

Variance estimate and taxonomic resolution: an analysis of macrobenthic spatial patterns at different scales in a Western Mediterranean coastal lagoon

M. Tataranni, F. Maltagliati, A. Floris, A. Castelli, C. Lardicci

▶ To cite this version:

M. Tataranni, F. Maltagliati, A. Floris, A. Castelli, C. Lardicci. Variance estimate and taxonomic resolution: an analysis of macrobenthic spatial patterns at different scales in a Western Mediterranean coastal lagoon. Marine Environmental Research, 2009, 67 (4-5), pp.219. 10.1016/j.marenvres.2009.02.003. hal-00482200

HAL Id: hal-00482200

https://hal.science/hal-00482200

Submitted on 10 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Variance estimate and taxonomic resolution: an analysis of macrobenthic spatial patterns at different scales in a Western Mediterranean coastal lagoon

M. Tataranni, F. Maltagliati, A. Floris, A. Castelli, C. Lardicci

PII: S0141-1136(09)00026-9

DOI: 10.1016/j.marenvres.2009.02.003

Reference: MERE 3319

To appear in: Marine Environmental Research

Received Date: 4 March 2008 Revised Date: 23 February 2009 Accepted Date: 26 February 2009

Please cite this article as: Tataranni, M., Maltagliati, F., Floris, A., Castelli, A., Lardicci, C., Variance estimate and taxonomic resolution: an analysis of macrobenthic spatial patterns at different scales in a Western Mediterranean coastal lagoon, *Marine Environmental Research* (2009), doi: 10.1016/j.marenvres.2009.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Variance estimate and taxonomic resolution: an analysis of macrobenthic
2	spatial patterns at different scales in a Western Mediterranean coastal
3	lagoon
4	
5	M. Tataranni ^{a,*} , F. Maltagliati ^a , A. Floris ^b , A. Castelli ^a , C. Lardicci ^a
6	^a Dipartimento di Biologia, Università di Pisa, via Derna 1, 56126 Pisa, Italy
7	^b Dipartimento di Zoologia e Genetica Evoluzionistica, Università di Sassari, via Muroni 25,
8	07100 Sassari, Italy
9	*Corresponding author. Tel.: +39 050 2211403/5, fax: +39 050 2211410
10	E-mail address: mtataranni@biologia.unipi.it (M. Tataranni)
11	
12	Abstract
13	The effects of taxonomic resolution on the variance estimates of macrobenthic assemblages
14	were studied at four spatial scales in a Mediterranean coastal lagoon. The assemblages
15	exhibited significant differences at all the investigated scales; however, spatial variability was
16	mainly associated with the smallest and the largest scales. The decrease of taxonomic
17	resolution (from species to family) was not related to a decrease of the overall variability and
18	similar estimates of variance components were obtained using species and family resolution
19	levels. The ordination models derived from species and family abundances were very similar
20	both in terms of location and dispersion effect, while further aggregation to the class level
21	began to alter the observed spatial patterns. In future studies aimed at assessing changes in the
22	lagoon, resources derived from the cost reductions achieved using family level could be
23	employed to plan more frequent surveys and/or to adopt complex spatial sampling designs
24	with a high number of replicates.
25	
26	KEY WORDS: spatial scales - taxonomic resolution - multivariate analysis - macrobenthos -
27	coastal lagoon - monitoring - Western Mediterranean

1. Introduction

	Macrobenthic invertebrates are an essential component in soft-sediment environments playing
	important roles in ecosystem processes, such as dispersion, burial, nutrient cycling and energy
	flow (Snelgrove, 1998). A deep knowledge of spatial variability patterns in macrobenthic
	assemblages is relevant to properly characterise one of the major sources of biotic diversity in
	natural environments; moreover, such information represents a requirement to develop
	strategies of management and conservation (e.g. Lubchenco et al., 1991), as well as to advise
	suitable guidelines for periodical monitoring programs (e.g. Underwood, 1997). Soft bottom
	environments are usually considered homogeneous habitats; however structural analyses in
	marine and brackish systems have repeatedly demonstrated that patchiness of macrofaunal
	assemblages is a common feature at both small-medium scales, (Thrush et al., 1989; Hewitt et
	al., 2002; Noren and Lindegarth, 2005) and large scales (Morrisey et al., 1992; Edgar and
	Barret, 2002; Ysebaert and Herman, 2002). In particular, those previous studies emphasized
	the lacking of a single correct scale at which assemblages can be described (Levin, 1992),
	since different patterns of distribution can be obtained depending on the spatial scale of
	observation. The description of the distributional patterns at multiple spatial scales and
	identification of the most relevant ones are needed to formulate possible explanations about
ø	ecological processes, or unnatural impacts structuring ecosystems (Underwood and Chapman,
	1996; Underwood et al., 2000; Ysebaert et al., 2003). Furthermore, such information can be
	useful for avoiding erroneous interpretations of spatial patterns observed at a particular scale
	and also to advise useful guidelines for routine environmental monitoring programs.
	In order to estimate the proportion of variability associated with each examined scale and to
	identify the most relevant spatial scale, the hierarchical sampling approach is considered the
	most appropriate method (Underwood, 1997; Hewitt et al., 1998). In hierarchical designs

53	small-scaled sampling units are nested within larger-scaled ones, allowing unconfounded
54	statistical comparisons among each spatial scale (Underwood, 1981; Kotliar and Wiens,
55	1990). Nested designs have been successfully used to investigate populations and
56	assemblages across a wide range of marine habitats and organisms. Most studies focused on
57	intertidal and subtidal rocky shores (i.a. Archambault and Bourget, 1996; Underwood and
58	Chapman, 1996; Benedetti-Cecchi, 2001a; Fraschetti et al., 2001; 2005; Chapman and
59	Underwood, 2008), while soft-bottoms have been less explored (Morrisey et al., 1992; Stark
60	et al., 2003; Noren and Lindegarth, 2005; Terlizzi et al., 2008b).
61	The increase of soft bottom macrobenthic studies is often hidden because identifying and
62	enumerating all organisms are time-consuming and labour-intensive processes (Warwick,
63	1993; Olsgard et al., 1998), that requires taxonomic expertise (Terlizzi et al., 2003). In the
64	last two decades, many studies have analysed data at several taxonomic resolutions, showing
65	that results obtained using species or family level are very similar (i.a. Warwick, 1988;
66	Vanderklift et al., 1996; Olsgard et al., 1998; Karakassis and Hatziyanni, 2000; Lampadariou
67	et al., 2005; Wlodarska-Kowalczuk and Kedra, 2007). Identifying a taxonomic level higher
68	than species that is sufficient for detecting differences in assemblage composition without
69	losing important information is a concept termed "taxonomic sufficiency" (TS, Ellis, 1985).
70	The TS method might have some practical implications, in particular routine monitoring
71	programs could become less expensive and faster than those conducted at the species level
72	resolution and therefore macrobenthic assemblages could be analysed more frequently.
73	However, at present, most studies have usually compared different levels of TS at a single
74	spatial scale (Vanderklift et al., 1996; Olsgard et al., 1998; Karakassis and Hatziyanni, 2000;
75	De Biasi et al., 2003; Wlodarska-Kowalczuk and Kedra, 2007), while few researchers have
76	investigated the effects of TS on the spatial distribution patterns observed at multiple scales
77	(Chapman, 1998; Anderson et al., 2005; Dethier and Schoch, 2006). Moreover in these

78	previous works, spatial variability was usually not distinguished in relation to differences in
79	location or dispersion among groups of samples, while the ecological heterogeneity is
80	considered a valuable feature of any habitat which can provide important information on
81	biological assemblages (Anderson, 2006; Terlizzi et al., 2008a).
82	In the present study, abundance and composition of soft bottom benthic macrofaunal
83	assemblages in a Western Mediterranean coastal lagoon were described with particular
84	attention to their variability across different spatial scales. The Santa Giusta Iagoon can be
85	considered as representative of small microtidal brackish environments characterizing the
86	Mediterranean region (Basset et al., 2006). Coastal lagoons are areas of considerable
87	naturalistic interest but often are located close to urban or industrial centres, therefore they are
88	possibly affected by direct (e.g. sewage discharge, aquaculture) or indirect (e.g.
89	eutrophication) human activities (i.a. Barnes, 1991; Lardicci et al., 2001). Given the
90	naturalistic and economic importance of these biotopes, research that may provide appropriate
91	quantitative data is relevant for their conservation and management.
92	In this study, a hierarchical sampling design including four spatial scales (ranging from
93	meters up to thousands of metres) was used i) to estimate the relative importance and test
94	statistical significance of macrofauna variability at different spatial scales, in order to identify
95	the spatial scale associated with the highest variability; ii) to examine if spatial patterns are
96	influenced mainly by changes in species composition or relative abundances, comparing
97	results obtained from several transformations of species abundance; and iii) to analyse if
98	lower levels of taxonomic resolution (family and class) show similar spatial patterns with
99	respect to those obtained at species level, both in terms of location and dispersion effects.
100	Results will allow to increase the knowledge of macrobenthic spatial distribution in Santa
101	Giusta lagoon and to assess the applicability of TS method for decreasing time and cost in
102	subsequent routine surveys. The methodological approach employed in the present

investigation could provide interesting practical implications for future studies, not only in this lagoon, but also in other similar brackish environments.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

