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Abstract 12 

The effects of taxonomic resolution on the variance estimates of macrobenthic assemblages 13 

were studied at four spatial scales in a Mediterranean coastal lagoon. The assemblages 14 

exhibited significant differences at all the investigated scales; however, spatial variability was 15 

mainly associated with the smallest and the largest scales. The decrease of taxonomic 16 

resolution (from species to family) was not related to a decrease of the overall variability and 17 

similar estimates of variance components were obtained using species and family resolution 18 

levels. The ordination models derived from species and family abundances were very similar 19 

both in terms of location and dispersion effect, while further aggregation to the class level 20 

began to alter the observed spatial patterns. In future studies aimed at assessing changes in the 21 

lagoon, resources derived from the cost reductions achieved using family level could be 22 

employed to plan more frequent surveys and/or to adopt complex spatial sampling designs 23 

with a high number of replicates. 24 

 25 
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 28 

1. Introduction 29 

Macrobenthic invertebrates are an essential component in soft-sediment environments playing 30 

important roles in ecosystem processes, such as dispersion, burial, nutrient cycling and energy 31 

flow (Snelgrove, 1998). A deep knowledge of spatial variability patterns in macrobenthic 32 

assemblages is relevant to properly characterise one of the major sources of biotic diversity in 33 

natural environments; moreover, such information represents a requirement to develop 34 

strategies of management and conservation (e.g. Lubchenco et al., 1991), as well as to advise 35 

suitable guidelines for periodical monitoring programs (e.g. Underwood, 1997). Soft bottom 36 

environments are usually considered homogeneous habitats; however structural analyses in 37 

marine and brackish systems have repeatedly demonstrated that patchiness of macrofaunal 38 

assemblages is a common feature at both small-medium scales, (Thrush et al., 1989; Hewitt et 39 

al., 2002; Noren and Lindegarth, 2005) and large scales (Morrisey et al., 1992; Edgar and 40 

Barret, 2002; Ysebaert and Herman, 2002). In particular, those previous studies emphasized 41 

the lacking of a single correct scale at which assemblages can be described (Levin, 1992), 42 

since different patterns of distribution can be obtained depending on the spatial scale of 43 

observation. The description of the distributional patterns at multiple spatial scales and 44 

identification of the most relevant ones are needed to formulate possible explanations  about 45 

ecological processes, or unnatural impacts structuring ecosystems (Underwood and Chapman, 46 

1996; Underwood et al., 2000;  Ysebaert et al., 2003). Furthermore, such information can be 47 

useful for avoiding erroneous interpretations of spatial patterns observed at a particular scale 48 

and also to advise useful guidelines for routine environmental monitoring programs. 49 

In order to estimate the proportion of variability associated with each examined scale and to 50 

identify the most relevant spatial scale, the hierarchical sampling approach is considered the 51 

most appropriate method (Underwood, 1997; Hewitt et al., 1998). In hierarchical designs 52 
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small-scaled sampling units are nested within larger-scaled ones, allowing unconfounded 53 

statistical comparisons among each spatial scale (Underwood, 1981; Kotliar and Wiens, 54 

1990). Nested designs have been successfully used to investigate populations and 55 

assemblages across a wide range of marine habitats and organisms. Most studies focused on 56 

intertidal and subtidal rocky shores (i.a. Archambault and Bourget, 1996; Underwood and 57 

Chapman, 1996; Benedetti-Cecchi, 2001a; Fraschetti et al., 2001; 2005; Chapman and 58 

Underwood, 2008), while soft-bottoms have been less explored (Morrisey et al., 1992; Stark 59 

et al., 2003; Noren and Lindegarth, 2005; Terlizzi et al., 2008b). 60 

The increase of soft bottom macrobenthic studies is often hidden because identifying and 61 

enumerating all organisms are time-consuming and labour-intensive processes (Warwick, 62 

1993; Olsgard et al., 1998), that  requires taxonomic expertise (Terlizzi et al., 2003). In the 63 

last two decades, many studies have analysed data at several taxonomic resolutions, showing 64 

that results obtained using species or family level are very similar (i.a. Warwick, 1988; 65 

Vanderklift et al., 1996; Olsgard et al., 1998; Karakassis and Hatziyanni, 2000; Lampadariou 66 

et al., 2005; Wlodarska-Kowalczuk and Kedra, 2007). Identifying a taxonomic level higher 67 

than species that is sufficient for detecting differences in assemblage composition without 68 

losing important information is a concept termed “taxonomic sufficiency” (TS, Ellis, 1985). 69 

The TS method might have some practical implications, in particular routine monitoring 70 

programs could become less expensive and faster than those conducted at the species level 71 

resolution and therefore macrobenthic assemblages could be analysed more frequently. 72 

However, at present, most studies have usually compared different levels of TS at a single 73 

spatial scale (Vanderklift et al., 1996; Olsgard et al., 1998; Karakassis and Hatziyanni, 2000; 74 

De Biasi et al., 2003; Wlodarska-Kowalczuk and Kedra, 2007), while few researchers have 75 

investigated the effects of TS on the spatial distribution patterns observed at multiple scales 76 

(Chapman, 1998; Anderson et al., 2005; Dethier and Schoch, 2006). Moreover in these 77 
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previous works, spatial variability was usually not distinguished in relation to differences in 78 

location or dispersion among groups of samples, while the ecological heterogeneity is 79 

considered a valuable feature of any habitat which can provide important information on 80 

biological assemblages (Anderson, 2006; Terlizzi et al., 2008a).  81 

In the present study, abundance and composition of  soft bottom benthic macrofaunal 82 

assemblages in a Western Mediterranean coastal lagoon were described with particular 83 

attention to their variability across different spatial scales. The Santa Giusta lagoon can be 84 

considered as representative of small microtidal brackish environments characterizing the 85 

