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Diamagnetism of quantum gases with singular potentials.

May 9, 2010

Philippe Briet 1, Horia D. Cornean2, Baptiste Savoie 3.

Abstract

We consider a gas of quasi-free quantum particles confined to a finite box, subjected to

singular magnetic and electric fields. We prove in great generality that before the thermody-

namic limit, the grand-canonical pressure is jointly analytic in the chemical potential and the

intensity of the external magnetic field. We also briefly discuss the thermodynamic limit.
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1 Introduction and the main result.

The quest for rigorous results concerning the thermodynamic limit of the magnetic susceptibility
of a gas of quasi-free quantum particles in the presence of a magnetic field started in 1975 with the
work of Angelescu et. al. [1, 2]. Their method used in an essential way that the confining domain
was a parallelepiped, the Hamiltonian was purely magnetic and the susceptibility was computed
at zero magnetic field.

In a series of papers [12, 7, 8, 9, 14, 27] we gradually removed these constraints, and now we
know how to prove the thermodynamic limit for generalized susceptibilities at arbitrarily large
magnetic fields, and with smooth and periodic electric potentials. This achievement was possible
due to a new idea, which led to the development of a systematic magnetic perturbation theory for
Gibbs semigroups.

In this paper we examine the case in which both the magnetic field and the electric potential can
have singularities, such that the magnetic and scalar singular perturbations are relatively bounded
in the form sense with respect to the purely magnetic Schrödinger operator with constant magnetic
field.

There is a huge amount of literature dedicated to spectral and statistical aspects of diamag-
netism in large quantum systems. Some of the closely related papers to our work are [3, 4, 10, 11,
13, 19, 22].

Now let us introduce some notation and give the main theorem. Consider a magnetic vector
potential a = (a1, a2, a3) = ac+ap where ac is the usual symmetric gauge generated by a constant
magnetic field, and ap is Z3-periodic satisfying a2p ∈ Kloc(R

3). The notation Kloc denotes the
usual Kato class [15, 28]. Assume that V is also Z3-periodic such that V ∈ Kloc(R

3). Later on we
will give a rigorous sense to the operator (here ω ∈ R)

H∞(ω, V ) :=
1

2
(−i∇− ωa)2 + V

corresponding to the obvious quadratic form initially defined on C∞
0 (R3). If Λ is a bounded open

and simply connected subset of R3 we denote by HΛ(ω, V ) the operator obtained by restricting
the above mentioned quadratic form to C∞

0 (Λ). We will see that HΛ(ω, V ) has purely discrete
spectrum.
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Let ω ∈ R and β := 1
kBT > 0, where T > 0 is the temperature and kB is the Boltzmann

constant. Set e0 = e0(ω) to be inf σ(H∞(ω, V )). Introduce the following complex domains

D+1(e0) := C \ (−∞,−eβe0 ], D−1(e0) := C \ [eβe0 ,∞) (1.1)

The grand canonical finite volume pressure is defined as [1, 3, 20]

PΛ(β, ω, z, ǫ) =
ǫ

β|Λ|
Tr

{

ln
(

I+ ǫze−βHΛ(ω,V )
)}

(1.2)

where ǫ = +1 corresponds to the Fermi case and ǫ = −1 corresponds to the Bose case. In (1.2)
the activity z ∈ Dǫ(e0) ∩ R. The operator ln

(

I + ǫze−βHΛ(ω,V )
)

in the right hand side of (1.2)
is defined via functional calculus. Due to some trace class estimates which we will prove later on
(see (2.12)), the pressure PΛ in (1.2) is well defined. Define the following complex domains

Dǫ :=
⋂

ω∈R

Dǫ(e0(ω)) = Dǫ(e0(0)), ǫ = ±1 (1.3)

Now we can formulate the main result of this paper:

Theorem 1.1. Let β > 0.
(i). For each open set K ⊂ C with the property that K is compact and included in Dǫ, there

exists an open neighborhood N of the real axis such that N xK ∋ (ω, z) 7→ PΛ(β, ω, z, ǫ) is jointly
analytic.

(ii). If ω is real, then (in the sense of Fisher)

P∞(β, ω, z, ǫ) := lim
Λ→R3

PΛ(β, ω, z, ǫ)

exists and defines a smooth function of ω.

The rest of the paper contains the proof of this theorem. While (i) will be proved quite in
detail, we only outline the main ideas behind (ii); all details will be given in [27].

