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Abstract

We propose several new methods to calculate threshold and power for Quan-
titative Trait Locus (QTL) detection. They are based on asymptotic theo-
retical results presented in Rabier et al. (2009) . The asymptotic validity is
checked by simulations. The methods proposed are fast and easy to imple-
ment. A comparison of power between a multiple testing procedure and a
global test has been realized, showing far better performances of the global
test for the detection of a QTL.

Key words: QTL detection, Likelihood Ratio Test, Chi-Square process,
Multiple Testing, Threshold, Monte-Carlo methods

1. Introduction

We study the problem of detecting a Quantitative Trait Locus, so-called
QTL (a gene influencing a quantitative trait which is able to be measured)
on a given chromosome in a population of progenies which are structured
into sire families. The back-cross population, A × (A × B), where A and B
are purely homozygous lines, is a particular case of such a population.
A method largely used in order to detect a QTL, is the Interval Mapping
proposed by Lander and Botstein (1989). Using the Haldane (1919) distance
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and modelling, each chromosome is represented by a segment [0, T ]. The
distance on [0, T ] is called the genetic distance (measured in Morgans). At
each location t ∈ [0, T ], the presence of a QTL is tested with a Likelihood
Ratio Test (LRT). So, multi-testing leads to a LRT process, and taking as
test statistic the supremum of this process comes down to perform a LRT in
a model when the localisation of the QTL is an extra parameter.
Some theoretical results are present in Rebäı et al. (1994, 1995), in Cierco
(1998), and in Azäıs and Cierco-Ayrolles (2002). Howewer, these papers use
some approximations. In Rabier et al. (2009), article submitted, the focus
is on the exact model. The asymptotic distributions of the LRT process are
given under the null hypothesis (no QTL on [0, T ]), under the alternative
that there is one QTL at t⋆ on [0, T ], and under the general alternative that
there are m QTL on [0, T ]. The focus here is on the null hypothesis and on
the particular alternative that there is one QTL on [0, T ].

In this paper :

1. we propose methods, as a function of the genetic map, to calculate
thresholds for the supremum of the LRT process under H0.

2. as all these methods are based on asymptotic results, we check the
validity of the asymptotic assumption by simulating samples of different
sizes.

3. we study the asymptotic power of the Interval Mapping and we give
advices on how to optimize the detecting process.

The methods studied are available in a Matlab package with graphical user
interface : “imapping.zip”.
It can be downloaded at www.math.univ-toulouse.fr/∼rabier .

2. Model

The chromosome is the segment [0, T ]. K genetic markers are located
on the chromosome, one at each extremity. t1 = 0 < t2 < ... < tK =
T are the locations of the markers. The “genome information” at t will
be denoted X(t). The Haldane (1919) model is the following : the law of
X(t1) is 1

2
(δ1 + δ−1) and X(t) = (−1)N(t)X(t1) where N(t) is a standard

Poisson process. Indeed, the Haldane model assumes that crossovers occur
at random and independently of each other. The Haldane (1919)’s function
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r : [0, T ]2 7−→
[

0, 1
2

]

is such as :

r(t, t′) = P(X(t)X(t′) = −1) = P(|N(t) − N(t′)| odd) =
1

2
(1 − e−2|t−t′|)

This function links the recombination rate r(t, t′) between two loci located
respectively at t and t′, and the distance |t − t′| between the two loci.