Mediterranean region (Basset et al., 2006). Coastal lagoons are areas of considerable 86 

naturalistic interest but often are located close to urban or industrial centres, therefore they are 87 

possibly affected by direct (e.g. sewage discharge, aquaculture) or indirect (e.g. 88 

eutrophication) human activities (i.a. Barnes, 1991; Lardicci et al., 2001). Given the 89 

naturalistic and economic importance of these biotopes, research that may provide appropriate 90 

quantitative data is relevant for their conservation and management. 91 

In this study, a hierarchical sampling design including four spatial scales (ranging from 92 

meters up to thousands of metres) was used i) to estimate the relative importance and test 93 

statistical significance of macrofauna variability at different spatial scales, in order to identify 94 

the spatial scale associated with the highest variability; ii) to examine if spatial patterns are 95 

influenced mainly by changes in species composition or relative abundances, comparing 96 

results obtained from several transformations of species abundance; and iii) to analyse if 97 

lower levels of taxonomic resolution (family and class) show similar spatial patterns with 98 

respect to those obtained at species level, both in terms of location and dispersion effects. 99 

Results will allow to increase the knowledge of macrobenthic spatial distribution in Santa 100 

Giusta lagoon and to assess the applicability of TS method for decreasing time and cost in 101 

subsequent routine surveys. The methodological approach employed in the present 102 
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investigation could provide interesting practical implications for future studies, not only in 103 

this lagoon, but also in other similar brackish environments. 104 

 105 

2. Materials and Methods 106 

2.1 Study area and sampling 107 

The Santa Giusta lagoon (Western Mediterranean, Italy) is one of the largest coastal brackish 108 

environments of Sardinia island, it is a polyhaline basin located along the central-western 109 

coast of Sardinia. The lagoon is included in the Ramsar convention (1971) and belongs to a 110 

complex system of transitional waters of high natural and economic value. The Santa Giusta 111 

lagoon is approximately circular in shape with an area of 7.9 km2 and a mean depth of 1 m; it 112 

is located near the town of Oristano and Santa Giusta, in the plain of Pesaria, an agricultural 113 

area that is intensively cultivated with rice. The lagoon has no natural attributes and is 114 

separated from the sea by a longshore bar, it is also connected with two inner small basins 115 

called Pauli Maiori and Pauli Figu (Figure 1). Central and peripheral canals have been 116 

dredged about 2 m deep in order to facilitate seawater flow into the lagoon. As a consequence, 117 

waters of Santa Giusta lagoon are now well mixed as regards circulation and stratification 118 

(Sechi et al., 2001). Salinity ranges from 25‰ to 42‰, with a mean annual value of 30‰ 119 

(Sechi et al., 2001; Luglié et al., 2002). There is a prevalent sandy-muddy bottom, with small 120 

patches of both macroalgae and angiosperms (e.g. Enteromorpha sp., Gracilaria sp., Ruppia 121 

cirrhosa, Zostera sp.), which are distributed all over the lagoon. 122 

In this context, three sampling zones were randomly selected among the three habitats in the 123 

lagoon with different sediment and hydrodynamic properties (Luglié et al., 2002) (Figure 1). 124 

Specifically, the alpha zone was in the central-northern part of the lagoon and it was mostly 125 

influenced by the urban and industrial wastewaters from Oristano and Santa Giusta areas. It 126 

has been considered a low-intermediate hydrodynamic energy environment with a prevalence 127 
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of clay-silty sediments (Luglié et al., 2002). The beta zone was in the central-southern part of 128 

the lagoon and possibly influenced by the drainage from the surrounding farmlands. This zone 129 

was characterised by an intermediate-high hydrodynamic energy and sand-silty sediments 130 

(Luglié et al., 2002). Then the gamma zone was an area near the Pesaria canal, connecting the 131 

lagoon with the sea; it was characterized mainly by sandy sediments and high hydrodynamic 132 

energy (Luglié et al., 2002), being closer to the sea (Figure 1). Samples were collected in 133 

November 2002, according to a hierarchical sampling design. Within each of the three zones, 134 

four random sites were selected and within each site, four areas were randomly chosen. Two 135 

replicate samples were taken within each area for a total of 96 samples. Spatial variability was 136 

estimated at four hierarchical scales: among zones (103 m apart), among sites within zones 137 

(102 m apart), among areas within sites (10s m apart) and among replicates (1 m apart). Since 138 

small vegetal patches are widely distributed throughout the lagoon, replicate samples were 139 

carefully placed away from vegetal patches (at least 5 m from the closest patch), in order to 140 

minimise the possible effects of background heterogeneity on macrofaunal composition. Soft-141 

sediment samples were collected on bare bottom with a box-corer (10 x 17 cm2), sieved 142 

through a 0.5 mm mesh and preserved in 4 % formaldehyde. All collected macrozoobenthic 143 

organisms were sorted and identified to the species level and abundances (number of 144 

specimens per taxon) were calculated. Time needed for classification and counting of diverse 145 

taxa was recorded. All analyses were performed by researchers, with low experience in 146 

taxonomic identification but supported by skilled taxonomists. The time spent to identify all 147 

organisms at the species, family and class levels was 255, 95 and 5 hours, respectively. 148 

 149 

2.2 Statistical analyses 150 

Permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) was used 151 

to test the null hypothesis of no differences among assemblages at different spatial scales, 152 
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according to a three factors (zone, site, area) nested design through 4999 permutations of 153 

residuals under a reduced model (Anderson and Ter Braak, 2003). At species level, data were 154 

analysed using the Bray-Curtis dissimilarity measure on untransformed and transformed data 155 

(square-root, fourth-root, presence/absence), in order to evaluate if assemblages are mainly 156 

driven by compositional or relative abundance changes. Using stronger and stronger 157 

transformations, the emphasis of results can be shift from the most abundant species to the 158 

rarest ones; in particular, variability measured by presence/absence data reflects only 159 

compositional changes, while variation in relative abundances is more important in analyses 160 

based on other transformations or untransformed data (Clarke and Gorley, 2001; Anderson et 161 

al., 2005b). Furthermore, mean squares calculated by PERMANOVA were used to estimate 162 

multivariate variance components associated at each spatial scale, in a way analogous to 163 

univariate partitioning using ANOVA (Searle et al., 1992; Benedetti-Cecchi, 2001b). For a 164 

better comparison, in y-axis the variability at each spatial scale was expressed as square-root 165 

of variance components; therefore, the values could be interpreted as percentages of Bray-166 