103

104

2. Materials and Methods

2.1 Study area and sampling

The Santa Giusta lagoon (Western Mediterranean, Italy) is one of the largest coastal brackish environments of Sardinia island, it is a polyhaline basin located along the central-western coast of Sardinia. The lagoon is included in the Ramsar convention (1971) and belongs to a complex system of transitional waters of high natural and economic value. The Santa Giusta lagoon is approximately circular in shape with an area of 7.9 km² and a mean depth of 1 m; it is located near the town of Oristano and Santa Giusta, in the plain of Pesaria, an agricultural area that is intensively cultivated with rice. The lagoon has no natural attributes and is separated from the sea by a longshore bar, it is also connected with two inner small basins called Pauli Maiori and Pauli Figu (Figure 1). Central and peripheral canals have been dredged about 2 m deep in order to facilitate seawater flow into the lagoon. As a consequence, waters of Santa Giusta lagoon are now well mixed as regards circulation and stratification (Sechi et al., 2001). Salinity ranges from 25% to 42%, with a mean annual value of 30% (Sechi et al., 2001; Luglié et al., 2002). There is a prevalent sandy-muddy bottom, with small patches of both macroalgae and angiosperms (e.g. Enteromorpha sp., Gracilaria sp., Ruppia cirrhosa, Zostera sp.), which are distributed all over the lagoon. In this context, three sampling zones were randomly selected among the three habitats in the lagoon with different sediment and hydrodynamic properties (Luglié et al., 2002) (Figure 1). Specifically, the alpha zone was in the central-northern part of the lagoon and it was mostly influenced by the urban and industrial wastewaters from Oristano and Santa Giusta areas. It has been considered a low-intermediate hydrodynamic energy environment with a prevalence

128	of clay-silty sediments (Luglié et al., 2002). The beta zone was in the central-southern part of
129	the lagoon and possibly influenced by the drainage from the surrounding farmlands. This zone
130	was characterised by an intermediate-high hydrodynamic energy and sand-silty sediments
131	(Luglié et al., 2002). Then the gamma zone was an area near the Pesaria canal, connecting the
132	lagoon with the sea; it was characterized mainly by sandy sediments and high hydrodynamic
133	energy (Luglié et al., 2002), being closer to the sea (Figure 1). Samples were collected in
134	November 2002, according to a hierarchical sampling design. Within each of the three zones,
135	four random sites were selected and within each site, four areas were randomly chosen. Two
136	replicate samples were taken within each area for a total of 96 samples. Spatial variability was
137	estimated at four hierarchical scales: among zones (10 ³ m apart), among sites within zones
138	(10 ² m apart), among areas within sites (10s m apart) and among replicates (1 m apart). Since
139	small vegetal patches are widely distributed throughout the lagoon, replicate samples were
140	carefully placed away from vegetal patches (at least 5 m from the closest patch), in order to
141	minimise the possible effects of background heterogeneity on macrofaunal composition. Soft-
142	sediment samples were collected on bare bottom with a box-corer (10 x 17 cm ²), sieved
143	through a 0.5 mm mesh and preserved in 4 % formaldehyde. All collected macrozoobenthic
144	organisms were sorted and identified to the species level and abundances (number of
145	specimens per taxon) were calculated. Time needed for classification and counting of diverse
146	taxa was recorded. All analyses were performed by researchers, with low experience in
147	taxonomic identification but supported by skilled taxonomists. The time spent to identify all
148	organisms at the species, family and class levels was 255, 95 and 5 hours, respectively.
149	
150	2.2 Statistical analyses
151	Permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) was used
152	to test the null hypothesis of no differences among assemblages at different spatial scales.

153	according to a three factors (zone, site, area) nested design through 4999 permutations of
154	residuals under a reduced model (Anderson and Ter Braak, 2003). At species level, data were
155	analysed using the Bray-Curtis dissimilarity measure on untransformed and transformed data
156	(square-root, fourth-root, presence/absence), in order to evaluate if assemblages are mainly
157	driven by compositional or relative abundance changes. Using stronger and stronger
158	transformations, the emphasis of results can be shift from the most abundant species to the
159	rarest ones; in particular, variability measured by presence/absence data reflects only
160	compositional changes, while variation in relative abundances is more important in analyses
161	based on other transformations or untransformed data (Clarke and Gorley, 2001; Anderson et
162	al., 2005b). Furthermore, mean squares calculated by PERMANOVA were used to estimate
163	multivariate variance components associated at each spatial scale, in a way analogous to
164	univariate partitioning using ANOVA (Searle et al., 1992; Benedetti-Cecchi, 2001b). For a
165	better comparison, in y-axis the variability at each spatial scale was expressed as square-root
166	of variance components; therefore, the values could be interpreted as percentages of Bray-
167	Curtis dissimilarity (Anderson et al., 2005a). Separate analyses were performed using the
168	square-root transformed data at species, family and class levels of taxonomic resolution. The
169	family level was chosen because it has been often indicated as the most effective in
170	minimizing the cost-benefit ratio (Lardicci and Rossi, 1998; Karakassis and Hatziyanni, 2000;
171	De Biasi et al., 2003; Lampadariou et al., 2005), while the class level was chosen to assess the
172	effectiveness of a further higher resolution. Since a significant result for a given factor from
173	PERMANOVA could indicate that the groups differ in their location and/or dispersion,
174	PERMDISP analyses were also performed to focus only on dispersion effects, testing the
175	factors "zone" and "site" (Anderson, 2006). Analogous analyses were performed using
176	separate data sets for the three main taxonomic groups.

The local species richness was visualised as a function of number of replicate samples in
species-sample accumulation curves based on 999 permutations. To visualize multivariate
patterns in assemblages across the three zones, non-metric multidimensional scaling (nMDS)
ordination plots were produced. A separate plot was done for the overall species community
and also for data aggregated at family and class level of resolution. All plots were done on the
basis of Bray-Curtis dissimilarity matrix of square-root transformed data. To evaluate the
degree of similarity among matrices obtained using different taxonomic aggregations, the
RELATE routine was used to test the null hypothesis of independence of the two similarity
matrices. On the other hand, in order to detect which species contributed most to dissimilarity
among the three different zones, a similarity percentage (SIMPER) routine was performed
(cut off 80%) (Clarke, 1993). All accumulation curves, nMDS plots, RELATE tests and
A WAY
SIMPER results were obtained using the PRIMER v.6 software (Clarke and Gorley, 2001).
SIMPER results were obtained using the PRIMER v.6 software (Clarke and Gorley, 2001). 3. Results
3. Results
3. Results3.1 Faunal compositionA total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was
3. Results3.1 Faunal compositionA total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were
3. Results3.1 Faunal compositionA total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was
 3. Results 3.1 Faunal composition A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was 255, 95 and 5 hours, respectively.
 3. Results 3.1 Faunal composition A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was 255, 95 and 5 hours, respectively. Considering the number of individuals, crustaceans accounted for 43.5% of total abundance
 3. Results 3.1 Faunal composition A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was 255, 95 and 5 hours, respectively. Considering the number of individuals, crustaceans accounted for 43.5% of total abundance followed by polychaetes and molluscs representing respectively 30.0% and 26.5% of total
3. Results 3.1 Faunal composition A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was 255, 95 and 5 hours, respectively. Considering the number of individuals, crustaceans accounted for 43.5% of total abundance followed by polychaetes and molluscs representing respectively 30.0% and 26.5% of total abundance. Instead, considering the number of species, polychaetes were the most
3.1 Faunal composition A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were collected. The time spent to identify all organisms at the species, family and class levels was 255, 95 and 5 hours, respectively. Considering the number of individuals, crustaceans accounted for 43.5% of total abundance followed by polychaetes and molluscs representing respectively 30.0% and 26.5% of total abundance. Instead, considering the number of species, polychaetes were the most representative group (54 species) followed by crustaceans (19) and molluscs (10). The