A sire family is defined by a set of progenies. I families will be considered. C
is a discrete random variable refering to the family. The individual belongs
to family i with probability πi = P (C = i).
The quantitative trait Y depends on the value of X(t) at t⋆ ∈ [t1, tK ] which
is the location of the QTL. It also depends on the family it belongs to. The
quantitative trait verifies :

(

Y
∣

∣C = i
)

= µi + X(t⋆) qi + σ ε

where µi and qi are respectively a polygenic effect and the QTL effect within
family i. ε is a Gaussian white noise.
Besides, the “genome information” is available only at locations of genetic
markers, that is to say at t1, t2, ..., tK .
n is the number of observations j, (Yj, Xj(t1), ..., Xj(tK), Cj). These ob-
servations are supposed to be independent and identically-distributed. We
will call one population a sample of n observations.
The goal of this study is to test if there is a QTL on the chromosome with
at least one of the sires heterozygous. The challenge is that t⋆ is unknown.
So, the alternative hypothesis can be written :

Hλt⋆ : “there is at least one qi = λi/
√

n, with λi ∈ R
⋆, at the position t⋆ ”

In this context, we remind Theorem 3 of Rabier et al. (2009), which gives
the asymptotic distribution of the LRT process, Λn(.), under the null and
the alternative hypothesis.

Theorem With the previous defined notation,

Λn(.)
F.d.→

I
∑

i=1

{

Zi(.)
}2

(1)

as n tends to infinity, under H0 and Hλt⋆ where :
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• F.d.→ is the convergence of fini-dimensional distributions

• the Zi(.) are independent Gaussian processes. More precisely, Zi(.) is
the continuous and the non linear process such as ∀t ∈]tk, tk+1[ :

Zi(t) =
{

α(t) Zi(tk) + β(t) Zi(tk+1)
}

(2)

where Cov {Zi(tk), Z
i(tk′)} = e−2|tk−t

k′
|. The mean function of Zi(.)

verifies :

– under H0, m(t) = 0

– under Hλt⋆, mi
t⋆(t) is proportional to λi

√
πi.

We refer to Rabier et al. (2009) for the rather complicated expressions of the
functions mi

t⋆(t), α(t), β(t) and the covariance Γ(t, t′) of Zi(.).

Note that when the number of genetic markers is infinite, the process Zi(.) is
an Ornstein-Uhlenbeck process. The paths of three processes are presented
in Figure 1 (the length of the chromosome is T = 1 Morgan):

• the Ornstein-Uhlenbeck process.

• the process Z1(.) with only 2 markers, located at t1 = 0 and t2 = 1M.

• the process Z1(.) with markers located every 10cM.

The paths of the last two processes are smooth whereas the paths of the
Ornstein-Uhlenbeck process are very jerky. It’s not suprising because the
Ornstein-Uhlenbeck process can be viewed as a stationnary version of the
Brownian motion.
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Figure 1: Paths of three different Gaussian processes

3. Different methods to obtain thresholds as a function of the map
considered

3.1. Introducing the methods

We propose several new methods as a function of the map considered
to calculate thresholds for the supremum of the LRT process under H0. In
particular, two kinds of maps are studied :

• a sparse map : a few markers covering the chromosome

• a dense map : a high density of markers pretty close to each other

We will suppose that when the map is dense, tests are performed only on
markers, whereas when the map is sparse, test are also performed between
markers.

Under a sparse map, thresholds can be obtained using the most appropriate
methods as function of I :

• for I = 1, the problem comes down to computing the distribution of the
maximum, i-absolute, value of a Gaussian vector. This can be done by
a Discrete Monte-Carlo Quasi Monte-Carlo method (DMCQMC) : the
method for numerical computation of a multivariate normal probability
(Genz, 1992) can be considered. It uses a transformation that simplifies
the problem and places it into a form that allows efficient calculation
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using MCQMC methods. Note that a Newton’s method can been used
in order to obtain the threshold. This method is faster than using a
simple Monte-Carlo method.

• for I > 1, a Discrete Monte-Carlo (DMC) method can be performed.
According to the Theorem, when tests are performed only at the mark-
ers locations, the asymptotic process is a Discrete Ornstein-Uhlenbeck
Chi-Square process with I degrees of freedoms (DOUCS(I)). The defi-
nition of such a process is given in the right-hand side of formula (1).
When considered at the markers locations, the processes Zi(.) are sim-
ply AR(1) processes and we can interpolate by formula (2). In this
situation, the threshold is easily obtained by a Discrete Monte-Carlo
method based on a large number of sample paths (nspaths) of the
asymptotic process.