Curtis dissimilarity (Anderson et al., 2005a). Separate analyses were performed using the 167 

square-root transformed data at species, family and class levels of taxonomic resolution. The 168 

family level was chosen because it has been often indicated as the most effective in 169 

minimizing the cost-benefit ratio (Lardicci and Rossi, 1998; Karakassis and Hatziyanni, 2000; 170 

De Biasi et al., 2003; Lampadariou et al., 2005), while the class level was chosen to assess the 171 

effectiveness of a further higher resolution. Since a significant result for a given factor from 172 

PERMANOVA could indicate that the groups differ in their location and/or dispersion, 173 

PERMDISP analyses were also performed to focus only on dispersion effects, testing the 174 

factors “zone” and “site” (Anderson, 2006). Analogous analyses were performed using 175 

separate data sets for the three main taxonomic groups. 176 
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The local species richness was visualised as a function of number of replicate samples in 177 

species-sample accumulation curves based on 999 permutations. To visualize multivariate 178 

patterns in assemblages across the three zones, non-metric multidimensional scaling (nMDS) 179 

ordination plots were produced. A separate plot was done for the overall species community 180 

and also for data aggregated at family and class level of resolution. All plots were done on the 181 

basis of Bray-Curtis dissimilarity matrix of square-root transformed data. To evaluate the 182 

degree of similarity among matrices obtained using different taxonomic aggregations, the 183 

RELATE routine was used to test the null hypothesis of independence of the two similarity 184 

matrices. On the other hand, in order to detect which species contributed most to dissimilarity 185 

among the three different zones, a similarity percentage (SIMPER) routine was performed 186 

(cut off 80%) (Clarke, 1993). All accumulation curves, nMDS plots, RELATE tests and 187 

SIMPER results were obtained using the PRIMER v.6 software (Clarke and Gorley, 2001).  188 

 189 

3. Results 190 

3.1 Faunal composition  191 

A total of 23 878 individuals belonging to 83 species, 43 families, and 4 classes were 192 

collected. The time spent to identify all organisms at the species, family and class levels was 193 

255, 95 and 5 hours, respectively. 194 

Considering the number of individuals, crustaceans accounted for 43.5% of total abundance 195 

followed by polychaetes and molluscs representing respectively 30.0% and 26.5% of total 196 

abundance. Instead, considering the number of species, polychaetes were the most 197 

representative group (54 species) followed by crustaceans (19) and molluscs (10). The 198 

number of species per family varied widely (Figure 2), with most of families (29) represented 199 

by only one species. The most species-rich families were within the polychaete class (e.g. 9 200 

Syllidae, 6 Spionidae, 4 Capitellidae, 4 Phyllodocidae and 4 Serpulidae) and to a lesser extent 201 
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in the crustaceans (e.g. 3 Corophiidae and 3 Gammaridae). The majority of crustaceans (12 202 

species) and molluscs (7 species) spanned a large part of the lagoon, being recorded in more 203 

than 12 of the 48 sampling areas; whereas most polychaetes (24 species) were restricted in 204 

less than 12 sampling areas (Figure 3). Seven species (five polychaetes and two crustaceans) 205 

were limited to a single area and they were also represented by only one individual. Five 206 

species (four polychaetes and one mollusc) were restricted to only two sampling areas and 207 

were represented by very few individuals (Figure 3). The mean abundance values for 208 

polychaetes and crustaceans were quite similar in all three sampling zones of the study site, 209 

while molluscs showed a higher variability being the most abundant taxa in gamma, but 210 

almost absent in alpha zone (Figure 4). 211 

The local species richness was higher in the alpha zone than in beta or gamma ones and 212 

cumulative samples from each zone were representative reaching an asymptote rather quickly 213 

(Figure 5). In particular, the number of species collected would be just slightly reduced, even 214 

analysing only 2 sampling sites (namely 8 areas or 16 replicates) in each zone of the lagoon 215 

(Table 1). A highly significant difference in the faunal composition of the three zones was 216 

detected by SIMPER analysis, with the greatest dissimilarity recorded for the alpha - gamma 217 

zone pair (75%), followed by the beta - gamma (69%) and the alpha - beta (68%) ones. 218 

In alpha zone, despite the smallest number of individuals (5 550), the highest number of 219 

species (75) was recorded, with five species that accounted for 60.4% of total abundance. 220 

This group included species typical of brackish habitats, such as Monocorophium sextonae, 221 

Cymodoce truncata, Hydroides elegans and Corophium acherusicum (Ruffo, 1998) and a 222 

species typical of sandy-muddy bottom such as Pseudopolydora antennata (Lardicci et al., 223 

2001). Moreover, SIMPER analyses highlighted the value of other species in determining the 224 

dissimilarity among the three zones: a polychaete, Cirriformia tentaculata, and a crustacean 225 

occurring in areas with abundant algal coverage, Pseudolirius kroyeri (Table 2). In the beta 226 
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zone 60 species were found and the five most abundant ones (51.3% of total 7 601 227 

individuals) were typical brackish species like Cymodoce truncata, Abra ovata, 228 

Monocorophium sextonae, as well as Minuspio multibranchiata and Microdeutopus 229 

anomalus, occurring where macroalgae are present (Ruffo, 1998). Opportunistic species 230 

indicating organic enrichment (Pearson and Rosenberg, 1978; Cognetti, 1982), such as Phylo 231 

foetida and Neanthes caudata, were also characteristic of the beta zone (Table 2), as well as 232 

suspension feeders (Loripes lacteus and Cerastoderma glaucum) and grazers (Cumella 233 

limicola and Iphinoe serrata). In gamma zone 10 730 organisms from 59 species were 234 

collected and 80% of total abundance was reached with only five species: Mytilaster minimus 235 