202	in the crustaceans (e.g. 3 Corophiidae and 3 Gammaridae). The majority of crustaceans (12
203	species) and molluscs (7 species) spanned a large part of the lagoon, being recorded in more
204	than 12 of the 48 sampling areas; whereas most polychaetes (24 species) were restricted in
205	less than 12 sampling areas (Figure 3). Seven species (five polychaetes and two crustaceans)
206	were limited to a single area and they were also represented by only one individual. Five
207	species (four polychaetes and one mollusc) were restricted to only two sampling areas and
208	were represented by very few individuals (Figure 3). The mean abundance values for
209	polychaetes and crustaceans were quite similar in all three sampling zones of the study site,
210	while molluses showed a higher variability being the most abundant taxa in gamma, but
211	almost absent in alpha zone (Figure 4).
212	The local species richness was higher in the alpha zone than in beta or gamma ones and
213	cumulative samples from each zone were representative reaching an asymptote rather quickly
214	(Figure 5). In particular, the number of species collected would be just slightly reduced, even
215	analysing only 2 sampling sites (namely 8 areas or 16 replicates) in each zone of the lagoon
216	(Table 1). A highly significant difference in the faunal composition of the three zones was
217	detected by SIMPER analysis, with the greatest dissimilarity recorded for the alpha - gamma
218	zone pair (75%), followed by the beta - gamma (69%) and the alpha - beta (68%) ones.
219	In alpha zone, despite the smallest number of individuals (5 550), the highest number of
220	species (75) was recorded, with five species that accounted for 60.4% of total abundance.
221	This group included species typical of brackish habitats, such as <i>Monocorophium sextonae</i> ,
222	Cymodoce truncata, Hydroides elegans and Corophium acherusicum (Ruffo, 1998) and a
223	species typical of sandy-muddy bottom such as <i>Pseudopolydora antennata</i> (Lardicci et al.,
224	2001). Moreover, SIMPER analyses highlighted the value of other species in determining the
225	dissimilarity among the three zones: a polychaete, Cirriformia tentaculata, and a crustacean
226	occurring in areas with abundant algal coverage, <i>Pseudolirius kroyeri</i> (Table 2). In the beta

227	zone 60 species were found and the five most abundant ones (51.3% of total 7 601
228	individuals) were typical brackish species like Cymodoce truncata, Abra ovata,
229	Monocorophium sextonae, as well as Minuspio multibranchiata and Microdeutopus
230	anomalus, occurring where macroalgae are present (Ruffo, 1998). Opportunistic species
231	indicating organic enrichment (Pearson and Rosenberg, 1978; Cognetti, 1982), such as Phylo
232	foetida and Neanthes caudata, were also characteristic of the beta zone (Table 2), as well as
233	suspension feeders (Loripes lacteus and Cerastoderma glaucum) and grazers (Cumella
234	limicola and Iphinoe serrata). In gamma zone 10 730 organisms from 59 species were
235	collected and 80% of total abundance was reached with only five species: Mytilaster minimus
236	(alone accounting for 33%), Cymodoce truncata and Tanais dulongii, all typical of brackish
237	environments, besides Minuspio multibranchiata and Naineris laevigata.
238	
239	3.2 Scales of multivariate spatial variability and taxonomic resolution
240	At the taxonomic level of species, PERMANOVA showed that there was a highly significant
241	variability at all spatial scales considered (Table 3). The greatest variability occurred at the
242	largest spatial scale, among zones, for which the average Bray-Curtis dissimilarity was around
243	37%; then, the successive variation component was that among replicate samples (35% of
244	dissimilarity), followed by less variability among areas (22%) and sites (20%) (Figure 6).
245	Furthermore, the relative importance of different spatial scales in the hierarchy did not vary
246	with different data transformations. Similar spatial patterns were obtained for analyses based
247	on untransformed and transformed data (square root, fourth root, presence/absence) (Figure
248	6).
249	Highly significant variability at all spatial scales was also detected, at the family and class
250	levels (Table 3). In addition, similar variance components, as well as the relative importance
251	of different spatial scales, were maintained proceeding from species to family analysis (Figure

252	7). Instead, using the class level of resolution, the variance components decreased showing
253	less dissimilarity among assemblages at all spatial scales analysed; moreover, proportional
254	amount of variation changed showing the highest variability at the smallest scale, among
255	replicate samples (Figure 7). At the species level, differences among zones were mainly due
256	to differences in their location, since a significant dispersion effect was revealed only between
257	alpha and gamma zones (Table 4). At the scale of site, the source of variability changed
258	depending on the sampling zone as emerged by pairwise tests, within the alpha zone some
259	sites were not significantly different from each other (i.e. P-values of both PERMANOVA
260	and PERMDISP tests were not significant), in some cases sites differed in their location (i.e.
261	P-values of PERMANOVA significant, P-values of PERMDISP not significant), in other
262	cases sites differed both in their location and dispersion (i.e. P-values of both PERMANOVA
263	and PERMDISP tests were significant). Similar results were obtained within the beta zone,
264	where sites were different also because of their dispersion (i.e. P-values of PERMANOVA
265	not significant, P-values of PERMDISP significant). Dispersion effect never contributed to
266	differences among sites in the gamma zone (Table 4). All but two pairwise results were
267	likewise detected using the family level of taxonomic resolution; while at the class level, the
268	majority of results were not significant, therefore indicating different relationships compared
269	to those obtained at finer taxonomic levels, both at zone and site spatial scales (Table 4).
270	Separate analyses for the three collected taxonomic groups showed a highly significant
271	variability at all spatial scale; only the variance component for molluscs at the site scale was
272	found not different from zero because of the greater variability at the smaller spatial scale of
273	area (Figure 8). Such results matched the pairwise tests which showed that in very few cases
274	sites differed, mainly in their dispersion (Table 5). For crustaceans and molluscs the greatest
275	variability occurred at the largest spatial scale (Figure 8) and for both groups it was mainly
276	due to differences in location among zones (Table 5). For polychaetes, the sources of the high

variability at the zone scale were differences in location and dispersion (Table 5); however
polychaetes showed the greatest variability among replicate samples and such spatial scale
was also important for the other taxonomic groups (Figure 8). Except for molluscs, a small
variability was associated with the two intermediate spatial scales (Figure 8); in particular at
the site scale, there was a prevalent location effect both for polychaetes and crustaceans
although differences in dispersion were also detected especially for crustaceans within the
beta zone (Table 5).
The nMDS plot based on the species abundance data showed some differences among the
three sampled zones. In particular, gamma samples were clearly clustered and separated from
the other zones, while alpha and beta samples were partially overlapped (Figure 9a). At the
family level, nMDS ordination was very similar to that obtained at the species level (Figure
9b). Further aggregation to the class level produced a different ordination pattern, with
substantially higher levels of overlapping of the three zones (Figure 9c). Relationships
between similarity matrices calculated for the three taxonomic levels were confirmed by
RELATE results, which showed ρ = 0.960, p<0.001 between species and family levels and ρ
= 0.565, p<0.001 between species and class levels.
4. Discussion
The first result that stands out from our work is that the benthic assemblages of Santa Giusta
lagoon were extremely variable, with significant differences at all considered spatial scales,
from metres up to thousands of metres. This outcome was highly consistent with results
reported in studies analysing spatial variability by nested design, whatever the habitat
investigated (see Fraschetti et al., 2005 for a review). In the Santa Giusta lagoon most of the

variation was associated with the smallest and the largest spatial scale, thus indicating that

both small-scale and large-scale processes play a major role in shaping benthic community

302	spatial patterns. Variability among replicates at small spatial scale is usually considered a
303	widespread feature of many different assemblages, being mainly determined by biological
304	interactions and/or local physical factors (i.a. Ekman, 1979; Underwood and Chapman, 1986;
305	Wilson, 1991; Morrisey et al., 1992; Benedetti Cecchi et al., 2001a; Coleman et al., 2002;
306	Rossi and Lardicci, 2002; Fraschetti et al., 2005; Chapman and Underwood, 2008). On the
307	other hand, differences in assemblages at large spatial scales have been mostly related to
308	abiotic processes (Thrush et al., 1989; Thrush, 1991). Factors such as hydrodynamic energy,
309	trophic status, seawater and freshwater influence, nutrients supply and confinement could
310	differently characterise the three sampling zones of the Santa Giusta lagoon, according to the
311	models of zonation proposed for other Mediterranean coastal lagoons (Guelorget and
312	Perthuisot, 1982; Lardicci et al., 1993; 1997; Pérez-Ruzafa et al., 2007). In addition, benthic
313	communities could be unevenly subjected to the two main sources of anthropogenic
314	disturbance affecting this lagoon at all the study scales. Results of this study showed that the
315	three sampling zones were clearly distinct and characterised by typical features but analysing
316	and explaining the effects of abiotic or biotic factors responsible of such differences were not
317	among the explicit aims of this study.
318	A number of papers reported that results of statistical analyses can be greatly influenced by
319	the choice of data transformation; in fact, the ability to detect differences along strong
320	environmental gradients was affected more by changing the data transformation rather than
321	the level of taxonomic identification (i.a. Olsgard et al., 1998; Karakassis and Hatziyanni,
322	2000). This is also consistent with results by Chapman (1998) and Lasiak (2003), who
323	observed that the type of transformation altered patterns of variability within sites, which may
324	be important for some research programmes. The choice of transformation determines the
325	relative contribution of quantitative and qualitative intersample differences in the final
326	outcome of all multivariate analyses. Strong transformations (fourth root, presence/absence)