Under a dense map, we propose theoretical methods to obtain the thresholds.
Assuming that the number of genetic markers is infinite, the LRT process is
asymptotically an Ornstein-Uhlenbeck Chi Square process with I degrees of
freedom (OUCS(I)).
In a paper in progress, Rabier and Genz propose an approximative formula
(named DF here) for the threshold of the supremum of such a OUCS(I)
process. It is based on Delong (1981)’s work on Brownian motion. This
formula is suitable when I and the threshold are large.
Besides, statistical tables given by Estrella (2003), for the threshold of the
supremum of the OUCS(I), are also available. In order to obtain its exact
tables, Estrella improved Delong’s work on hypergeometrics functions. Es-
trella’s method will be denoted ET .

Table 1 is a summary of all the methods proposed for the two kind of maps.
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Map Method

Dense (testing on markers)

ET (table available
for I ≤ 20)

DF (formula available
for I and

threshold large)

Sparse (testing between markers)
DMCQMC

(available only for I = 1)

DMC for I > 1

Table 1: Summary of all the methods studied as a function of the map considered and the
way of performing tests (DMC for Discrete Monte-Carlo, DMCQMC for Discrete Monte-
Carlo Quasi Monte-Carlo, ET for Estrella exact table, DF for Delong approximative
formula)
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3.2. Applications under the null hypothesis

In this Section, the focus is on thresholds corresponding to the 95% quan-
tile of the supremum of the LRT process under H0. In order to illustrate the
different methods, a sparse map and a dense map are considered. Since all
the methods are based on asymptotic results (cf. Theorem), in order to check
the validity of this results, some populations of different sizes have been sim-
ulated (npop denotes the number of populations whereas n denotes the size
of a population).

Sparse map
The sparse map consists of a chromosome of length T = 60cM with 4 genetic
markers equally spaced every 20cM. The presence of a QTL is tested every
5cM.

In Table 2, thresholds are presented as a function of I. In Table 3, the focus
is on the number of false positives (NFP) as a function of the number of
individuals n (thresholds taken from Table 2). Using Binomial distribution,
a 95% confidence interval is calculated (into brackets in the tables) for the
true percentage of the number of false positives.

According to Table 3, when there are in mean 200 individuals per family,
that is to say n = 200 I, NFP is not significantly different from 5%. When
n = 50 I, we can consider that NFP is still fair (even if it is significantly
different from 5%) whereas when n = 30 I, NFP is not so nominal.

Dense map
The dense map consists of a chromosome of length T = 50cM with 501 ge-
netic markers equally spaced every 0.1cM.

The thresholds are compared in Table 4, and the NFP in Table 5. This
aspect suggests fast convergence to asymptotic regime.

3.3. Remark

ET is not appropriate for sparse map for two reasons :

1. ET is based on Ornstein-Uhlenbeck (OU) process which is much more
irregular than the process Z1(.) (see Figure 1). When I = 1, this can
be formalized by the use of Slepian type inequalities, specially lemma
(2.1) in Azäıs and Wschebor (2009) which comes from Plackett (1954).
It can be proved that the covariances are smaller in the case of OU
process than for the process Z1(.). It implies that the maximum of OU
is stochastically greater than the Z1(.) one. Since P (sup |Z1(.)| > u) ≈
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2P (sup Z1(.) > u), this argument can be approximatively extended to
the absolute value.

2. for the sparse map, the focus is not on continuous process but on dicrete
process : the maximum of continuous process is always greater than
the discrete one.

To sum up, ET will give too large thresholds.
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Method DMCQMC (I = 1) DMC (I = 3) DMC (I = 5)
Threshold 6.06 10.76 14.47

Table 2: Thresholds obtained using the appropriate method as a function of the value of
I considered (nspaths = 1000000). The map consists of 4 genetic markers equally spaced
every 20cM (T=60cM). A test is done every 5cM.