2 Technical preliminaries.

Define the sesquilinear non-negative form on C∞
0 (Λ) given by (here ω ∈ R):

q0(ϕ, ψ) := 〈(−i∇− ωa)ϕ, (−i∇− ωa)ψ〉

By closing this form we generate a self-adjoint operator denoted by HΛ(ω, 0), whose form core is
C∞

0 (Λ), see e.g. [5, 28]. For convenience we represent this operator as HΛ(ω, 0) =
1
2 (−i∇− ωa)2.

If Λ = R3, the corresponding free magnetic operator is denoted by H∞(ω, 0). If a is smooth
enough, then HΛ(ω, 0) can be seen as the Friedrichs extension of H∞(ω, 0) restricted to C∞

0 (Λ).
The operator HΛ(ω, 0) obeys the diamagnetic inequality [4, 28],

∀ϕ ∈ L2(Λ), ∀β ≥ 0, |e−βHΛ(ω,0)ϕ| ≤ e−βHΛ(0,0)|ϕ| (2.1)

We will work with electric potentials V ∈ Kloc(R
3) which are Z3 periodic. We denote the restriction

of V to Λ by the same symbol.
It is known that V is infinitesimally form bounded to HΛ(0, 0) [15], and implicitly to HΛ(ω, 0);

the last statement follows by using standard arguments involving the diamagnetic inequality (2.1)
(see [5] and references herein). We conclude that the closure of the sesquilinear form defined on
C∞

0 (Λ) and given by

qV (ϕ, ψ) := 〈(−i∇− ωa)ϕ, (−i∇− ωa)ψ〉+ 〈V ϕ, ψ〉

will be symmetric, bounded from below and with the domain Q(qV ) = Q(q0). We denote by
HΛ(ω, V ) its associated selfadjoint operator in L2(Λ).

The diamagnetic inequality (2.1) holds true if we replace the free operators by the perturbed
one HΛ(ω, V ) and HΛ(0, V ), see e.g. [21]. This together with the min-max principle [26] imply:

E0(ω) := inf σ(HΛ(ω, V )) ≥ e0(ω) := inf σ(H∞(ω, V )) ≥ e0(0) > −∞.
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Remark 2.1. The operators H∞(ω, 0) and HΛ(ω, 0) can be defined under weaker conditions on
a see e.g. [5, 22, 23, 28] but the one imposed here will be necessary in what follows. When we
work with a bounded Λ, the form domain of HΛ(ω, V ) will be H1

0(Λ), independent of ω and V . If
Λ = R3, then under our conditions on V and a the operator H∞(ω, V ) is selfadjoint and bounded
from below having C∞

0 (R3) as a form core.

In the rest of the section we only consider the operator defined on the finite box. We allow
ω ∈ C and want to study the analyticity properties of the family {HΛ(ω, V ), ω ∈ C}. Denote by
T either V or a2. Let ω0 ∈ R and ϕ ∈ Q(qV ), ‖ϕ‖ = 1. Then we know that for all σ > 0 there
exists σ′ independent of ω0 such that

|〈Tϕ, ϕ〉| ≤ σ〈HΛ(ω0, V )ϕ, ϕ〉 + σ′ (2.2)

Let us show that the following two sesquilinear forms

r1,Λ(ω0) := Re{a · (i∇+ ω0a)}, r2,Λ :=
1

2
a2 (2.3)

are infinitesimally form bounded relatively to the form corresponding to HΛ(ω0, V ).
Let ω0 ∈ R and let ϕ ∈ Q(qV ), ‖ϕ‖ = 1. The Cauchy-Schwarz inequality implies that for any

α > 0 we have:

|〈aϕ, (i∇ + ω0a)ϕ〉| ≤ α〈HΛ(ω0, 0)ϕ, ϕ〉+ α−1(a2ϕ, ϕ)

≤ α〈HΛ(ω0, V )ϕ, ϕ〉+ α|〈V ϕ, ϕ〉|+ α−1〈a2ϕ, ϕ〉 (2.4)

In view of (2.2), then for all ϑ > 0 there exists ϑ′ > 0 both ω-independent such that

|〈aϕ, (i∇+ ω0a)ϕ〉| ≤ ϑ〈HΛ(ω0, V )ϕ, ϕ〉 + ϑ′ (2.5)

This implies that the form r1,Λ(ω0) is bounded when restricted to the form domain of HΛ(ω0, V )
and moreover, it generates an operator with zero relative form bound. This property also holds
for the form r2,Λ.