341	give fittle weight to differences in abundance, whereas weak (square 100t) of fitth
328	transformations provide patterns mainly reflecting the differences of the most abundant
329	species (Olsgard et al., 1998; Karakassis and Hatziyanni, 2000; Clarke and Gorley, 2001). In
330	particular, the variability estimated by analysing presence/absence data explicitly reflects the
331	compositional changes of assemblages at different spatial or temporal scales and this can be
332	compared with analyses based on other transformations (or untransformed data), mostly
333	describing relative abundance differences (Anderson et al., 2005b). On this basis, some
334	studies demonstrated that variability of benthic assemblages at larger scales is mainly
335	"compositional", as indicated by the presence/absence analyses, while variability at medium
336	or smaller scales is driven by changes in relative abundance, particularly by numerically
337	dominant taxa (Archambault and Bourget, 1996; Chapman, 1998; Anderson et al., 2005b).
338	Conversely, our results showed that the relative importance of examined spatial scales (from
339	meters up to thousands of metres) was always maintained, despite different transformations
340	used. These findings underpinned that in Santa Giusta lagoon, large scale processes shaped
341	three distinct zones characterized by different species. At the other investigated scales,
342	differences in species composition were possibly caused by the presence of diverse
343	microhabitats, which created high spatial heterogeneity. For example, small vegetal patches
344	might possibly influence the faunal composition of the surrounding bare bottoms; however,
345	such patches are distributed all over the lagoon, thus producing a high spatial heterogeneity at
346	the smallest spatial scale in all the three sampling zones of Santa Giusta. This outcome
347	indicated that spatial heterogeneity is not necessarily related to the extent of the study area.
348	Therefore the unambiguous interpretation of results can be promoted using nested designs
349	also in small environments, like the Santa Giusta lagoon. The multi-scale approach is
350	recommended as a basic tool for spatial distribution analyses, especially when such
351	information is still scarcely known in the investigated environment. In particular for future

352	studies in the Santa Giusta lagoon, single observations should be evaluated in relation to the
353	proper sampling zone, not being representative of the whole coastal lagoon.
354	In this study, multivariate analyses revealed that community spatial patterns derived from
355	species and family abundance data were very similar to each other. Consistent results were
356	reported in many other works (i.a. Warwick, 1988; Ferraro and Cole, 1995; Olsgard et al.,
357	1998; Lardicci and Rossi, 1998; Mistri and Rossi, 2001; De Biasi et al., 2003; Dethier and
358	Schoch, 2006), demonstrating redundancy of information in large sets of benthic species data
359	for identifying significant differences among assemblages, in both polluted and unpolluted
360	environments. Our results showed that decreasing taxonomic resolution from species to
361	family was not related to a strong decrease of the overall spatial variability. On the contrary,
362	lumping species in higher taxonomic groups was usually considered leading to a probable
363	decrease in estimates of variability as a consequence of an "averaging effect" (Doak et al.,
364	1998; De Biasi et al., 2003). Analyses based on family abundances were effective in detecting
365	spatial patterns among the three zones of the lagoon, and they provided estimates of variance
366	components that were not substantially different from those detected at the species level. In
367	addition, spatial dispersion of samples was similarly described by both species and family
368	level and this was a novel finding compared to previous works investigating the TS
369	applicability. Such works have mainly looked for changes in the location of sample groups in
370	multivariate space at decreasing taxonomic levels of resolution, while the effects of TS on the
371	dispersion of sample groups were usually neglected (Terlizzi et al., 2008a). However,
372	explicitly analysing differences in dispersion among groups is important in order to obtain
373	more complete information as well as avoid misleading interpretation of results (Anderson,
374	2006). Thus in Santa Giusta lagoon, PERMDISP results clarified that differences in species
375	composition concerned almost exclusively spatial differences detected at the zone scale, while
376	spatial variability observed at site (or even area) scale was mostly due to differences in

377	dispersion. Similar spatial patterns were found at the two lowest taxonomic levels, probably
378	because of the high percentage of families represented by a single species as usually occurred
379	in brackish environments (Giangrande et al., 2005). Further aggregation at the class level
380	showed relevant changes in observed spatial patterns; in particular, the overall spatial
381	variability decreased reflecting a more homogenous distribution of class abundances within
382	the lagoon. As a consequence, few significant differences were detected among levels of each
383	investigated spatial scale. Meanwhile, the relatively higher variability among replicates
384	probably increased because of the uneven distribution of some organisms living in small
385	dense patches (e.g. Mytilaster minimus).
386	The usefulness of TS method has been evaluated and often promoted in order to streamline
387	expensive and time consuming sampling protocols, like those employed in soft bottom
388	macrofauna analyses (i.a. Olsgard et al., 1998; Terlizzi et al., 2003; Lampadariou et al., 2005;
389	Wlodarska Kowalczuk and Kedra, 2007). However, other possibilities were also investigated.
390	Lampadariou et al. (2005) compared results obtained using different mesh-size and type of
391	sampler; they indicated that small samples taken with corers and sieved at 0.5 mm provided a
392	large proportion of benthic spatial distribution, even if data were analysed at the family level.
393	Other studies examined single taxonomic groups as representative of the whole assemblages,
394	but contrasting outcomes emerged. While Olsgard et al. (2003) promoted polychaetes alone as
395	useful surrogates to describe soft bottom macrofauna distribution, in other cases reduced
396	taxonomic resolution was more effective than using a single taxonomic group (Anderson et
397	al., 2005a; Wlodarska Kowalczuk and Kedra, 2007). In Santa Giusta lagoon, different spatial
398	distributions were obtained analysing separately the three main taxonomic groups and none of
399	them reflected results obtained by the whole benthic assemblages. Therefore future studies
400	investigating macrobenthic spatial distribution of this lagoon should prefer the TS method to
401	analysis of a single taxonomic group.

402	As argued elsewhere, the relationship between time saving and taxonomic level changes from
403	case to case (Olsgard et al., 1998), depends on the number of species within a single family,
404	the taxonomical complexity of families and the availability of taxonomic expertise (Ferraro
405	and Cole, 1995; Dethier and Schoch, 2006). However, it has been calculated that generally the
406	cost of family level identification was 50% to 55% less than species level identification
407	(Ferraro and Cole, 1995; De Biasi et al., 2003). In our case, the time needed for identification
408	at family level was 63% less than the species level identification, considering that 33% of
409	families was represented by two or more species. However, the majority of species belonged
410	to polychaetes and our laboratory team has significant expertise in polychaetes. Resources
411	deriving from such cost reduction could be employed to plan more frequent surveys and/or to
412	adopt more complex spatial sampling designs with a high number of replicates, in order to
413	further minimize spatial variability caused by the dispersion effect. When the distribution of
414	organisms is patchy, it is probably more important to collect many replicates at different
415	spatial and temporal scales than to identify taxa at the finest resolution level (Morrisey et al.,
416	1992; Chapman, 1998). In Santa Giusta lagoon, our baseline detailed multiscale investigation
417	demonstrated that at least two sites (namely 16 samples) for each zone are needed to collect
418	the majority of species and therefore to describe correctly the spatial distribution of benthic
419	assemblages.
420	Results obtained in this study have important practical consequences for investigations on the
421	distribution of soft bottom macrofauna in brackish habitats, including those concerned with
422	environmental monitoring. In fact, the present study can be considered as a valuable example
423	for a rigorous approach in collecting data for ecological studies, when previous detailed
424	knowledge is scant. The spatial variability observed at all the examined scales indicated that
425	small-scale observations are unlikely to describe the spatial benthic distribution of the whole
426	lagoon (Foster, 1990). As a consequence, any <i>a priori</i> statement about composition, structure

427	and distribution of macrobenthic communities should be avoided, even in small brackish
428	environments usually considered as homogenous habitats. Furthermore, explicitly testing for
429	differences in dispersion among groups has been demonstrated to obtain a more accurate
430	interpretation of the detected spatial patterns and such an approach should be more frequently
431	adopted in future studies. Especially for routine monitoring programs, long term data sets at
432	the finest taxonomic level and large sampling effort are usually the preferred approach for
433	analyses of macrobenthic assemblages. Unfortunately, there are often many practical
434	difficulties such as reduced budgets or lack of well-trained taxonomists, and compromise
435	solutions are unavoidable. However the present study highlighted that reasonable choices and
436	useful advice can be obtained only if the planning of monitoring programs is proceeded by a
437	detailed baseline study (Terlizzi et al., 2003; 2008a), thus avoiding any a priori decision. In
438	particular, our results showed that in Santa Giusta lagoon, if resources are limited, analysing
439	different spatial scales considering the whole benthic assemblages at the family level may be
440	more important than classifying all individuals at the species level (Kingston and Riddle,
441	1989; Lampadariou et al., 2005). Although spatial patterns do not necessary remain constant
442	over time and further analyses at several temporal scales are needed, in future routine
443	investigations taxonomic costs can be probably reduced without losing the power to detect
444	macrobenthic spatial patterns, both in terms of location and dispersion effect. Since the most
445	frequent disturbance events (e.g. organic enrichment, eutrophication, chemical pollution) are
446	likely related to changes in spatial patterns of assemblages (Caswell and Cohen, 1991;
447	Warwick and Clarke, 1993; Fraschetti et al., 2001; Terlizzi et al., 2005), monitoring
448	programs, based on periodical surveys and TS, may be useful for a quick environmental
449	assessment. Further detailed analyses, like identification at the species level, should be carry
450	out if changes in spatial patterns are detected, in order to confirm and clarify disturbance
451	effects on assemblages. However, other disturbance events (e.g. invasion of alien species,

452	climate change) may act gradually and for example change the natural balance of competitive
453	interactions among phylogenetically close species, like species of the same genus or family;
454	in this case, disturbance effects can be detected only analysing the community at the finest
455	taxonomic level.
456	The present study expanded the current knowledge of macrobenthic assemblages in Santa
457	Giusta lagoon and emphasised the usefulness of multiscale approach to realistically describe
458	spatial patterns of variability. In addition, our results highlighted some helpful methodological
459	procedures, which should be promoted in order to better design future sampling designs in
460	this lagoon, as well as in other similar brackish environments.
461	
462	Acknowledgments
463	This work was funded by the Italian Ministry of Food, Agricultural and Forest Resources, the
464	University of Pisa and the University of Sassari as part of a study on Italian coastal lagoons.
465	The authors gratefully acknowledge Dr. John Widdows and three anonymous reviewers for
466	valuable comments on an early version of this manuscript.

