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, he uses vector divisions with the secant method; but for using this method we must have a function continuous with partial derivatives on an open set of IR n ; so we built a sequence of functions F (p, x) ∈ C ∞ which converges uniformly to the function F (x); and we show that finding the zero of the function F is completely equivalent to finding the zero of the sequence of the functions F (p, x). We close our paper with some numerical simulation examples to illustrate our theoretical results.

Introduction:

The complementarity problem noted (CP ) is a classical problem of optimization theory of finding (z, w) ∈ IR n × IR n such that:

   < z, w >= 0 w -f (z) = 0 z, w 0 (1)
where f , a continuous operator from IR n into itself, is given data.

The constraint < z, w >= 0 is called the complementarity condition since for any i, 1 i n, z i = 0 if w i > 0, and vice versa; it may be the case that z i = w i = 0.

In the case that the function f is a nonlinear continuous operator from IR n into itself, so the problem is called a NonLinear Complementarity Problem associated with the function f and noted (N LCP ).

In the case that the function f is affine, i.e f (z) = q + M z, where q is an element of IR n and M is a real square matrix of order n, so the problem is called a Linear Complementarity Problem associated with the matrix M and the vector q and noted (LCP ).

Solving the (LCP ) in general, however, appears to be difficult. One simple reason is that there is no known good characterization of the nonexistence of a solution to the system for any given function f . The linear complementarity problem plays an important role in several fields (game theory, operational research ...); moreover, Cottle et Dantzig [START_REF] Cottle | A life in mathematical programming[END_REF] et Lemke [START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF] have proved that all problems of linear programming (LP ), convex quadratic programming (CQP ), and also the problems of Nash equilibrium of a game bi-matrix can be written as a linear complementarity problem.

The question is precisely under what conditions on the matrix M and the vector q this problem admits one and only one solution, if this is the case, how can we express this solution as a function of the matrix and vector mentioned above. This question has not been completely resolved yet. However, many results already exist, for instance Lemke [START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF] who gave sufficient conditions on the matrix M and the vector q under which the number of solutions of LCP (M, q) is finite. Samelson [START_REF] Samelson | A partition theorem for Euclidean n-space[END_REF], Ingeton [START_REF] Ingleton | Aproblem in Linear Inequalites[END_REF], Murty [START_REF] Murty | On a characterization of P-matrices[END_REF], Watson [START_REF] Watson | A Variational Approach to the Linear Complementaruty Problem[END_REF], Kelly [START_REF] Kelly | Q-Matrices and Spherical Geometry[END_REF] and Cottle [START_REF] Cottle | The Lineair Complementarity Problem[END_REF] have by contrast shown that the matrix M is a P -matrix if and only if the linear complementarity problem associated with a matrix M and a vector q has a unique solution for all q ∈ IR n (We should remind that a matrix M is called a P -matrix if all principal minors are strictly positive (see [START_REF] Fiedler | On matrices with non-positive off-diagonal elements and positive principal minors[END_REF]), and we should note Y. ELFOUTAYENI and M. KHALADI 2/11 that any symmetric and positive definite matrix is a P -matrix, but not vice-versa).

Preliminaries:

In this section, we summarize some notations which will be used in this paper.

In particular, IR n denotes the space of real n-dimensional vectors,

IR n + := {x ∈ IR n : x i 0, i = 1.
.n} is the nonnegative orthant and its interior is IR n

++ := {x ∈ IR n : x i > 0, i = 1..n}. With x ∈ IR n we define |x| = (|x 1 |, .., |x n |) T ∈ IR n .
We denote by I the identity matrix. Let x, y ∈ IR n , x T y or < x, y > is the inner product of the x and y; ||x|| is the Euclidean norm.

For x ∈ IR n and k a nonnegative integer, x (k) refers to the vector obtained after k iterations; for 1 i n, x i refers to the i th element of x, and x (k) i refers to the i th element of the vector obtained after k iterations. Let x, y ∈ IR n , the expression x y (respectively x < y) meaning that x i y i (respectively x i < y i ) for each i = 1..n.

For x ∈ IR n we denote by e x = (e x1 , .., e xn ) T ∈ IR n and for x ∈ IR n ++ we denote by ln(x) = (ln(x 1 ), .., ln(x n )) T . The transpose of a vector is denoted by super script T , such as the transpose of the vector x is given by x T .

Remember that the spectrum σ(A) of the matrix A is the set of its eigenvalues and its spectral radius ρ is given by: ρ(A) := sup{|λ| such that λ ∈ σ(A)}.