Now if ω0, ω ∈ C, denote dω := ω − ω0 and observe that we have in form sense:

rΛ(ω0, ω) := dω r1,Λ(ω0) + dω2r2,Λ, HΛ(ω, V ) = HΛ(ω0, V ) + rΛ(ω0, ω) (2.6)

We conclude that the form domain ofHΛ(ω, V ) is independent of ω: Q(HΛ(ω, V )) = Q(HΛ(0, V )).
We will now show that {HΛ(ω, V ), ω ∈ C} is a family of m-sectorial operators. Both properties
ensure that {HΛ(ω, V ), ω ∈ C} is an analytic family of type (B) (see e.g. [24]).

Fix ω ∈ C with Reω = ω0, Imω = ω1 and let ϕ ∈ Q(HΛ(ω0, V )), ‖ϕ‖ = 1. Using (2.2), we
conclude that for all σ > 0 small enough such that σω2

1 ≤ 1 there exists σ′ such that:

Re〈HΛ(ω, V )ϕ, ϕ〉 = 〈HΛ(ω0, V )ϕ, ϕ〉 −
ω2
1

2
〈a2ϕ, ϕ〉 ≥ (1− σω2

1/2)〈HΛ(ω0, V )ϕ, ϕ〉 −
ω2
1

2
σ′ (2.7)

On the other hand, from (2.5) we conclude that there exist two constants ϑ, ϑ′ > 0 such that

| Im〈HΛ(ω, V )ϕ, ϕ〉| = |ω1 Re〈aϕ, (i∇+ ω0a)ϕ〉| ≤ |ω1|(ϑ〈HΛ(ω0, V )ϕ, ϕ〉+ ϑ′) (2.8)

Let Θ(HΛ(ω, V )) be the numerical range of HΛ(ω, V ). Then from (2.7) and (2.8) we obtain that
both Θ(HΛ(ω, V )) and σ(HΛ(ω, V )) are included in the sector

S(ω) := {ξ ∈ C, | Im ξ| ≤ |ω1|(c1 Re ξ + c2), Re ξ ∈ [c3,+∞)} (2.9)

where the constants c1, c2, c3 satisfy: 0 < c1, c2 <∞ and −∞ < −c2/c1 < c3 < e0.
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Remark 2.2. (i). Note that c1, c2, c3 in (2.9) depend implicitly on ω through the condition
σω2

1 ≤ 1. If ω1 is small enough, then these constants can be chosen to be ω independent. Moreover,
let ω0 ∈ R and ω ∈ C such that |dω| is small enough. Then for all ϕ ∈ Q(HΛ(ω, V )), ‖ϕ‖ = 1

Re〈HΛ(ω, V )ϕ, ϕ〉 ≥ c3 ≥ e0(ω0) +O(|dω|).

(ii). Let ω ∈ C. From [24] we know that if ξ /∈ S(ω), ‖(HΛ(ω, V ) − ξ)−1‖ ≤ 1
d(ξ,S) . Hence put

γ(ω) = γ := −c2/c1 and θ(ω) = θ := arctan(c|ω1|). For any δ > 0 introduce the sector

Sδ(ω) := {ξ ∈ C, | arg(ξ − γ)| ≤ θ + δ} (2.10)

Then there exists a constant cδ > 0 such that for all ξ /∈ Sδ(ω) we have

‖(HΛ(ω, V )− ξ)−1‖ ≤
cδ

|ξ − γ|
. (2.11)

(iii). The operator HΛ(0, V ) has compact resolvent (see e.g. [17, 25]). By standard arguments
this also holds true for HΛ(ω, V ), ω ∈ C [24]. Hence HΛ(ω, V ) has only discrete spectrum.

We are now interested in establishing Hilbert-Schmidt and trace norm estimates for powers of
the resolvent at finite volume. Denote by B1 the set of trace norm operators, and by B2 the set
of Hilbert-Schmidt operators defined on L2(Λ). We denote by ‖T ‖1 and ‖T ‖2 the trace norm,
respectively the Hilbert-Schmidt norm of the operator T .

For β > 0 and ω ∈ R, let

WΛ(β, ω) =WΛ(β, ω, V ) := e−βHΛ(ω,V )

be the strongly continuous semigroup associated to HΛ(ω, V ) on L2(Λ) see for example [24, 29]
for the definition and general properties of a semigroup.