467 References 468 Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. 469 Austral Ecology, 26, 32-46. 470 471 Anderson, M.J., 2006. Distance-based tests for homogeneity of multivariate dispersion. 472 Biometrics, 62, 245-253. 473 474 Anderson, M.J., ter Braak, C.J.F., 2003. Permutation tests for multi-factorial analysis of 475 variance and regression. Journal of Statistical Computation and Simulation, 73, 85-113. 476 477 Anderson, M.J., Diebel, C.E., Blom, W.M., Landers, T.J., 2005a. Consistency and variation in 478 kelp holdfast assemblages: spatial patterns of biodiversity for the major phyla at different 479 taxonomic resolutions. Journal of Experimental Marine Biology and Ecology, 320, 35-56. 480 481 Anderson, M.J., Connell, S.D., Gillanders, B.M., Diebel, C.E., Bolm, W.M., Saunders, J.E., 482 Landers, T.J., 2005b. Relationships between taxonomic resolution and spatial scales of 483 multivariate variation. Journal of Animal Ecology, 74, 636–646. 484 485 Archambault, P., Bourget, E., 1996. Scales of coastal heterogeneity and benthic intertidal 486 species richness, diversity and abundance. Marine Ecology Progress Series, 136, 111-121. 487 488 Barnes, R.S.K., 1991. European estuaries and lagoons, a personal overview of problems and 489 possibilities for conservation and management. Aquatic Conservation: Marine and Freshwater 490 Ecosystems, 1, 79-87. 491 492 Basset, A., Sabetta, L., Fonnesu, A., Mouillot, D., Do Chi, T., Viaroli, P., Giordani, G., 493 Reizopoulou, S., Abbiati, M., Carrada, G.C., 2006. Typology in Mediterranean transitional 494 waters: new challenges and perspectives. Aquatic Conservation: Marine and Freshwater 495 Ecosystems, 16, 441-455. 496 497 Benedetti-Cecchi, L., 2001a. Variability in abundance of algae and invertebrates at different 498 spatial scales on rocky sea shores. Marine Ecology Progress Series, 215, 79-92. 499 500 Benedetti-Cecchi, L., 2001b. Beyond BACI: optimization of environmental sampling designs 501 through monitoring and simulation. Ecological Applications, 11, 783-799. 502 503 Caswell, H., Cohen, J.E., 1991. Communities in patchy environments: a model of disturbance, competition and heterogeneity. In: Kolasa J., Pickett STA (Eds.) Ecological heterogeneity. 504 505 Springer-Verlag, New York, pp. 97-122. 506 507 Chapman, M.G., 1998. Relationships between spatial patterns of benthic assemblages in a 508 mangrove forest using different levels of taxonomic resolution. Marine Ecology Progress 509 Series, 162, 71–78. 510 511 Chapman, M.G., Underwood, A.J., 2008. Scales of variation of gastropod densities over 512 multiple spatial scales: comparisons of common and rare species. Marine Ecology Progress 513 Series, 354, 147-160.

- 515 Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure.
- 516 Australian Journal of Ecology. 18, 117-143.

517

518 Clarke, K.R., Gorley, R.H., 2001. PRIMER V6: User Manual/Tutorial. Primer-e, Plymouth, 519 United Kingdom.

520

521 Cognetti, G., 1982. Adaptative strategy of brackish-water fauna in pure and polluted waters. 522 Marine Pollution Bulletin, 13, 247-250.

523

524 Coleman, M.A., Browne, M., Theobalds, T., 2002. Small-scale spatial variability in intertidal 525 and subtidal turfing algal assemblages and the temporal generality of these patterns. Journal 526 of Experimental Marine Biology and Ecology, 267, 55-74.

527

528 De Biasi, A.M., Bianchi, C.N., Morri, C., 2003. Analysis of macrobenthic communities at 529 different taxonomic levels: an example from an estuarine environment in the Ligurian Sea 530 (NW Mediterranean). Estuarine, Coastal and Shelf Science, 58, 99-106.

531

532 Dethier, M.N., Schoch, G.C., 2006. Taxonomic sufficiency in distinguishing natural spatial 533 patterns on an estuarine shoreline. Marine Ecology Progress Series, 306, 41-49.

534

- 535 Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., Omalley, R.E., Thomson, D., 1998. 536 The statistical inevitability of stability-diversity relationships in community ecology.
- 537 American Naturalist, 151, 264–276.

538

539 Edgar, G.J., Barret, N.S., 2002. Benthic macrofauna in Tasmanian estuaries: scales of 540 distribution and relationships with environmental variables. Journal of Experimental Marine 541 Biology and Ecology, 270, 1-24.

542

543 Ekman, J.E., 1979. Small-scale patterns and processes in a soft substratum, intertidal 544 community. Journal of Marine Research, 37:437.

545

546 Ellis, D., 1985. Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin, 16, 547 459.

548

549 Ferraro, S.P., Cole, F.A., 1995. taxonomic level sufficient for assessing pollution impacts on 550 the Southern California Bight macrobenthos – revisited. Environmental Toxicology and 551 Chemistry, 6, 1031-1040.

552

553 Foster, M.S., 1990. Organization of macroalgal assemblages in the North Pacific: the 554 assumption of homogeneity and the illusion of generality. Hydrobiologia, 192, 21-33.

555

556 Fraschetti, S., Bianchi, C.N., Terlizzi, A., Fanelli, G., Morri, C., Boero, F., 2001. Spatial 557 variability and human disturbance in shallow subtidal hard substrate assemblages: a regional 558 approach. Marine Ecology Progress Series, 212, 1-12.

559

560 Fraschetti, S., Terlizzi, A., Benedetti-Cecchi, L., 2005. Patterns of distribution of marine 561 assemblages from rocky shores: evidence of relevant scales of variation. Marine Ecology 562 Progress Series, 296, 13-29.

- Giangrande, A., Licciano, M., Musco, L., 2005. Polychaetes as environmental indicators revisited. Marine Pollution Bulletin, 50, 1153-1162.
- 566
 567 Guelorget, O., Perthuisot, J.P., 1983. Le domaine paralique. Expressions géologiques,
 568 biologiques et économiques du confinement. Travaux du laboratoire de géologie, 16, 1-36.
- Hewitt, J.E., Thrush, S.F., Cummings, V.J., Turner, S.J., 1998. The effect of changing sampling scales on our ability to detect effects of large-scale processes on communities. Journal of Experimental Marine Biology and Ecology, 227, 251-264.

569

573

594

598

- Hewitt, J.E., Thrush, S.F., Legendre, P., Cummings, V.J., Norkko, A., 2002. Integrating heterogeneity across spatial scales: interactions between *Atrina zelandica* and benthic macrofauna. Marine Ecology Progress Series, 239, 115-128.
- Karakassis, I., Hatziyanni, E., 2000. Benthic disturbance due to fish farming analyzed under different levels of taxonomic resolution. Marine Ecology Progress Series, 203, 247-253.
- Kingston, P.F., Riddle, M.J., 1989. Cost Effectiveness of Benthic Faunal Monitoring. Marine
 Pollution Bulletin, 20, 490-496.
- Kotliar, N.B., Wiens, J.A., 1990. Multiple Scales of Patchiness and Patch Structure: A Hierarchical Framework for the Study of Heterogeneity. Oikos, 59, 253-260.
- Lampadariou, N., Karakassis, I., Pearson, T.H., 2005. Cost/benefit analysis of a benthic monitoring programme of organic enrichment using different sampling and analysis methods. Marine Pollution Bulletin, 50, 1606-1618.
- Lardicci, C., Abbiati, M., Crema, R., Morri, C., Bianchi, C.N., 1993. The distribution of polychaetes along eEnvironmental gradients: an example from the Orbetello lagoon, Italy. Marine Ecology, 14, 35-52.
- Lardicci, C., Rossi, F., Castelli, A., 1997. Analysis of macrozoobenthic community structure after severe dystrophic crises in a Mediterranean coastal lagoon. Marine Pollution Bulletin, 34, 536-547.
- Lardicci, C., Rossi, F., 1998. Detection of stress on macrozoobenthos: evaluation of some methods in a coastal Mediterranean lagoon. Marine Environmental Research, 45, 367-386.
- Lardicci, C., Como, S., Corti, S., Rossi, F., 2001. Recovery of the macrozoobenthic community after severe dystrophic crises in a Mediterranean coastal lagoon (Orbetello, Italy). Marine Pollution Bulletin, 42, 202-214.
- 605
 606 Lasiak, T., 2003. Influence of taxonomic resolution, biological attributes and data
 607 transformations on multivariate comparisons of rocky macrofaunal assemblages. Marine
 608 Ecology Progress Series, 250, 29-34.
- 610 Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology, 73, 1943-1967.
- 612 Lubchenco, J., Olson, A.M., Brubaker, L.B., Carpenter, S.R., Holland, M.M., Hubbell, S.P.,
- 613 Levin, S.A., MacMahon, J.A., Matson, P.A., Meliello, J.M., Mooney, H.A., Peterson, C.H.,