(alone accounting for 33%), Cymodoce truncata and Tanais dulongii, all typical of brackish 236 

environments, besides Minuspio multibranchiata and Naineris laevigata. 237 

  238 

3.2 Scales of multivariate spatial variability and taxonomic resolution 239 

At the taxonomic level of species, PERMANOVA showed that there was a highly significant 240 

variability at all spatial scales considered (Table 3). The greatest variability occurred at the 241 

largest spatial scale, among zones, for which the average Bray-Curtis dissimilarity was around 242 

37%; then, the successive variation component was that among replicate samples (35% of 243 

dissimilarity), followed by less variability among areas (22%) and sites (20%) (Figure 6). 244 

Furthermore, the relative importance of different spatial scales in the hierarchy did not vary 245 

with different data transformations. Similar spatial patterns were obtained for analyses based 246 

on untransformed and transformed data (square root, fourth root, presence/absence) (Figure 247 

6).  248 

Highly significant variability at all spatial scales was also detected, at the family and class 249 

levels (Table 3). In addition, similar variance components, as well as the relative importance 250 

of different spatial scales, were maintained proceeding from species to family analysis (Figure 251 
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7). Instead, using the class level of resolution, the variance components decreased showing 252 

less dissimilarity among assemblages at all spatial scales analysed; moreover, proportional 253 

amount of variation changed showing the highest variability at the smallest scale, among 254 

replicate samples (Figure 7). At the species level, differences among zones were mainly due 255 

to differences in their location, since a significant dispersion effect was revealed only between 256 

alpha and gamma zones (Table 4). At the scale of site, the source of variability changed 257 

depending on the sampling zone as emerged by pairwise tests, within the alpha zone some 258 

sites were not significantly different from each other (i.e. P-values of both PERMANOVA 259 

and PERMDISP tests were not significant), in some cases sites differed in their location (i.e. 260 

P-values of PERMANOVA significant,  P-values of PERMDISP not significant), in other 261 

cases sites differed both in their location and dispersion (i.e. P-values of both PERMANOVA 262 

and PERMDISP tests were significant). Similar results were obtained within the beta zone, 263 

where sites were different also because of their dispersion (i.e. P-values of PERMANOVA 264 

not significant,  P-values of PERMDISP significant). Dispersion effect never contributed to 265 

differences among sites in the gamma zone (Table 4). All but two pairwise results were 266 

likewise detected using the family level of taxonomic resolution; while at the class level, the 267 

majority of results were not significant, therefore indicating different relationships compared 268 

to those obtained at finer taxonomic levels, both at zone and site spatial scales (Table 4). 269 

Separate analyses for the three collected taxonomic groups showed a highly significant 270 

variability at all spatial scale; only the variance component for molluscs at the site scale was 271 

found not different from zero because of the greater variability at the smaller spatial scale of 272 

area (Figure 8). Such results matched the pairwise tests which showed that in very few cases 273 

sites differed, mainly in their dispersion (Table 5). For crustaceans and molluscs the greatest 274 

variability occurred at the largest spatial scale (Figure 8) and for both groups it was mainly 275 

due to differences in location among zones (Table 5). For polychaetes, the sources of the high 276 
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variability at the zone scale were differences in location and dispersion (Table 5); however 277 

polychaetes showed the greatest variability among replicate samples and such spatial scale 278 

was also important for the other taxonomic groups (Figure 8). Except for molluscs, a small 279 

variability was associated with the two intermediate spatial scales (Figure 8); in particular at 280 

the site scale, there was a prevalent location effect both for polychaetes and crustaceans 281 

although differences in dispersion were also detected especially for crustaceans within the 282 

beta zone (Table 5). 283 

The nMDS plot based on the species abundance data showed some differences among the 284 

three sampled zones. In particular, gamma samples were clearly clustered and separated from 285 

the other zones, while alpha and beta samples were partially overlapped (Figure 9a). At the 286 

family level, nMDS ordination was very similar to that obtained at the species level (Figure 287 

9b). Further aggregation to the class level produced a different ordination pattern, with 288 

substantially higher levels of overlapping of the three zones (Figure 9c). Relationships 289 

between similarity matrices calculated for the three taxonomic levels were confirmed by 290 

RELATE results, which showed ρ = 0.960, p<0.001 between species and family levels and ρ 291 

= 0.565, p<0.001 between species and class levels. 292 

 293 

4. Discussion 294 

The first result that stands out from our work is that the benthic assemblages of Santa Giusta 295 

lagoon were extremely variable, with significant differences at all considered spatial scales, 296 

from metres up to thousands of metres. This outcome was highly consistent with results 297 

reported in studies analysing spatial variability by nested design, whatever the habitat 298 

investigated (see Fraschetti et al., 2005 for a review). In the Santa Giusta lagoon most of the 299 

variation was associated with the smallest and the largest spatial scale, thus indicating that 300 

both small-scale and large-scale processes play a major role in shaping benthic community 301 
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spatial patterns. Variability among replicates at small spatial scale is usually considered a 302 

widespread feature of many different assemblages, being mainly determined by biological 303 

interactions and/or local physical factors (i.a. Ekman, 1979; Underwood and Chapman, 1986; 304 

Wilson, 1991; Morrisey et al., 1992; Benedetti Cecchi et al., 2001a; Coleman et al., 2002; 305 

Rossi and Lardicci, 2002; Fraschetti et al., 2005; Chapman and Underwood, 2008). On the 306 

other hand, differences in assemblages at large spatial scales have been mostly related to 307 

abiotic processes (Thrush et al., 1989; Thrush, 1991). Factors such as hydrodynamic energy, 308 

trophic status, seawater and freshwater influence, nutrients supply and confinement could 309 

differently characterise the three sampling zones of the Santa Giusta lagoon, according to the 310 

models of zonation proposed for other Mediterranean coastal lagoons (Guelorget and 311 

Perthuisot, 1982; Lardicci et al., 1993; 1997; Pérez-Ruzafa et al., 2007). In addition, benthic 312 

communities could be unevenly subjected to the two main sources of anthropogenic 313 

disturbance affecting  this lagoon at all the study scales. Results of this study showed that the 314 

three sampling zones were clearly distinct and characterised by typical features but analysing 315 

and explaining the effects of abiotic or biotic factors responsible of such differences were not 316 

among the explicit aims of this study. 317 

A number of papers reported that results of statistical analyses can be greatly influenced by 318 

the choice of data transformation; in fact, the ability to detect differences along strong 319 

environmental gradients was affected more by changing the data transformation rather than 320 

the level of taxonomic identification (i.a. Olsgard et al., 1998; Karakassis and Hatziyanni, 321 