Lemma 2.3. There exist two positive numerical constants c0 and C0 such that for every β > 0
and ω ∈ R we have that WΛ(β, ω) is a positive trace class operators obeying:

‖WΛ(β, ω)‖1 = Tr{WΛ(β, ω)} ≤ c0β
−3/2eC0β |Λ|. (2.12)

Moreover, its Hilbert-Schmidt norm satisfies

‖WΛ(β, ω)‖2 ≤ c0β
−3/4eC0β |Λ|

1

2 . (2.13)

Proof. From [5] we know that the semigroup is an integral operator:

(WΛ(β, ω)ϕ)(x) =

∫

Λ

GΛ(x,y, β, ω)ϕ(y)dy, ϕ ∈ L2(Λ).

Moreover the integral kernel GΛ is jointly continuous in (x,y, β) ∈ Λ× Λ× R∗
+ and satisfies

|GΛ(x,y, β, ω)| ≤ c0β
−3/2eC0βe

−|x−y|2

4β , (x,y, β, ω) ∈ Λ× Λ × R
∗
+ × R (2.14)

for some positive constants c0, C0 which only depend on the potential V [6, 28]. The proof of the
lemma follows easily from (2.14).

We are now interested in obtaining similar estimates for powers of the resolvent. Let α > 0,
ω ∈ R, ξ0 ∈ C, Re ξ0 < e0(ω). As bounded operators on L2(Λ) we have [22, 28]

(HΛ(ω, V )− ξ0)
−α =

1

γ̃(α)

∫ ∞

0

tα−1eξ0tWΛ(t, ω)dt (2.15)

where γ̃(·) is the Euler gamma function. In particular from (2.12) and (2.13) for Re ξ0 < 0 and
|Re ξ0| large enough there exists a numerical constant c > 0 independent of ω ∈ R:

‖(HΛ(ω, V )− ξ0)
−1‖2 ≤ c|Λ|

1

2 and ‖(HΛ(ω, V )− ξ0)
−2‖1 ≤ c|Λ|. (2.16)
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3 Proof of the main theorem.

3.1 ω-analyticity of resolvents.

The first technical result is the following:

Proposition 3.1. Let ω ∈ C and ξ ∈ ρ(HΛ(ω, V )). Then there exists a complex neighborhood
Vξ(ω) of ω such that ξ ∈ ρ(HΛ(ω

′, V )) and the operator valued function Vξ(ω) ∋ ω′ 7→ (HΛ(ω
′, V )−

ξ)−1 is B2-analytic.

Proof. Let ω ∈ C. First we choose ξ0 < 0 negative enough so that ξ0 ∈ ρ(HΛ(ω, V )). Such a
choice is possible because HΛ(ω, V ) is m-sectorial.

It is a well known fact [25] that since the perturbation rΛ(0, ω) (see (2.6)) is relatively form
bounded to HΛ(0, V ) with zero bound then for ξ0 < 0 with |ξ0| large enough there exists some
complex neighborhood of ω denoted by ν(ω) such that for all ω′ ∈ ν(ω) one has:

‖(HΛ(0, V )− ξ0)
−1/2rΛ(0, ω

′)(HΛ(0, V )− ξ0)
−1/2‖ < 1. (3.1)

Set K(ξ0, ω
′) := (HΛ(0, V ) − ξ0)

−1/2rΛ(0, ω
′)(HΛ(0, V ) − ξ0)

−1/2. From the estimate (3.1) we
conclude that ∀ω′ ∈ ν(ω), ξ0 ∈ ρ(HΛ(ω

′, V )) and

(HΛ(ω
′, V )− ξ0)

−1 = (HΛ(0, V )− ξ0)
−1/2(I+K(ξ0, ω

′))−1(HΛ(0, V )− ξ0)
−1/2. (3.2)

holds in the bounded operator sense. And since ν(ω) ∋ ω′ 7→ K(ξ0, ω
′) is analytic, it follows that

the bounded operators valued function ν(ω) ∋ ω′ 7→ (I+K(ξ0, ω
′))−1 is analytic too.

On the other hand, from (3.2) we have

‖(HΛ(ω
′, V )− ξ0)

−1‖2 ≤ ‖(I+K(ξ0, ω
′))−1‖‖(HΛ(0, V )− ξ0)

−1‖2

which together with (2.16), it shows that ν(ω) ∋ ω′ 7→ (HΛ(ω
′, V ) − ξ0)

−1 is a Hilbert-Schmidt
family of operators in ω′ ∈ ν(ω). Now it is straightforward to prove the theorem for such a ξ0. It
remains to extend the B2-analyticity property for any ξ ∈ ρ(HΛ(ω, V )).