P
P

P
P

P
P

P
P

P
n

Method
DMCQMC (I = 1) DMC (I = 3) DMC (I = 5)

n = 200 I 5.20% [4.98%; 5.42%] 5.03% [4.82%; 5.24%] 5.22% [5.00%; 5.44%]
n = 50 I 5.78% [5.55%; 6.01%] 5.97% [5.74%; 6.20%] 6.11% [5.88%; 6.34%]
n = 30 I 6.60% [6.36%; 6.84%] 6.77% [6.52%; 7.02%] 7.08% [6.83%; 7.33%]

Table 3: Number of False Positives (NFP) as a function of the number of individuals n

and the method considered. The map consists of 4 genetic markers equally spaced every
20cM (T=60cM). A test is done every 5cM (σ = 1, µ1 = −0.37, µ2 = 0.03, µ3 = 0.06,
µ4 = −0.26, µ5 = 0.27, npop = 40000).

I = 1 I = 3
Method ET DF DMC ET DF DMC

Threshold 7.84 7.61 7.68 13.09 12.91 12.86

Table 4: Thresholds obtained using theoretical methods ET , DF as function of the value
of I considered. DMC for checking (nspaths = 1000000). The map consists of 501 genetic
markers equally spaced every 0.1cM (T = 0.5M). A test is done on each marker.
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P
P

P
P

P
P

P
P

P
n

Method
DF DMC ET

n = 1000 4.78% [4.57%; 4.99%] 5.13% [4.91%; 5.35%] 4.41% [4.21%; 4.61%]
n = 500 4.96% [4.75%; 5.17%] 5.15% [4.93%; 5.37%] 4.64% [4.43%; 4.85%]
n = 150 5.67% [5.44%; 5.90%] 5.91% [5.68%; 6.14%] 5.34% [5.12%; 5.56%]

Table 5: Number of False Positives (NFP) as a function of the number of individuals n

and the method used. I = 5 here. The map consists of 501 genetic markers equally spaced
every 0.1cM (T = 0.5M). A test is done on each marker (σ = 1, µ1 = −0.37, µ2 = 0.03,
µ3 = 0.06, µ4 = −0.26, µ5 = 0.27, npop = 40000).

4. Study of the statistical power

Motivation

Some of the sires are heterozygotes at the QTL and others homozygous.
QTL can only be detected in heterozygous sires families. Thus, two questions
arise :

1. is it always profitable to include all the families in the analysis ?

2. do we have to analyze families all together or separately ?

We consider here, the sparse map of Section 3.2. As previously, tests are
performed every 5 cM. The level considered is 5%.

About the QTL effects

When we deal with I families, since the total number of individuals is
n, the expectation of the number of individuals in family i is only nπi. So,
in order to see the evolution of the power of the Interval Mapping with the
number of families, we will consider λi = λ√

πi

(note that if I = 1, λ1 =

λ because π1 = 1). As a consequence, the mean function, mi
t⋆(t), of the

asymptotic process Zi(.), is proportional to λ and does not depend on i (cf.
Theorem).

How to optimize the QTL detecting process

Only asymptotic results are studied here (cf. Theorem). Figures 2, 3, 4
illustrate question 1 whereas Figures 5, 6, 7 illustrate question 2.
In Figures 2, 3, 4, the power is plotted as a function of t⋆, I and the values
of the λi’s. In Figures 5, 6, 7, we compare the power of the approach which
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consists of analyzing all families together (as previously), and the power of
the approach which consists of analyzing families separately. For all of these
Figures, t⋆ has been discretized with a step of 5cM.

Figures 2, 3, 4
For all of these three figures, two curves with the same colour on different
Figures represent the same quantities.