2000). This is also consistent with results by Chapman (1998) and Lasiak (2003), who 322 

observed that the type of transformation altered patterns of variability within sites, which may 323 

be important for some research programmes. The choice of transformation determines the 324 

relative contribution of quantitative and qualitative intersample differences in the final 325 

outcome of all multivariate analyses. Strong transformations (fourth root, presence/absence) 326 
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give little weight to differences in abundance, whereas weak (square root) or null 327 

transformations provide patterns mainly reflecting the differences of the most abundant 328 

species (Olsgard et al., 1998; Karakassis and Hatziyanni, 2000; Clarke and Gorley, 2001). In 329 

particular, the variability estimated by analysing presence/absence data explicitly reflects the 330 

compositional changes of assemblages at different spatial or temporal scales and this can be 331 

compared with analyses based on other transformations (or untransformed data), mostly 332 

describing relative abundance differences (Anderson et al., 2005b). On this basis, some 333 

studies demonstrated that variability of benthic assemblages at larger scales is mainly 334 

“compositional”, as indicated by the presence/absence analyses, while variability at medium 335 

or smaller scales is driven by changes in relative abundance, particularly by numerically 336 

dominant taxa (Archambault and Bourget, 1996; Chapman, 1998; Anderson et al., 2005b). 337 

Conversely, our results showed that the relative importance of examined spatial scales (from 338 

meters up to thousands of metres) was always maintained, despite different transformations 339 

used. These findings underpinned that in Santa Giusta lagoon, large scale processes shaped 340 

three distinct zones characterized by different species. At the other investigated scales, 341 

differences in species composition were possibly caused by the presence of diverse 342 

microhabitats, which created high spatial heterogeneity. For example, small vegetal patches 343 

might possibly influence the faunal composition of the surrounding bare bottoms; however, 344 

such patches are distributed all over the lagoon, thus producing a high spatial heterogeneity at 345 

the smallest spatial scale in all the three sampling zones of Santa Giusta. This outcome 346 

indicated that spatial heterogeneity is not necessarily related to the extent of the study area. 347 

Therefore the unambiguous interpretation of results can be promoted using nested designs 348 

also in small environments, like the Santa Giusta lagoon. The multi-scale approach is 349 

recommended as a basic tool for spatial distribution analyses, especially when such 350 

information is still scarcely known in the investigated environment. In particular for future 351 
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studies in the Santa Giusta lagoon, single observations should be evaluated in relation to the 352 

proper sampling zone, not being representative of the whole coastal lagoon.   353 

In this study, multivariate analyses revealed that community spatial patterns derived from 354 

species and family abundance data were very similar to each other. Consistent  results were 355 

reported in many other works (i.a. Warwick, 1988; Ferraro and Cole, 1995; Olsgard et al., 356 

1998; Lardicci and Rossi, 1998; Mistri and Rossi, 2001; De Biasi et al., 2003; Dethier and 357 

Schoch, 2006), demonstrating redundancy of information in large sets of benthic species data 358 

for identifying significant differences among assemblages, in both polluted and unpolluted 359 

environments. Our results showed that decreasing taxonomic resolution from species to 360 

family was not related to a strong decrease of the overall spatial variability. On the contrary, 361 

lumping species in higher taxonomic groups was usually considered leading to a probable 362 

decrease in estimates of variability as a consequence of an “averaging effect” (Doak et al., 363 

1998; De Biasi et al., 2003). Analyses based on family abundances were effective in detecting 364 

spatial patterns among the three zones of the lagoon, and they provided estimates of  variance 365 

components that were not substantially different from those detected at the species level. In 366 

addition, spatial dispersion of samples was similarly described by both species and family 367 

level and this was a novel finding compared to previous works investigating the TS 368 

applicability. Such works have mainly looked for changes in the location of sample groups in 369 

multivariate space at decreasing taxonomic levels of resolution, while the effects of TS on the 370 

dispersion of sample groups were usually neglected (Terlizzi et al., 2008a). However, 371 

explicitly analysing differences in dispersion among groups is important in order to obtain 372 

more complete information as well as avoid misleading interpretation of results (Anderson, 373 

2006). Thus in Santa Giusta lagoon, PERMDISP results clarified that differences in species 374 

composition concerned almost exclusively spatial differences detected at the zone scale, while 375 

spatial variability observed at site (or even area) scale was mostly due to differences in 376 
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dispersion.  Similar spatial patterns were found at the two lowest taxonomic levels, probably 377 

because of the high percentage of families represented by a single species as usually occurred 378 

in brackish environments (Giangrande et al., 2005). Further aggregation at the class level 379 

showed relevant changes in observed spatial patterns; in particular, the overall spatial 380 

variability decreased reflecting a more homogenous distribution of class abundances within 381 

the lagoon. As a consequence, few significant differences were detected among levels of each 382 

investigated spatial scale. Meanwhile, the relatively higher variability among replicates 383 

probably increased because of the uneven distribution of some organisms living in small 384 

dense patches (e.g. Mytilaster minimus). 385 

The usefulness of TS method has been evaluated and often promoted in order to streamline 386 

expensive and time consuming sampling protocols, like those employed in soft bottom 387 

macrofauna analyses (i.a. Olsgard et al., 1998; Terlizzi et al., 2003; Lampadariou et al., 2005; 388 

Wlodarska Kowalczuk and Kedra, 2007). However, other possibilities were also investigated. 389 

Lampadariou et al. (2005) compared results obtained using different mesh-size and type of 390 

sampler; they indicated that small samples taken with corers and sieved at 0.5 mm provided a 391 

large proportion of benthic spatial distribution, even if data were analysed at the family level. 392 