Consider the first resolvent equation

(HΛ(ω, V )− ξ)−1 = (HΛ(ω, V )− ξ0)
−1 + (ξ − ξ0)(HΛ(ω, V )− ξ)−1(HΛ(ω, V )− ξ0)

−1 (3.3)

Since there exists a bounded complex neighborhood Vξ(ω) of ω such that the operator-valued
function Vξ(ω) ∋ ω′ 7→ (HΛ(ω

′, V )−ξ)−1 is bounded-analytic, by standard arguments involving the
bilateral ideal property of B2, the operator-valued function ω′ 7→ (HΛ(ω

′, V )− ξ)−1(HΛ(ω
′, V )−

ξ0)
−1 is B2-analytic on Vξ(ω) ∩ ν(ω). Now use (3.3) and the proof is over.

Corollary 3.2. Let ω ∈ C and ξ ∈ ρ(HΛ(ω, V )). Then there exists a neighborhood Vξ(ω) of ω
such that the operator valued function Vξ(ω) ∋ ω′ 7→ (HΛ(ω

′, V )− ξ)−2 is B1-analytic.

Proof. From Proposition 3.1 we have that (HΛ(ω, V )− ξ)−2 is a product of two Hilbert-Schmidt
operators. Thus (HΛ(ω, V )− ξ)−2 is trace class.

Now we consider WΛ(β, ω), ω ∈ R. We want to extend WΛ(β, ω) to complex ω’s and in trace
class sense. We will use the fact that the operator HΛ(ω, V ) is m-sectorial:

Corollary 3.3. Let β > 0. The family {WΛ(β, ω), ω ∈ R} can be extended to a B1-entire family
of operators.
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Proof. Let β > 0, ω ∈ C. Consider the curve in C given by Γ := {ξ ∈ C : arg(ξ − γ′) = θ + ǫ}
where γ′, ǫ are chosen such that γ − γ′ = 1 and θ + ǫ < π

2 . Here γ, θ are given by the Remark 2.2
ii). The curve Γ encloses the spectrum of HΛ(ω

′, V ) for all ω′ in a neighborhood of ω, ν(ω). From
the Dunford functional calculus [16], the following relation holds in terms of bounded operators:

WΛ(β, ω
′) :=

∫

Γ

dξe−βξ(HΛ(ω
′, V )− ξ)−1, ω′ ∈ ν(ω) (3.4)

This shows that the semigroup can be extended to a bounded operator for every complex ω′. We
now want to show that this formula defines in fact a trace class operator. Choose ξ0 ∈ C with
Re ξ0 < 0 and |Re ξ0| large enough so that ξ0 ∈ ρ(HΛ(ω

′, V )) for any ω′ ∈ ν(ω). Using twice the
resolvent formula (3.3) in (3.4) we obtain the identity:

WΛ(β, ω
′) =

∫

Γ

dξe−βξ(ξ − ξ0)
2(HΛ(ω

′, V )− ξ)−1(HΛ(ω
′, V )− ξ0)

−2, ω′ ∈ ν(ω) (3.5)

From the choice of Γ, the bounded operator valued function ν(ω) ∋ ω′ → (HΛ(ω
′, V ) − ξ)−1 is

analytic for all ξ ∈ Γ, and all norm bounds are uniform in ξ ∈ Γ. Moreover, from (2.11) we conclude
that there exists a constant C > 0 such that ‖e−βξ(ξ− ξ0)2(HΛ(ω

′, V )− ξ)−1‖ ≤ C|Re ξ|2e−βRe ξ.
Therefore

ν(ω) ∋ ω′ →

∫

Γ

dξe−βξ(ξ − ξ0)
2(HΛ(ω

′, V )− ξ)−1

is bounded analytic too. Hence from the Corollary 3.2 and (3.5) the operators valued function
ν(ω) ∋ ω′ →WΛ(β, ω

′) is B1-analytic. Thus WΛ(β, · ) is B1-entire.

3.2 ω-analyticity of the pressure.

Let β > 0, ω ∈ R and z ∈ Dǫ(e0) ∩ R. Define

[e0(ω),∞) ∋ ξ 7→ ln
(

1 + ǫze−βξ
)

We have that the map (z, ξ) 7→ ln
(

1 + ǫze−βξ
)

is jointly analytic in

{

(z, ξ) ∈ C× C : |z|e−βRe ξ < 1
}

(3.6)

but this is not sufficient and we also need to control the region in which Re ξ is close to the bottom
of the spectrum. Let β > 0, ω ∈ R, −∞ < e′0 ≤ e0 = e0(ω) and consider the domains Dǫ(e

′
0)

defined as in (1.1) but with e′0 instead e0. Then:

Lemma 3.4. Let β > 0, ω ∈ R and −∞ < e′0 ≤ e0. For each compact K ⊂ Dǫ(e
′
0) there exists

ηK > 0 such that (z, ξ) 7→ ln
(

1 + ǫze−βξ
)

is jointly analytic in

K ×
{

ξ ∈ C : Im ξ ∈
(

−
ηK
β
,
ηK
β

)

, Re ξ ∈ [e′0,∞)
}

(3.7)

If K ′ is a compact subset such that K ′ ⊂ K then η′K > ηK .