- Pulliam, H.R., Real, L.A., Regal, P.J., Risser, P.G., 2001. The suitable biosphere initiative: an
- 615 ecological research agenda. Ecology, 72, 371-412.
- 617 Luglié, A., Sechi, N., Oggiano, G., Sanna, G., Tapparo, A., 2002. Ecological assessment of
- Santa Giusta Lagoon (Sardinia, Italy). Annali di chimica, 92, 239-247.
- Mistri, M., Rossi, R., 2001. Taxonomic sufficiency in lagoonal ecosystems. Journal of Marine Biological Association of U.K., 81, 339-340.
- Morrisey, D., Howitt, L., Underwood, A.J., Stark, J.S., 1992. Spatial variation in softsediment benthos. Marine Ecology Progress Series, 81, 197-204.
- Noren, K., Lindegarth, M., 2005. Spatial, temporal and interactive variability of infauna in Swedish coastal sediments. Journal of Experimental Marine Biology and Ecology, 317, 53-628
- Olsgard, F., Brattegard, T., Holthe T., 2003. Polychaetes as surrogates for marine
 biodiversity: lower taxonomic resolution and indicator groups. Biodiversity and Conservation,
 12, 1033-1049.
- Olsgard, F., Somerfield, P.J., Carr, M.R., 1998. Relationship between taxonomic resolution, macrobenthic community patterns and disturbance. Marine Ecology Progress Series, 172, 25-36.
- 638 Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: Annual Review, 16, 229-311.
- Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I.M., Barcala, E., Hegazi, M.I., Quispe, J., 2007.
 Detecting changes resulting from human pressure in a naturally quick-changing and
 heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons.
 Estuarine, Coastal and Shelf Science, 75, 175-188.
- 646
 647 Ramsar convention, 1971. Convention on wetlands of international importance especially as
 648 waterfowl habitat. Ramsar (Iran), 2 February 1971. UN Treaty Series No. 14583. As amended
 649 by the Paris Protocol, 3 December 1982, and Regina Amendments, 28 May 1987 (available at
 650 www.ramsar.org/key conv e.htm)
- Rossi, F., Lardicci, C., 2002. Role of the nutritive value of sediment in regulating population dynamics of the deposit-feeding polychaete *Streblospio shrubsolii*. Marine Biology, 140, 1129-1138.
- Ruffo, S., 1998. The Amphipoda of the Mediterranean (959 pp). Memoires de l'institut Oceanographique de Monaco, 13.
- 659 Searle, S.R., Casella, G., McCulloch, C.E., 1992. Variance components. New York, Wiley. 660
- Sechi, N., Fiocca, F., Sannio, A., Lugliè, A., 2001. Santa Giusta lagoon (Sardinia):
- phytoplankton and nutrients before and after waste water diversion. Journal of Limnology, 60,
- 663 194-200.

629

633

637

664	
665	Snelgrove, P.V.R., 1998. The biodiversity of macrofaunal organisms in marine sediments.
666	
667	
668	Stark, J.S., Riddle, M.J., Rodney, D.S., 2003. Human impacts in soft-sediments assemblages
669	at Casey Station, East Antarctica: spatial variation, taxonomic resolution and data
670	transformation. Australian Ecology, 28, 287-304.
671	
672	Terlizzi, A., Bevilacqua, S., Fraschetti, S., Boero, F., 2003. Taxonomic sufficiency and the
673	increasing insufficiency of taxonomic expertise. Marine Pollution Bulletin, 46, 556-561.
674	
675	Terlizzi, A., Scuderi, D., Fraschetti, S., Anderson, M.J., 2005. Quantifying effects of pollution
676	
677	
678	
679	Terlizzi, A., Anderson, M.J., Bevilacqua, S., Fraschetti, S., Wlodarska Kowalczuk, M.,
680	
681	heterogeneity in species composition? Diversity and Distributions, in press (doi:
682	10.1111/j.1472-4642.2008.00551.x).
683	
684	Terlizzi, A., Bevilacqua, S., Scuderi, D., Fiorentino, D., Guarnirei, G., Giangrande, A.,
685	Licciano, M., Felline, S., Fraschetti, S., 2008b. Effects of offshore platforms on soft-bottom
686	
687	
688	
689	Thrush, S.F., Hewitt, J.E., Pridmore, R.D., 1989. Patterns in the spatial arrangements of
690	
691	
692	Thrush, S.F., 1991. Spatial patterns in soft-bottom communities. Trends in Ecology and
693	Evolution, 6, 75-79.
694	
695	Underwood, A.J., 1981. Techniques of analysis of variance in experimental marine biology
696	and ecology. Oceanography and Marine Biology: Annual Review, 19, 513-605.
697	
698	Underwood, A.J., 1997. Experiments in ecology: their logical design and interpretation using
699	analysis of variance. Cambridge: Cambridge University Press.
700	
701	Underwood, A.J., Chapman, M.G., 1996. Scales of spatial patterns of distribution of intertidal
702	invertebrates. Oecologia, 107, 212-224.
703	
704	
705	make progress on processes without understanding the patterns. Journal of Experimental
706	Marine Biology and Ecology, 250, 97-115.
707	
708	Vanderklift, M.A., Ward, T.J., Jacoby, C.A., 1996. Effect of reducing taxonomic resolution
709	
710	
711	
712	Warwick, R.M., 1988. The level of taxonomic discrimination required to detect pollution
713	effects on marine benthic communities. Marine pollution Bulletin, 19, 259-268.

714	
715	Warwick, R.M., 1993. Environmental impact studies on marine communities: pragmatical
716	considerations. Australian Journal of Ecology, 18, 63-80.
	Considerations. Australian Journal of Ecology, 16, 63-60.
717	
718	Warwick, R.M., Clarke, K.R., 1993. Increased variability as a symptom of stress in marine
719	communities. Journal of Experimental Marine Biology and Ecology, 172, 215-226.
720	
721	Wilson, W.H., 1991. Competition and predation in marine soft sediment communities.
722	Annual Review of Ecology and Systematic, 21, 221-241.
723	Timinum Ito (10) of Boology with Systematic, 21, 221 211
724	Włodarska Kowalczuk, M., Kedra, M., 2007. Surrogacy in natural patterns of benthic
725	distribution and diversity: selected taxa versus lower taxonomic resolution. Marine Ecology
726	Progress Series, 351, 53-63.
727	
728	Ysebaert, T., Herman, P.M.J., 2002. Spatial and temporal variation in benthic macrofauna and
729	relationship with environmental variables in an estuarine, intertidal soft-sediment
730	environment. Marine Ecology Progress Series, 244, 105-124.
731	
732	Ysebaert, T., Herman, P.M.J., Meire, P., Craeymeersch, J., Verbeek, H., Heip, C.H.R., 2003.
733	Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde
734	estuary, NW Europe. Estuarine, Coastal and Shelf Science, 57, 335-355.
751	estuary, 1444 Europe. Estuarine, Coustar una Silon Science, 37, 333-333.
	A Y
4	
4	
\blacksquare	
V	

Tables

N	Sobs			% Sobs			
	alpha	beta	gamma	alpha	beta	gamma	
32	75	60	58	100	100	100	
24	72	58	56	96	97	97	
16	67	55	53	89	92	91	
8	57	48	46	76	80	79	

Table 1. The local species richness estimated by accumulation curves (Figure 5) in correspondence with different number of sampling replicates in each zone of the lagoon. N: number of replicate samples analysed; Sobs: number of species observed; % Sobs: percentage of species observed in comparison with the total species number collected.