Other studies examined single taxonomic groups as representative of the whole assemblages, 393 

but contrasting outcomes emerged. While Olsgard et al. (2003) promoted polychaetes alone as 394 

useful surrogates to describe soft bottom macrofauna distribution, in other cases reduced 395 

taxonomic resolution was more effective than using a single taxonomic group (Anderson et 396 

al., 2005a; Wlodarska Kowalczuk and Kedra, 2007). In Santa Giusta lagoon, different spatial 397 

distributions were obtained analysing separately the three main taxonomic groups and none of 398 

them reflected results obtained by the whole benthic assemblages. Therefore future studies 399 

investigating macrobenthic spatial distribution of this lagoon should prefer the TS method to 400 

analysis of a single taxonomic group. 401 
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As argued elsewhere, the relationship between time saving and taxonomic level changes from 402 

case to case (Olsgard et al., 1998), depends on the number of species within a single family, 403 

the taxonomical complexity of families and the availability of taxonomic expertise (Ferraro 404 

and Cole, 1995; Dethier and Schoch, 2006). However, it has been calculated that generally the 405 

cost of family level identification was 50% to 55% less than species level identification 406 

(Ferraro and Cole, 1995; De Biasi et al., 2003). In our case, the time needed for identification  407 

at family level was 63% less than the species level identification, considering that 33% of 408 

families was represented by two or more species. However, the majority of species belonged 409 

to polychaetes and our laboratory team has significant expertise in polychaetes. Resources 410 

deriving from such cost reduction could be employed to plan more frequent surveys and/or to 411 

adopt more complex spatial sampling designs with a high number of replicates, in order to 412 

further minimize spatial variability caused by the dispersion effect. When the distribution of 413 

organisms is patchy, it is probably more important to collect many replicates at different 414 

spatial and temporal scales than to identify taxa at the finest resolution level (Morrisey et al., 415 

1992; Chapman, 1998). In Santa Giusta lagoon, our baseline detailed multiscale investigation 416 

demonstrated that at least two sites (namely 16 samples) for each zone are needed to collect 417 

the majority of species and therefore to describe correctly the spatial distribution of benthic 418 

assemblages. 419 

Results obtained in this study have important practical consequences for investigations on the 420 

distribution of soft bottom macrofauna in brackish habitats, including those concerned with 421 

environmental monitoring. In fact, the present study can be considered as a valuable example 422 

for a rigorous approach in collecting data for ecological studies, when previous detailed 423 

knowledge is scant. The spatial variability observed at all the examined scales indicated that 424 

small-scale observations are unlikely to describe the spatial benthic distribution of the whole 425 

lagoon (Foster, 1990). As a consequence, any a priori statement about composition, structure 426 
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and distribution of macrobenthic communities should be avoided, even in small brackish 427 

environments usually considered as homogenous habitats. Furthermore, explicitly testing for 428 

differences in dispersion among groups has been demonstrated to obtain a more accurate 429 

interpretation of the detected spatial patterns and such an approach should be more frequently 430 

adopted in future studies. Especially for routine monitoring programs, long term data sets at 431 

the finest taxonomic level and large sampling effort are usually the preferred approach for 432 

analyses of macrobenthic assemblages. Unfortunately, there are often many practical 433 

difficulties such as reduced budgets or lack of well-trained taxonomists, and compromise 434 

solutions are unavoidable. However the present study highlighted that reasonable choices and 435 

useful advice can be obtained only if the planning of monitoring programs is proceeded by a 436 

detailed baseline study (Terlizzi et al., 2003; 2008a), thus avoiding any a priori decision. In 437 

particular, our results showed that in Santa Giusta lagoon, if resources are limited, analysing 438 

different spatial scales considering the whole benthic assemblages at the family level may be 439 

more important than classifying all individuals at the species level (Kingston and Riddle, 440 

1989; Lampadariou et al., 2005). Although spatial patterns do not necessary remain constant 441 

over time and further analyses at several temporal scales are needed, in future routine 442 

investigations taxonomic costs can be probably reduced without losing the power to detect 443 

macrobenthic spatial patterns, both in terms of location and dispersion effect. Since the most 444 

frequent disturbance events (e.g. organic enrichment, eutrophication, chemical pollution) are 445 

likely related to changes in spatial patterns of assemblages  (Caswell and Cohen, 1991; 446 

Warwick and Clarke, 1993; Fraschetti et al., 2001; Terlizzi et al., 2005), monitoring 447 

programs, based on periodical surveys and TS, may be useful for a quick environmental 448 

assessment. Further detailed analyses, like identification at the species level, should be carry 449 

out if changes in spatial patterns are detected, in order to confirm and clarify disturbance 450 

effects on assemblages. However, other disturbance events (e.g. invasion of alien species, 451 



ACCEPTED MANUSCRIPT 
 

 19

climate change) may act gradually and for example change the natural balance of competitive 452 

interactions among phylogenetically close species, like species of the same genus or family; 453 

in this case, disturbance effects can be detected only analysing the community at the finest 454 

taxonomic level. 455 

The present study expanded the current knowledge of macrobenthic assemblages in Santa 456 

Giusta lagoon and emphasised the usefulness of multiscale approach to realistically describe 457 

spatial patterns of variability. In addition, our results highlighted some helpful methodological 458 

procedures, which should be promoted in order to better design future sampling designs in 459 

this lagoon, as well as in other similar brackish environments.  460 
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Tables 
 

Sobs % Sobs 
N 

alpha beta gamma alpha beta gamma 
32 75 60 58 100 100 100 
24 72 58 56 96 97 97 
16 67 55 53 89 92 91 
8 57 48 46 76 80 79 

 
Table 1. The local species richness estimated by accumulation curves (Figure 5) in 
correspondence with different number of sampling replicates in each zone of the lagoon. N: 
number of replicate samples analysed; Sobs: number of species observed; % Sobs: percentage 
of species observed in comparison with the total species number collected. 

 
 

 
Table 2. Results of SIMPER analysis. Average abundance of species contributing to most of 
the Bray-Curtis dissimilarity between zones (cut-off value = 60%) (data square-root 
transformed). The highest average abundance value is in bold. 

 

species Av. Transf. 
Abundance  alpha  Av. Transf. 