As expected, the power increases with the number I of families (Figure 2 for
λ = 2) and, for a given I, with the proportion of heterozygous sires (Figure
3 for I = 5, λ = 2 and various number number nz of non zeros λi’s).

According to Figure 4, it is almost as powerful to consider I = 1 with nz = 1
(cf. grey curve) as I = 5 with nz = 2 (cf. green curve). So, it is much
more powerful to consider I = 1 with nz = 1 (cf. grey curve) than I = 5
with nz = 1 (cf. brown curve). As a consequence, if they could be sorted
in advance, it would be more powerful to concentrate the analysis on the
families with a segregating QTL. Furthermore, once the families targeted, it
would be more powerful to remove the families with very small QTL effects
(not illustrated here). Indeed, it is like these families add noise to the model.

Figures 5, 6, 7
Practically, the segregating families are not known before the analysis and
the true question is : do we have to analyze all the families together (global
approach) or analyze families separately (Bonferroni approach) ? Indeed,
since all the results are asymptotic, the variance is not better estimated
when the global approach is considered.

Figures 5, 6,7 represent the two approaches. In these Figures, when the curve
is :

• blue, I = 5

• cyan, I = 7

• orange, I = 12

• in solid line, it refers to the global approach

• in dashed line, it refers to the Bonferroni approach
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We remind the null hypothesis,

H0 : “ ∀i ∈ {1, ..., I} , qi = 0 ”

and the alternative hypothesis,

Hλt⋆ : “ there is at least one qi = λi/
√

n, with λi ∈ R
⋆, at the position t⋆ ”

For the global approach, when H0 is rejected, it only comes out that there is a
QTL in at least one family, but this family is not known. For the Bonferroni
approach, in order to answer the same question as for the global approach,
we define the test statitistic U and the critical region CR, which results from
a Bonferroni correction :

U =
(

sup
{

Z1(.)
}2

, ..., sup
{

ZI(.)
}2

)

CR =
{

u = (u1, ..., uI) ∈ R
I such as there is at least one ui verifying ui ≥ c

}

where c is the threshold verifying : P

(

sup {Z1
0(.)}2 ≥ c

)

= 0.05
I

.

Z1
0(.) is the Gaussian process centered and with covariance function Γ(t, t′).

The Bonferroni correction allows to have PH0
(U ∈ CR) ≤ 0.05. Obviously,

the power of the Bonferroni approach is PHλt⋆
(U ∈ CR).

In Figure 5, the focus is on the particular case where there is only a QTL in
family 1. λ = 2 has been taken. In the Figure, are represented the power
of the two approaches as a function of t⋆ and I. It is noticeable that the
Bonferroni approach is more powerful than the global approach. In Figure
6, the focus is on the particular case where there is a QTL in each family. In
that case, the Bonferroni approach is outperformed by the global approach.

Figure 7 represents the mean power of the two approaches. Every alternative
hypotheses have been considered (except the null hypothesis), i.e. for a given
I, nz = 1, ..., I . Equiprobability concerning all these hypotheses has been
supposed. According to the Figure, for a given I, there is a mean increase in
term of power of at least 15% when the global approach is considered.

13



0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t*(cM)

P
ow

er

Figure 2: Power as a function of t⋆ and I. From top to bottom, I = 5, I = 3, I = 1
(λ = 2, σ = 1, nspaths = 100000).

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t*(cM)