species	Av. Transf. Abundance <u>alpha</u>	Av. Tran Abundance		Av. Transf. Abundance gamma
Cymodoce truncata	4.26	< 5.11	<	7.01
Monocorophium sextonae	3.33	< 4.20	>	-
Microdeutopus anomalus	0.74	< 4.09	>	0.15
Abra ovata	1.31	< 3.67	>	1.86
Loripes lacteus	1.50	< 2.73	>	1.27
Phylo foetida	0.52	< 3.18	>	0.06
Minuspio multibranchiata	1.57	< 3.60	<	5.28
Cumella limicola	1.38	< 3.11	>	1.01
Hydroides elegans	1.96	> 1.32	<	2.22
Pseudopolydora antennata	1.67	< 2.00	>	0.75
Neanthes caudata	1.12	< 2.85	>	0.82
Cirriformia tentaculata	2.07	> 0.32	<	1.02
Cerastoderma glaucum	0.33	< 1.96	>	0.37
Corophium acherusicum	1.10	< 1.17	>	-
Pseudolirius kroyerii	1.49	> 0.09	<	0.50
Tapes aurea	1.28	> 0.99	<	0.50
Iphinoe serrata	1.00	< 1.49	>	0.15
Mytilaster minimus	0.23	< 0.70	<	9.69
Tanais dulongii	0.27	< 0.91	<	6.83
Nainereis laevigata	0.09	< 0.53	<	2.46
Dynamene bidentata	0.73	> 1.04	<	2.17
Tapes decussata	1.63	> 1.10	>	0.08
Ophiodromus pallidus	0.31	< 0.44	<	1.46
Podarkeopsis capensis	0.59	> 0.46	<	1.83
Cumella limicola	1.38	< 3.11	>	1.01

Table 2. Results of SIMPER analysis. Average abundance of species contributing to most of the Bray-Curtis dissimilarity between zones (cut-off value = 60%) (data square-root transformed). The highest average abundance value is in bold.

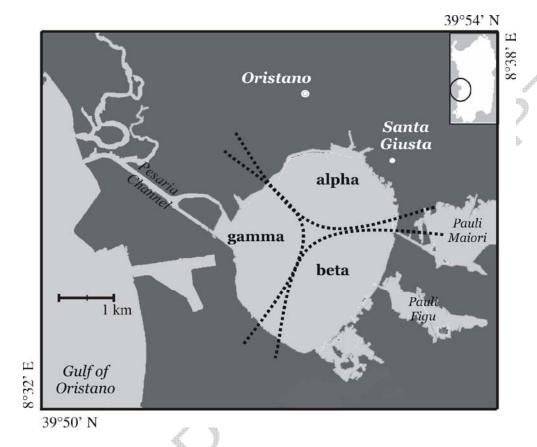
Taxonomic Level	Source	df	SS	MS	F	P	Variance Component
Species	Zone	2	77637.7	38818.8	10.977	0.004	1102.6
Species	Site	9	31829.0	3536.6	2.182	0.004	239.5
	Area	36	58354.7	1621.0	2.071	0.002	419.2
	Residual	48	37561.7	782.5	_,,,,	****	782.5
	Total	95	205303.1				2543.8
Family	Zone	2	69723.2	34861.6	11.409	0.0004	993.9
	Site	9	27501.4	3055.7	2.699	0.0002	240.5
	Area	36	40756.8	1132.1	1.935	0.0002	273.6
	Residual	48	28077.6	584.9		<i>→ ▼</i>	584.9
	Total	95	166059			1 1 T	2092.9
Class	Zone	2	13944.7	6972.3	5.777	0.0164	180.2
	Site	9	10862.3	1206.9	3.713	0.0002	110.2
	Area	36	11703.0	325.1	1.501	0.019	54.3
	Residual	48	10395.7	216.6			216.6
	Total	95	46905.7		1		561.2

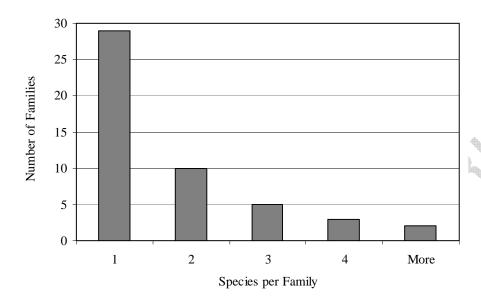
Table 3. Permutational multivariate analysis of variance based on the Bray-Curtis dissimilarity for square-root transformed data of species (83 variables), families (43 variables) and classes (4 variables) abundance. Analysis was carried out using 4999 permutations of residuals under a reduced model. Estimates of multivariate variation at each spatial scale were included.

		Spe	Species		Family		Class	
Source	Pairwise	L+D	D	L+D	D	L+D	D	
Zones	alpha - beta	0.0304	0.0564	0.0306	0.1424	0.1102	0.1664	
	alpha - gamma	0.0244	0.0272	0.0290	0.0242	0.0290	0.0902	
	beta - gamma	0.0266	0.0848	0.0294	0.0646	0.0852	0.7190	
		Spe	cies	Fam	nily	Class		
Source	Pairwise	L+D	D	L+D	D	L+D	D	
Sites within	1 - 2	0.0016	0.2030	0.0006	0.2612	0.0124	0.9206	
alpha zone	1 - 3	0.1402	0.5904	0.1114	0.4466	0.6660	0.9450	
•	1 - 4	0.0136	0.0172	0.0034	0.1162	0.0242	0.2228	
	2 - 3	0.0012	0.1018	0.0006	0.0894	0.0024	0.8746	
	2 - 4	0.0004	0.0008	0.0002	0.0088	0.0006	0.2058	
	3 - 4	0.1132	0.1552	0.0492	0.6874	0.2186	0.2880	
Sites within								
beta zone	1 - 2	0.1798	0.0050	0.1332	0.0014	0.5780	0.0106	
	1 - 3	0.0090	0.2696	0.0046	0.1976	0.1072	0.6306	
	1 - 4	0.0508	0.1624	0.0430	0.2780	0.3208	0.9258	
	2 - 3	0.0010	0.1760	0.0004	0.1580	0.0178	0.0584	
	2 - 4	0.0052	0.0004	0.0014	0.0002	0.1098	0.0044	
	3 - 4	0.0992	0.0216	0.0604	0.0354	0.1446	0.5680	
Sites within								
gamma zone	1 - 2	0.7466	0.1692	0.7482	0.3752	0.4638	0.4212	
	1 - 3	0.0004	0.1422	0.0006	0.2778	0.1112	0.3692	
	1 - 4	0.0698	0.5336	0.1238	0.4554	0.1380	0.9884	
	2 - 3	0.0026	0.9834	0.0018	0.8900	0.1156	0.9268	
	2 - 4	0.0014	0.3814	0.0014	0.7870	0.0148	0.4952	
	3 - 4	0.0004	0.3526	0.0004	0.6556	0.0022	0.4504	

Table 4. P-values for pairwise tests of significant variability among "zones" and among "sites" in each zone, for different levels of taxonomic resolution. "L+D" columns are P-values obtained by PERMANOVA, therefore indicating a "location" and/or a "dispersion" effect. "D" columns are P-values obtained by PERMDISP, therefore indicating only a "dispersion" effect. Results that are not significant at the 0.05 level are given in bold type. Note that the smallest possible P-value with 4999 permutations is 0.0002.

		Polychaetes		Crustaceans		Molluscs	
Source	Pairwise	L+D	D	L+D	D	L+D	D
among Zones	alpha - beta	0.0272	0.0290	0.0304	0.0564	0.0294	0.0600
	alpha - gamma	0.0288	0.0278	0.0244	0.0272	0.0286	0.1118
	beta - gamma	0.0274	0.9744	0.0266	0.2794	0.0290	0.0558
						4	
		Polychaetes		Crustaceans		Molluses	
Source	Sites	L+D	D	L+D	D	L+D	D
Sites within					A		
alpha zone	1 - 2	0.0146	0.4206	0.0004	0.3502	0.8044	0.8878
	1 - 3	0.0888	0.9636	0.1080	0.2082	0.9148	0.2124
	1 – 4	0.0362	0.1118	0.0014	0.2314	0.9684	0.3426
	2 - 3	0.0010	0.4020	0.0006	0.0590	0.6906	0.1934
	2 - 4	0.0006	0.0062	0.0002	0.0658	0.6342	0.3874
	3 – 4	0.0448	0.1234	0.2136	0.9264	0.8888	0.0720
Sites within							
beta zone	1 - 2	0.0230	0.0482	0.1104	0.1990	0.8554	0.9824
	1 - 3	0.0002	0.0624	0.0374	0.6736	0.1358	0.0010
	1 - 4	0.0058	0.5592	0.1298	0.0704	0.8174	0.2234
	2 - 3	0.0002	0.7858	0.0002	0.0288	0.1464	0.0018
	2 - 4	0.0004	0.0172	0.0166	0.0016	0.9602	0.2324
	3 – 4	0.0262	0.0222	0.6834	0.0710	0.1396	0.1358
Sites within			100				
gamma zone	1 – 2	0.9478	0.9650	0.3334	0.1412	0.3350	0.5506
	1-3	0.0010	0.5756	0.0046	0.2748	0.4470	0.7008
	1 – 4	0.0318	0.2308	0.6134	0.0072	0.1774	0.0036
	2 - 3	0.0026	0.6246	0.0264	0.8588	0.3014	0.8382
	2-4	0.0048	0.3996	0.0294	0.2960	0.0282	0.0008
	3 – 4	0.0002	0.1702	0.0150	0.2916	0.0606	0.0016


Table 5. P-values for pairwise tests of significant variability among "zones" and among "sites" in each zone, for the three main taxonomic groups. "L+D" columns are P-values obtained by PERMANOVA, therefore indicating a "location" and/or a "dispersion" effect. "D" columns are P-values obtained by PERMDISP, therefore indicating only a "dispersion" effect. Results that are not significant at the 0.05 level are given in bold type. Note that the smallest possible P-value with 4999 permutations is 0.0002.