Proof. We first deal with the Bose case. Here B(r) is an open ball in C centered at the origin
having radius r > 0. Obviously (z, ξ) 7→ ln

(

1 + ǫze−βξ
)

is a jointly analytic function in Re ξ ∈

[e′0(ω),∞), z ∈ B(eβe
′
0). Let K be a compact of D−1(e

′
0) and denote by K̃ = K \ B(eβe

′
0). Let

θm := inf{arg(z), z ∈ K̃}, θM := sup{arg(z), z ∈ K̃}

Because dist(K̃, [eβe
′
0 ,∞)) > 0, then 0 < θm ≤ θM < 2π. We set ηK := 1

2 inf{θm, 2π − θM}.

Clearly for z ∈ K̃ and Im ξ ∈ [− ηK

β ,
ηK

β ], 0 < θm
2 ≤ arg z − β Im ξ ≤ π + θM

2 < 2π then

Im(1− ze−βξ) = 0 iff arg z − β Im ξ = π but in this last case Re(1− ze−βξ) > 0.
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For the Fermi case we get the lemma following the same arguments as above. Let K be a
compact of D+1(e

′
0) and denote by K̃ = K \ B(eβe

′
0). Let

θm := sup{arg(z), z ∈ K̃, arg(z) ≥ 0}, θM := inf{arg(z), z ∈ K̃, arg(z) < 0}

We set ηK := 1
2 inf{π − θm, π + θM}. Clearly for z ∈ K̃ and Im ξ ∈ [− ηK

β , ηK

β ], −π < −π
2 + θM

2 ≤

arg z − β Im ξ ≤ π
2 + θm

2 < π then Im(1 + ze−βξ) = 0 iff arg z − β Im ξ = 0 but in this last case
Re(1 + ze−βξ) > 0.

Proposition 3.5. Let β > 0, ω0 ∈ R and K ⊂ Dǫ(e0(ω0)) a compact subset. Then there exists a
complex neighborhood V(ω0) of ω0 such that for any z ∈ K, the pressure is an analytic function
w.r.t. ω in V(ω0).

Proof. Let ω0 ∈ R, and K ⊂ Dǫ(e0), e0 = e0(ω0) be a compact subset.Then there exists e′0
satisfying −∞ < e′0 < e0 such that K ⊂ Dǫ(e

′
0). Consider now the following positively oriented

contour defined by

ΓK :=
{

Re ξ = e′0, Im ξ ∈
[

−
ηK
2β

,
ηK
2β

]}

∪
{

Re ξ ∈ [e′0, ξK), Im ξ = ±
ηK
2β

}

∪

{

Re ξ ≥ ξK , arg
(

ξ − ξK ∓ i
ηK
2β

)

=
π

4

}

(3.8)

where ηK > 0 is given by (3.7); ξK is chosen so that ξK > e0 and satisfies the condition (3.6) i.e.

sup
z∈K

{|z|}e−βRe ξ < 1 if Re ξ > ξK

Recall the domain of analyticity of ξ 7→ ln
(

1 + ǫze−βξ
)

defined by lemma 3.4 knowing (3.6).
Then ΓK is enclosed in this domain of analyticity.

Let B(ω0, r) be an open ball in C centered at ω0 and radius r > 0. If r is small enough then for
ω ∈ B(ω0, r), the spectrum of HΛ(ω, V ) as well as the sector S(ω) defined in (2.10) for Re ξ > ξK
together lie inside ΓK . To see this we use the Remark 2.2 i).

