the abundance of conspicuous lower shore taxa on recruitment plates in the disturbed (I) and control ($C’s$) locations.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Ephemeral algae</th>
<th>Filamentous algae</th>
<th>Crustose algae</th>
<th>Turf-forming algae</th>
<th>Barnacles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MS</td>
<td>F</td>
<td>MS</td>
<td>F</td>
<td>MS</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>4.50E^3</td>
<td>8.44</td>
<td>1.77E^2</td>
<td>2.10</td>
<td>1.05E^3</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>2.41E^3</td>
<td>2.69</td>
<td>4.42E^2</td>
<td>5.40</td>
<td>5.00E^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L x I vs. C’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T x L</td>
<td>6</td>
<td>5.15E^3</td>
<td>1.19</td>
<td>1.23</td>
<td>1.28</td>
<td>6.28E^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T x I vs. C’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T x C’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>48</td>
<td>4.31E^2</td>
<td>0.96</td>
<td>2.08E^2</td>
<td>0.43</td>
<td>2.21E^2</td>
</tr>
<tr>
<td>Res I’s</td>
<td>12</td>
<td>4.74E^2</td>
<td>0.69</td>
<td>3.88E^2</td>
<td>0.27</td>
<td>0</td>
</tr>
<tr>
<td>Res C’s</td>
<td>36</td>
<td>4.17E^2</td>
<td>1.05</td>
<td>1.48E^2</td>
<td>0.48</td>
<td>2.95e^2</td>
</tr>
</tbody>
</table>

Transformation: Ln ($x + 1$) for I and $C’s$ locations.

Cochran’s $C = 0.21$ for I and $C’s$ locations.

Significant terms in bold: p-values as in Table 2.
Table 5. Asymmetrical analysis of variance comparing the abundance of conspicuous upper
shore taxa on recruitment plates in the disturbed (I) and control (C’s) locations.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Ephemeral algae</th>
<th>Barnacles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Source df MS F</td>
<td>MS</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>2.31E3</td>
<td>52.13</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>3.40E3</td>
<td>20.24</td>
</tr>
<tr>
<td>I vs. C’s</td>
<td>1</td>
<td>8.54E3</td>
<td>55.14</td>
</tr>
<tr>
<td>C’s</td>
<td>2</td>
<td>8.30E2</td>
<td>1.67</td>
</tr>
<tr>
<td>T x L</td>
<td>6</td>
<td>8.38E2</td>
<td>2.43*</td>
</tr>
<tr>
<td>T x I vs. C’s</td>
<td>2</td>
<td>1.52E3</td>
<td>4.41*</td>
</tr>
<tr>
<td>T x C’s</td>
<td>4</td>
<td>4.97E2</td>
<td>1.15</td>
</tr>
<tr>
<td>Residual</td>
<td>48</td>
<td>3.45E2</td>
<td>0.74</td>
</tr>
<tr>
<td>Res I</td>
<td>12</td>
<td>9.04E1</td>
<td>0.17</td>
</tr>
<tr>
<td>Res C’s</td>
<td>36</td>
<td>4.30E2</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Transformation: Ln ($x + 1$)

Cochran’s

$C = 0.22$

$C = 0.26$

Significant terms in bold: p-values as in Table 2.
Table 6. Asymmetrical analysis of variance comparing plaster dissolution (g of dry weight) in the disturbed (I) and control (C’s) locations.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>2</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>76.89</td>
<td></td>
</tr>
<tr>
<td>I vs. C’s</td>
<td>1</td>
<td>222.17</td>
<td>61.17***</td>
</tr>
<tr>
<td>C’s</td>
<td>2</td>
<td>4.26</td>
<td>1.26</td>
</tr>
<tr>
<td>T x L</td>
<td>6</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>T x I vs. C’s</td>
<td>2</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>T x C’s</td>
<td>4</td>
<td>3.38</td>
<td>0.54</td>
</tr>
<tr>
<td>Residual</td>
<td>24</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>Res I</td>
<td>6</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>Res C’s</td>
<td>12</td>
<td>6.31</td>
<td></td>
</tr>
</tbody>
</table>

Transformation

Cochran’s $C = 0.36$

Significant terms in bold: p-values as in Table 2.