Figure Captions

- Figure 1: The Santa Giusta lagoon. The three sampling zones are delimited by dotted lines
- **Figure 2**. Number of taxonomic families represented in samples and number of species per family. 'More' data points were two, respectively with 6 and 9 species per family
- **Figure 3**. Distribution of species according to the number of areas occupied out of a total of 48 areas. pol: polychaetes; cru: crustaceans; mol: molluscs
- **Figure 4**. Mean abundance (number of individuals), with 95% confidence interval, of the three main faunal groups at each of the three sampling zones of Santa Giusta Iagoon (n=32 per zone)
- **Figure 5**. Species-sample accumulation curves for each zone of the lagoon. Data were based on 999 permutations of replicate samples
- **Figure 6.** Multivariate variance components at each of the four spatial scales for all species, as obtained using mean squares from PERMANOVA performed with different transformations (nt = no transformation; r2 = square root; r4 = fourth root; pa = presence/absence). The values plotted are the square root of the variance components, in order to put the values on the scale of the original Bray-Curtis dissimilarities (expressed as percentage difference between assemblages)
- **Figure 7**. Multivariate variance components at each of the four spatial scales for all organisms collected using species, family and class taxonomic levels. The values plotted are the square root of the sizes of the variance components (Table 3)
- **Figure 8**. Multivariate variance components at each of the four spatial scales for the three taxonomic group collected. The values plotted are the square root of the sizes of the variance components, obtained using mean squares from PERMANOVA performed with square root transformed data. All components were statistically significant at p<0.001, except for molluscs at the site scale which were not significant

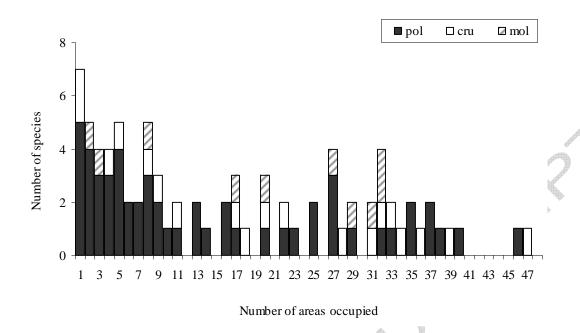
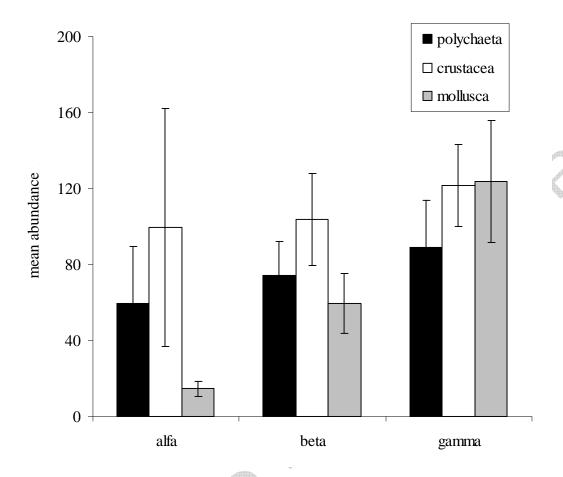
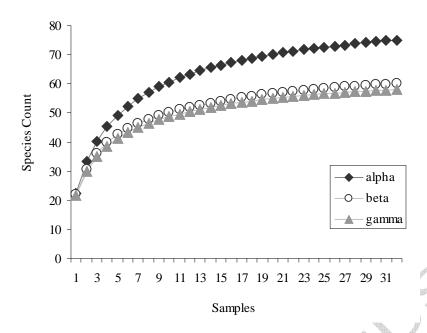
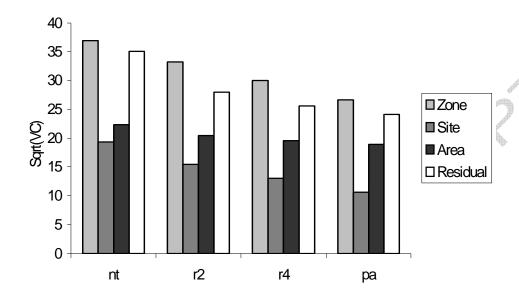
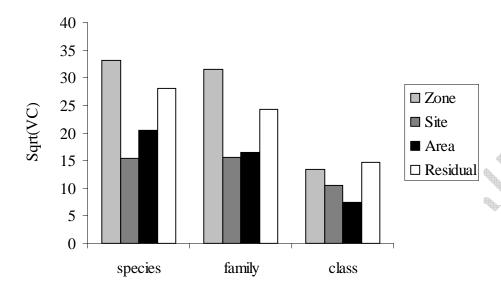

Figure 9. NMDS plots on the basis of all taxa at species (a), family (b) and class (c) level of taxonomic resolution. Bray-Curtis dissimilarities of square-root transformed abundance values were used

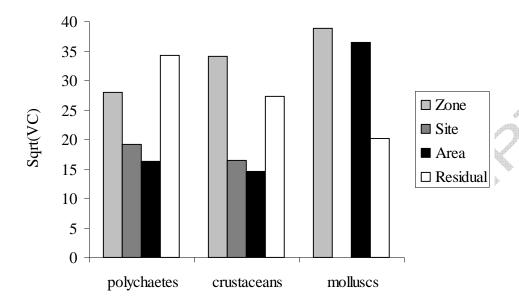
Figure 1.




Figure 2. Number of taxonomic families represented in samples and number of species per family. 'More' data points were two, respectively with 6 and 9 species per family


Figure 3. Distribution of species according to the number of areas occupied out of a total of 48 areas. pol: polychaetes; cru: crustaceans; mol: molluscs


Figure 4. Mean abundance (number of individuals), with 95% confidence interval, of the three main faunal groups at each of the three sampling zones of Santa Giusta lagoon (*n*=32 per zone)


Figure 5. Species-sample accumulation curves for each zone of the lagoon. Data were based on 999 permutations of replicate samples.

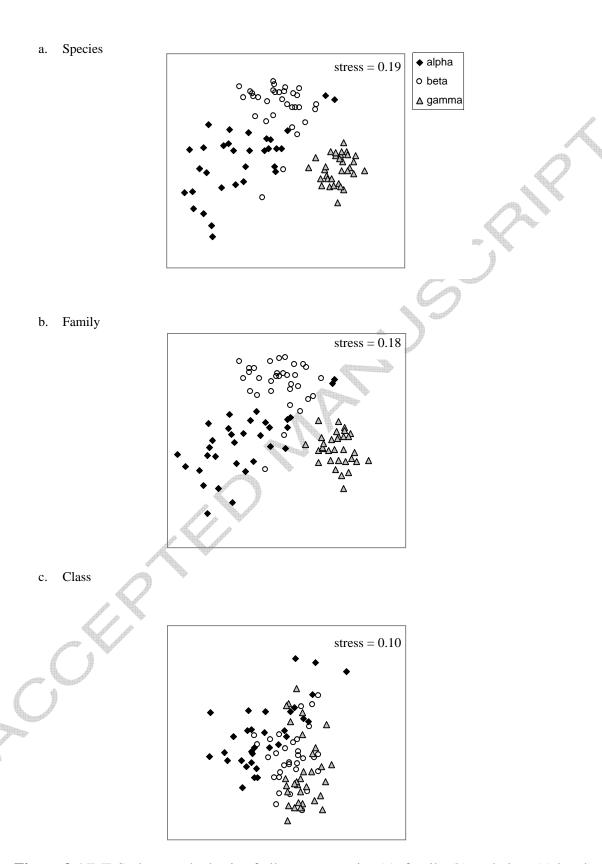

Figure 6. Multivariate variance components at each of the four spatial scales for all species, as obtained using mean squares from PERMANOVA performed with different transformations (nt = no transformation; r2 = square root; r4 = fourth root; pa = presence/absence). The values plotted are the square root of the variance components, in order to put the values on the scale of the original Bray-Curtis dissimilarities (expressed as percentage difference between assemblages)

Figure 7. Multivariate variance components at each of the four spatial scales for all organisms collected using species, family and class taxonomic levels. The values plotted are the square root of the sizes of the variance components (Table 3)

Figure 8. Multivariate variance components at each of the four spatial scales for the three taxonomic group collected. The values plotted are the square root of the sizes of the variance components, obtained using mean squares from PERMANOVA performed with square root transformed data. All components were statistically significant at p<0.001, except for molluscs at the site scale which were not significant.

Figure 9. NMDS plots on the basis of all taxa at species (a), family (b) and class (c) level of taxonomic resolution. Bray-Curtis dissimilarities of square-root transformed abundance values were used