Abundance  beta  Av. Transf. 
Abundance gamma

Cymodoce truncata 4.26 < 5.11 < 7.01 
Monocorophium sextonae 3.33 < 4.20 > - 
Microdeutopus anomalus 0.74 < 4.09 > 0.15 
Abra ovata 1.31 < 3.67 > 1.86 
Loripes lacteus 1.50 < 2.73 > 1.27 
Phylo foetida 0.52 < 3.18 > 0.06 
Minuspio multibranchiata 1.57 < 3.60 < 5.28 
Cumella limicola 1.38 < 3.11 > 1.01 
Hydroides elegans 1.96 > 1.32 < 2.22 
Pseudopolydora antennata 1.67 < 2.00 > 0.75 
Neanthes caudata 1.12 < 2.85 > 0.82 
Cirriformia tentaculata 2.07 > 0.32 < 1.02 
Cerastoderma glaucum 0.33 < 1.96 > 0.37 
Corophium acherusicum 1.10 < 1.17 > - 
Pseudolirius kroyerii 1.49 > 0.09 < 0.50 
Tapes aurea 1.28 > 0.99 < 0.50 
Iphinoe serrata 1.00 < 1.49 > 0.15 
Mytilaster minimus 0.23 < 0.70 < 9.69 
Tanais dulongii 0.27 < 0.91 < 6.83 
Nainereis laevigata 0.09 < 0.53 < 2.46 
Dynamene bidentata 0.73 > 1.04 < 2.17 
Tapes decussata 1.63 > 1.10 > 0.08 
Ophiodromus pallidus 0.31 < 0.44 < 1.46 
Podarkeopsis capensis 0.59 > 0.46 < 1.83 
Cumella limicola 1.38 < 3.11 > 1.01 
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Table 3. Permutational multivariate analysis of variance based on the Bray-Curtis 
dissimilarity for square-root transformed data of species (83 variables), families (43 variables) 
and classes (4 variables) abundance. Analysis was carried out using 4999 permutations of 
residuals under a reduced model. Estimates of multivariate variation at each spatial scale were 
included.

Taxonomic Level Source df SS MS F P Variance 
Component 

        
Species Zone 2 77637.7 38818.8 10.977 0.004 1102.6 
 Site   9 31829.0 3536.6 2.182 0.002 239.5 
 Area  36 58354.7 1621.0 2.071 0.002 419.2 
 Residual 48 37561.7 782.5   782.5 
 Total 95 205303.1    2543.8 
        
Family Zone 2 69723.2 34861.6 11.409 0.0004 993.9 
 Site   9 27501.4 3055.7 2.699 0.0002 240.5 
 Area  36 40756.8 1132.1 1.935 0.0002 273.6 
 Residual 48 28077.6 584.9   584.9 
 Total 95 166059    2092.9 
        
Class Zone 2 13944.7 6972.3 5.777 0.0164 180.2 
 Site   9 10862.3 1206.9 3.713 0.0002 110.2 
 Area  36 11703.0 325.1 1.501 0.019 54.3 
 Residual 48 10395.7 216.6   216.6 
 Total 95 46905.7    561.2 
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  Species Family Class 

Source Pairwise L+D D L+D D L+D D 
        
Zones alpha - beta 0.0304 0.0564 0.0306 0.1424 0.1102 0.1664 
 alpha - gamma 0.0244 0.0272 0.0290 0.0242 0.0290 0.0902 
 beta - gamma 0.0266 0.0848 0.0294 0.0646 0.0852 0.7190 
        
  Species Family Class 

Source Pairwise L+D D L+D D L+D D 
1 – 2 0.0016 0.2030 0.0006 0.2612 0.0124 0.9206 Sites within 

alpha zone 1 – 3 0.1402 0.5904 0.1114 0.4466 0.6660 0.9450 
 1 – 4 0.0136 0.0172 0.0034 0.1162 0.0242 0.2228 
 2 – 3  0.0012 0.1018 0.0006 0.0894 0.0024 0.8746 
 2 – 4 0.0004 0.0008 0.0002 0.0088 0.0006 0.2058 
 3 – 4  0.1132 0.1552 0.0492 0.6874 0.2186 0.2880 
Sites within 
beta zone 1 – 2 0.1798 0.0050 0.1332 0.0014 0.5780 0.0106 
 1 – 3 0.0090 0.2696 0.0046 0.1976 0.1072 0.6306 
 1 – 4 0.0508 0.1624 0.0430 0.2780 0.3208 0.9258 
 2 – 3  0.0010 0.1760 0.0004 0.1580 0.0178 0.0584 
 2 – 4 0.0052 0.0004 0.0014 0.0002 0.1098 0.0044 
 3 – 4  0.0992 0.0216 0.0604 0.0354 0.1446 0.5680 
Sites within 
gamma zone 1 – 2 0.7466 0.1692 0.7482 0.3752 0.4638 0.4212 
 1 – 3 0.0004 0.1422 0.0006 0.2778 0.1112 0.3692 
 1 – 4 0.0698 0.5336 0.1238 0.4554 0.1380 0.9884 
 2 – 3  0.0026 0.9834 0.0018 0.8900 0.1156 0.9268 
 2 – 4 0.0014 0.3814 0.0014 0.7870 0.0148 0.4952 
 3 – 4  0.0004 0.3526 0.0004 0.6556 0.0022 0.4504 

 
Table 4. P-values for pairwise tests of significant variability among “zones” and among 
“sites” in each zone, for different levels of taxonomic resolution. “L+D” columns are P-values 
obtained by PERMANOVA, therefore indicating a “location” and/or a “dispersion” effect. 
“D” columns are P-values obtained by PERMDISP, therefore indicating only a “dispersion” 
effect. Results that are not significant at the 0.05 level are given in bold type. Note that the 
smallest possible P-value with 4999 permutations is 0.0002. 
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  Polychaetes Crustaceans Molluscs 

Source Pairwise L+D D L+D D L+D D 
        
among Zones alpha - beta 0.0272 0.0290 0.0304 0.0564 0.0294 0.0600 
 alpha - gamma 0.0288 0.0278 0.0244 0.0272 0.0286 0.1118 
 beta - gamma 0.0274 0.9744 0.0266 0.2794 0.0290 0.0558 
        