P
ow

er

Figure 3: Power as a function of t⋆ and the number nz of non zero. From top to bottom,
nz = 5, 4, 3, 2, 1, 0 (I = 5, λ = 2, σ = 1, nspaths = 100000).
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Figure 4: Power as a function of t⋆, I and the number nz of non zero. From top to
bottom : I = 5 with nz = 2, I = 1 with nz = 1, I = 5 with nz = 1 (λ = 2, σ = 1,
nspaths = 100000).
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Figure 5: Power of the global approach (in solid line) and power of the Bonferroni approach
(in dashed line), as a function of t⋆ and in the particular case of nz = 1. Orange refers to
I = 12, cyan to I = 7 and blue to I = 5 (λ = 2, σ = 1, nspaths = 100000).
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Figure 6: Power of the global approach (in solid line) and power of the Bonferroni approach
(in dashed line), as a function of t⋆ and in the particular case of nz = I. Orange refers to
I = 12, cyan to I = 7 and blue to I = 5 (λ = 2, σ = 1, nspaths = 100000).
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Figure 7: Mean power of the global approach (in solid line) and mean power of the
Bonferroni approach (in dashed line), as a function of t⋆. Orange refers to I = 12, cyan
to I = 7 and blue to I = 5 (λ = 2, σ = 1, nspaths = 100000).

16



4.1. Discussion

As all this study of the statistical power is based on asymptotic results, it
is important to check the validity of the asymptotic assumption. A numerical
evaluation has been performed for λ = 2 and a QTL located at t⋆ = 25cM
(cf. Table 6). The Theoretical Power, based on results of the Theorem, has
been calculated using a DMC method. The Empirical Power (EP) has been
computed assuming πi equal to 1/I and a 95% confidence interval for the
true value of the power is given into brackets. According to Table 6, the
Theoretical Power is always located in the confidence interval whatever the
value of n, demonstrating on this example, that the Theoretical Power should
also be suitable for moderate values of n.

It can be seen that for all the figures shown here, the method is more pow-
erful when the QTL is located on a marker. This is not surprising since
on markers, the distribution from which belongs the quantitative trait Y is
exactly known whereas between markers, since this distribution is unknown,
a mixture model is used.

According to the Theorem, the LRT process, Λn(.), is asymptotically the
sum of the square of independent interpolated processes. So, it is easy to
test every positions between genetic markers. In this article, as far as the
sparse map is concerned, tests have been performed only every 5cM. In Fig-
ure 8, the focus is on an interval of two genetic markers spaced from 20cM
(I = 3, λ = 2). We compare the power of the Interval Mapping when tests
are performed every cM and every 5cM, as function of the location of the
QTL, t⋆ (I = 3, λ = 2). It is noticeable that the two approaches give almost
the same power : testing only every 5cM is convenient enough.
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I = 1 I = 3 I = 5
Theoretical Power 37.59% 68.57% 85.58%

EP for n = 200 I
38.08% 68.80% 85.00%

[37.13%; 39.03%] [67.89%; 69.71%] [84.30%; 85.70%]

EP for n = 50 I
37.54% 68.37% 84.74%

[36.59%; 38.49%] [67.46%; 69.28%] [84.04%; 85.44%]

EP for n = 30 I
37.83% 68.57% 85.15%

[36.88%; 38.78%] [67.66%; 69.48%] [84.45%; 85.85%]

Table 6: Theoretical Power and Empirical Power (EP) as a function of I (λ = 2, t⋆ = 25cM,
nspaths = 100000 for the Theoretical Power and npop = 10000 for the Empirical Power,
µ1 = −0.37, µ2 = 0.03, µ3 = 0.06, µ4 = −0.26, µ5 = 0.27, σ = 1)
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Figure 8: Power as a function of t⋆ and the way of testing (λ = 2, σ = 1, nspaths = 100000,
I = 3). The map consists of 2 markers spaced from 20cM.
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Conclusion

In order to optimize the QTL detecting process, we can advise :

1. to target, whenever possible, families with the biggest QTL effects and
then, to analyze all these families together.

2. when it is not possible to target families, to analyze all the families
together directly.
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Rebäı, A., Goffinet, B., Mangin, B. (1995) Comparing power of different
methods for QTL detection. Biometrics, 51, 87-99.

20



Van der Vaart, A.W. (1998) Asymptotic statistics, Cambridge Series in
Statistical and Probabilistic Mathematics.

Wu, R., MA, C.X., Casella, G. (2007) Statistical Genetics of Quantitative
Traits, Springer

21