For β > 0, z ∈ K and ω ∈ B(ω0, r) consider the following Dunford integral operator [16]

I(β, z, ω) :=
i

2π

∫

ΓK

dξ ln
(

1 + ǫze−βξ
)(

HΛ(ω, V )− ξ
)−1

The above integral converges and defines a bounded operator due to the exponential decay of
ln
(

1 + ǫze−βξ
)

in Re ξ and because of (2.11).
Again here the choice of the contour implies that if r is small enough then for each ξ ∈ ΓK the

bounded operator valued function B(ω0, r) ∋ ω 7→ (HΛ(ω, V ) − ξ
)−1

is analytic. Therefore for r
small enough {I(β, z, ω), ω ∈ B(ω0, r)} is an analytic family of bounded operators in L2(Λ). By
analytic continuation we conclude that

I(β, z, ω) = ln
(

I+ ǫzWΛ(β, ω)
)

for all ω ∈ B(ω0, r) because the equality holds for real ω.
Now choose a ξ0 with a very negative Re ξ0. Then we get:

ln
(

I+ ǫzWΛ(β, ω)
)

=

(

i

2π

∫

ΓK

dξ (ξ − ξ0)
2 ln

(

1 + ǫze−βξ
)

(HΛ(ω, V )− ξ
)−1

)

(

HΛ(ω, V )− ξ0
)−2

(3.9)
This implies that if r is small enough, the family {I(β, z, ω), ω ∈ B(ω0, r)} is also analytic in the
trace class topology. The proof is over.
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3.3 Proof of the joint analyticity.

We apply Hartog’s theorem [18]. Put V :=
⋃

ω0∈R
V(ω0). Then from the Proposition 3.5 for any

z ∈ K the pressure is an analytic function with respect to ω in V . This is the first thing we need
in order to apply the Hartog theorem.

Now let β > 0 and K as in the theorem. We want to show that there exists a neighborhood of
the real axis N such that for any ω ∈ N , the function K ∋ z 7→ PΛ(β, ω, z, ǫ) is analytic.

We use formula (3.9) but with e
′

0 < e0(0) in the definition (3.8) of ΓK . The only thing we
need to show is that for ω ∈ C, Imω small enough the B1-operator valued function ΓK ∋ ξ →

(HΛ(ω)− ξ
)−1(

HΛ(ω)− ξ0
)−2

is uniformly bounded for Re ξ large enough. But this is true since

(2.11) implies that ΓK ∋ ξ 7→ ‖(HΛ(ω) − ξ
)−1

‖ is uniformly bounded for Re ξ large enough and

we know that
(

HΛ(ω)− ξ0
)−2

∈ B2. The proof is over.

For β > 0, ω0 ∈ R and z ∈ Dǫ(e0), the grand canonical generalized susceptibilities at finite
volume are defined by

χN
Λ (β, ω0, z, ǫ) :=

(

e

c

)N
∂NPΛ

∂ωN
(β, ω0, z, ǫ), N ∈ N

∗ (3.10)

By the Proposition 3.5, χN
Λ (β, ω0, z, ǫ) are well defined. In the physical literature (see e.g.

[20]), the cases N = 1 and N = 2 correspond respectively to the grand canonical magnetization
and magnetic susceptibility per unit volume. Moreover

Corollary 3.6. Let β > 0 and N ≥ 1. For each open set K with the property that K is compact
and K ⊂ Dǫ, there exists an open neighborhood N of the real axis such that N xK ∋ (ω, z) 7→
χN
Λ (β, ω, z, ǫ) is jointly analytic.

3.4 Comments on the thermodynamic limit.

We have shown that the pressure at finite volume can be expressed as:

PΛ(β, ω, z, ǫ) =
iǫ

2βπ|Λ|
TrL2(Λ)

∫

ΓK

dξ ln
(

1 + ǫze−βξ
)(

HΛ(ω, V )− ξ
)−1

(3.11)

Now assume that the domain Λ is obtained by dilating a given set Λ1 ⊂ R3 which is supposed
to be bounded, open, simply connected and with smooth boundary. More precisely:

ΛL := {x ∈ R
3 : x/L ∈ Λ1, L > 1}.

Assume that the electric potential V belongs to Kloc and is Z3 periodic, and denote its elemen-
tary cell with Ω. We also assume that the magnetic potential a can be written as ac + ap, where
ac is the Landau gauge given by a constant magnetic field (thus has a linear growth), while |ap|2

belongs to Kloc and is Z3 periodic. Let χΩ denote the characteristic function of the elementary
cell. Then if ω is real, using the cut and paste methods introduced in [14] one can prove that [27]:

P∞(β, ω, z, ǫ) := lim
L→∞

PΛ(β, ω, z, ǫ) (3.12)

=
iǫ

2βπ
TrL2(R3)

∫

ΓK

dξ ln
(

1 + ǫze−βξ
)

χΩ

(

H∞(ω, V )− ξ
)−1

χΩ

The above integral defines a trace class operator on L2(R3) because after a use of the resolvent
identity we can change the integrand into:

(ξ − ξ0) ln
(

1 + ǫze−βξ
)