  Polychaetes Crustaceans  Molluscs 

Source Sites L+D D L+D D L+D D 
Sites within 
alpha zone 1 – 2 0.0146 0.4206 0.0004 0.3502 0.8044 0.8878 
 1 – 3 0.0888 0.9636 0.1080 0.2082 0.9148 0.2124 
 1 – 4 0.0362 0.1118 0.0014 0.2314 0.9684 0.3426 
 2 – 3  0.0010 0.4020 0.0006 0.0590 0.6906 0.1934 
 2 – 4 0.0006 0.0062 0.0002 0.0658 0.6342 0.3874 
 3 – 4  0.0448 0.1234 0.2136 0.9264 0.8888 0.0720 
Sites within 
beta zone 1 – 2 0.0230 0.0482 0.1104 0.1990 0.8554 0.9824 
 1 – 3 0.0002 0.0624 0.0374 0.6736 0.1358 0.0010 
 1 – 4 0.0058 0.5592 0.1298 0.0704 0.8174 0.2234 
 2 – 3  0.0002 0.7858 0.0002 0.0288 0.1464 0.0018 
 2 – 4 0.0004 0.0172 0.0166 0.0016 0.9602 0.2324 
 3 – 4  0.0262 0.0222 0.6834 0.0710 0.1396 0.1358 
Sites within 
gamma zone 1 – 2 0.9478 0.9650 0.3334 0.1412 0.3350 0.5506 
 1 – 3 0.0010 0.5756 0.0046 0.2748 0.4470 0.7008 
 1 – 4 0.0318 0.2308 0.6134 0.0072 0.1774 0.0036 
 2 – 3  0.0026 0.6246 0.0264 0.8588 0.3014 0.8382 
 2 – 4 0.0048 0.3996 0.0294 0.2960 0.0282 0.0008 
 3 – 4  0.0002 0.1702 0.0150 0.2916 0.0606 0.0016 

 
Table 5. P-values for pairwise tests of significant variability among “zones” and among 
“sites” in each zone, for the three main taxonomic groups. “L+D” columns are P-values 
obtained by PERMANOVA, therefore indicating a “location” and/or a “dispersion” effect. 
“D” columns are P-values obtained by PERMDISP, therefore indicating only a “dispersion” 
effect. Results that are not significant at the 0.05 level are given in bold type. Note that the 
smallest possible P-value with 4999 permutations is 0.0002. 
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Figure Captions 
 

Figure 1: The Santa Giusta lagoon. The three sampling zones are delimited by dotted lines 

 

Figure 2. Number of taxonomic families represented in samples and number of species per 

family. ‘More’ data points were two, respectively with 6 and 9 species per family 

 

Figure 3. Distribution of species according to the number of areas occupied out of a total of 

48 areas. pol: polychaetes; cru: crustaceans; mol: molluscs 

 

Figure 4. Mean abundance (number of individuals), with 95% confidence interval, of the 

three main faunal groups at each of the three sampling zones of Santa Giusta lagoon (n=32 

per zone) 

 

Figure 5. Species-sample accumulation curves for each zone of the lagoon. Data were based 

on 999 permutations of replicate samples 

 

Figure 6. Multivariate variance components at each of the four spatial scales for all species, 

as obtained using mean squares from PERMANOVA performed with different 

transformations (nt = no transformation; r2 = square root; r4 = fourth root; pa = 

presence/absence). The values plotted are the square root of the variance components, in order 

to put the values on the scale of the original Bray-Curtis dissimilarities (expressed as 

percentage difference between assemblages) 

 

Figure 7. Multivariate variance components at each of the four spatial scales for all 

organisms collected using species, family and class taxonomic levels. The values plotted are 

the square root of the sizes of the variance components (Table 3) 

 

Figure 8. Multivariate variance components at each of the four spatial scales for the three 

taxonomic group collected. The values plotted are the square root of the sizes of the variance 

components, obtained using mean squares from PERMANOVA performed with square root 

transformed data. All components were statistically significant at p<0.001, except for 

molluscs at the site scale which were not significant 
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Figure 9. NMDS plots on the basis of all taxa at species (a), family (b) and class (c) level of 

taxonomic resolution. Bray-Curtis dissimilarities of square-root transformed abundance 

values were used 
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Figure 2. Number of taxonomic families represented in samples and number of species per 

family. ‘More’ data points were two, respectively with 6 and 9 species per family
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Figure 3. Distribution of species according to the number of areas occupied out of a total of 
48 areas. pol: polychaetes; cru: crustaceans; mol: molluscs
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Figure 4. Mean abundance (number of individuals), with 95% confidence interval, of the 

three main faunal groups at each of the three sampling zones of Santa Giusta lagoon (n=32 

per zone)
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Figure 5. Species-sample accumulation curves for each zone of the lagoon. Data were based 

on 999 permutations of replicate samples.
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Figure 6. Multivariate variance components at each of the four spatial scales for all species, 

as obtained using mean squares from PERMANOVA performed with different 

transformations (nt = no transformation; r2 = square root; r4 = fourth root; pa = 

presence/absence). The values plotted are the square root of the variance components, in order 

to put the values on the scale of the original Bray-Curtis dissimilarities (expressed as 

percentage difference between assemblages)
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Figure 7. Multivariate variance components at each of the four spatial scales for all 

organisms collected using species, family and class taxonomic levels. The values plotted are 

the square root of the sizes of the variance components (Table 3)
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Figure 8. Multivariate variance components at each of the four spatial scales for the three 

taxonomic group collected. The values plotted are the square root of the sizes of the variance 

components, obtained using mean squares from PERMANOVA performed with square root 

transformed data. All components were statistically significant at p<0.001, except for 

molluscs at the site scale which were not significant.
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Figure 9. NMDS plots on the basis of all taxa at species (a), family (b) and class (c) level of 

taxonomic resolution. Bray-Curtis dissimilarities of square-root transformed abundance 

values were used
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