χΩ

(

H∞(ω, V )− ξ
)−1(

H∞(ω, V )− ξ0
)−1

χΩ
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where ξ0 is some fixed and negative enough number. Using the Laplace transform and the proper-

ties of the semigroup e−tH∞ one can prove that χΩ

(

H∞(ω, V )− ξ
)−1

and
(

H∞(ω, V )− ξ0
)−1

χΩ

are Hilbert-Schmidt operators whose norms grow polynomially with Re ξ.
The fact that ω must be real is an important ingredient of the proof of (3.12) where one

extensively uses the gauge invariance of the operators and the fact that H∞ commutes with the
magnetic translations generated by Z3. If ac = 0 i.e. the magnetic vector potential is periodic,
then the limit in (3.12) holds true for every ω is a small ball around every ω0 ∈ R, provided that
z and β are fixed. The explanation is that the analyticity ball in ω which we have constructed for
each PΛ would be independent of L. If Cr(ω0) denotes the positively oriented circle with radius r
and center at ω0, then for any real ω inside Cr(ω0) and for r small enough we can write:

PΛ(ω) =
1

2πi

∫

Cr(ω0)

PΛ(ω
′)

ω′ − ω
dω′, χN

Λ (ω) =
N !

2πi

∫

Cr(ω0)

PΛ(ω
′)

(ω′ − ω)N+1
dω′

The last integral representation of χN
Λ (ω) tells us that if the pressure admits the thermodynamic

limit, the same property holds true for all generalized susceptibilities. Thus the existence of the
thermodynamic limit of the generalized susceptibilities follows easily if there is no linear growth
in the magnetic potential generated by the magnetic field.

If ac is not zero, then the above argument breaks down because r (the analyticity radius in ω
of PΛ) goes to zero with L. In fact one cannot hope to prove in general that P∞ is real analytic
in ω, although one can prove that is smooth in ω ∈ R [27]. In order to achieve that, one needs to
use the magnetic perturbation theory methods developed in [14, 7, 8, 9]. Complete proofs will be
given in [27].

3.5 The canonical ensemble.

Let ρ0 > 0 be the density of particles. The number of particles in the finite box Λ is NΛ = ρ0|Λ|.
For β > 0, ω0 ∈ R and ρ0 > 0 fixed, define the finite volume Helmholtz free energy (see [20]) as

fΛ(β, ρ0, ω0, ǫ) := −
1

β
ln
(

ZΛ(β, ρ0, ω0, ǫ)
)

(3.13)

where ZΛ(β, ρ0, ω0) > 0 stands for the canonical partition function.

As a consequence of the Theorem 1.1, we have:

Corollary 3.7. Let β > 0 and ρ0 > 0. Then there exists a neighborhood of the real axis M such
that the the Helmholtz free energy M ∋ ω 7→ fΛ(β, ρ0, ω, ǫ) is analytic.

Proof. For all ω0 ∈ R, the canonical partition function is related to the grand canonical pressure
by (see [12])

ZΛ(β, ρ0, ω0, ǫ) :=
1

2iπ

∫

C

dz
1

z

[

exp
(

β
ρ0
PΛ(β, ω0, z, ǫ)

)

z

]NΛ

(3.14)

where C is a closed contour around 0 and included in the analyticity domain Dǫ of the function
z 7→ PΛ(β, ω0, z, ǫ). From the Theorem 1.1, there exists a complex neighborhood M′ of the real
axis such that M′ ∋ ω 7→ ZΛ(β, ρ0, ω, ǫ) is analytic. Since ZΛ(β, ρ0, ω0, ǫ) > 0 for all ω0 ∈ R, then
by a continuity argument, there exists a complex neighborhood M of the real axis such that for
all ω ∈ M, ReZΛ(β, ρ0, ω, ǫ) > 0. Then the corollary follows.

For β > 0, ρ0 > 0 and ω0 ∈ R, the canonical generalized susceptibilities at finite volume are
defined by

mN
Λ (β, ρ0, ω0, ǫ) := −

1

|Λ|

(

e

c

)N
∂NfΛ
∂ωN

(β, ρ0, ω0, ǫ), N ∈ N
∗ (3.15)

By the Corollary 3.7, mN
Λ (β, ρ0, ω0, ǫ) are well defined. Moreover:
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Corollary 3.8. Let β > 0, ρ0 > 0 and N ≥ 1. Then there exists a complex neighborhood M of
the real axis such that M ∋ ω 7→ mN

Λ (β, ρ0, ω, ǫ) is analytic.
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