Equivalent reformulation of LCP:

It is known in [START_REF] Murty | Linear Complementarity, Linear and Nonlinear Programming[END_REF] that the linear complementarity problem LCP (M, q) is completely equivalent to solving nonlinear equation

F (x) = 0 with F is a function from IR n into itself defined by F (x) := (M + I)x + (M -I)|x| + q;
More precisely (see [START_REF] Murty | Linear Complementarity, Linear and Nonlinear Programming[END_REF]), on the one hand, if x * is a zero of the function F , then

z * := |x * | + x * w * := |x * | -x * (2)
define a solution of LCP (M, q).
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On the other hand, if (z * , w * ) is a solution of LCP (M, q), then

x * := z * -w * 2
is a zero of the function F .

We mention that this equation is solved by the fixed point algorithm (see [START_REF] Schafer | On the moduls algorithm for the linear complementarity problem[END_REF]), this algorithm is defined by:

x (0) ∈ IR n arbitrary, x (k+1) = (I + M ) -1 (I -M )|x (k) | -(I + M ) -1 q (3)
For the case that M is symetric and positive definite, it was shown in [START_REF] Van Bokhoven | Piecewise-linear modelling and analysis[END_REF] (see also Section 9.2 in [START_REF] Murty | Linear Complementarity, Linear and Nonlinear Programming[END_REF]) that

D := (I + M ) -1 (I -M ) it holds ||D|| 2 = ρ(D T D) = ρ(D 2 ) = ρ(D) < 1,
where ρ(.) denotes the spectral radius of a matrix; hence (3) converges by the contraction-mapping theorem (see Theorem 5.1.3 in [START_REF] Ortega | Iterative solution of nonlinear equations in serval variables[END_REF]) and

x * = lim k→+∞ x (k)
is the unique solution of the F (x) = 0. We mention also that the convergence of algorithm (3) is only linear; in this paper, we consider the use of vector divisions with the secant method (see [START_REF] Shi | Using vector divisions in solving nonlinear systems of equations[END_REF]) in instead of the algorithm (3) decribed above, this algorithm has global convergence (see [START_REF] Shi | Using vector divisions in solving nonlinear systems of equations[END_REF]); but for using this algorithm we must have a function F a continuous with partial derivatives on a set of IR n ; the next section can answer this problematic.

The main result

We consider again the function F : IR n → IR n defined by Remark 3 : The uniqueness of the root of the function F results from the uniqueness of the solution of linear complementarity problem LCP (M, q), in fact, supposing that x * 1 and x * 2 , two distinct roots of the function F ,exist, then

z * 1 := |x * 1 | + x * 1 . z * 2 := |x * 2 | + x * 2 .
Since z * 1 = z * 2 (uniqueness of the solution of LCP (M, q)) then

|x * 1 | + x * 1 = |x * 2 | + x * 2 . ( 4 
)
Simularly, we use the same method for w * 1 and w * 2 we have

|x * 1 | -x * 1 = |x * 2 | -x * 2 .
(5) so (4)-( 5)

means that x * 1 = x * 2 .
Now, we give the following algorithm for solving F (p, x) = 0 (see [START_REF] Shi | Using vector divisions in solving nonlinear systems of equations[END_REF]):

Algorithm:

Step 0: Determine ǫ, p, k * , ρ, σ such that k * is a positive integer, 0 < ρ < 1/2, and ρ < σ < 1;

Step 1: Select two points x (0) and x (1) ∈ IR n ;

Step 2: for k = 1, 2, ... until termination, do the following:

1-Compute the steepset descent direction 

d (k) := -J(p, x (k) ) T F (p, x (k) ),
δ ij = 0 if i = j. 2-if k equals a multiple of k * , then insert a steepset descent direc- tion step, that is, let s (k) := d (k)
and go to step 2.7; 3-Compute:

u (k) := ξ 1 F (p, x (k) ) v (k) := ξ 2 (x (k) -x (k-1) )
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with

ξ 1 = - ||x (k) -x (k-1) || 2 < x (k) -x (k-1) , F (p, x (k) ) -F (p, x (k-1) ) > and ξ 2 = - < F (p, x (k) ) -F (p, x (k-1) ), F (p, x (k) ) > || F (p, x (k) ) -F (p, x (k-1) )|| 2 . 4-if (u (k) -v (k) ) T d (k) = 0, then choose α (k) > -< v (k) , d (k) > < u (k) -v (k) , d (k) > such that α (k) maximizes the value of Cos[s (k) , d (k) ] = < s (k) , d (k) > ||s (k) ||.||d (k) || ; Set s (k) := α (k) u (k) + (1 -α (k) )v (k)
and go to step 2.7;

5-if (u (k) -v (k) ) T d (k) = 0 and < v (k) , d (k) >> 0, then set s (k) := u (k) + v (k) 2
and go to step 2.7;

6-if (u (k) -v (k) ) T d (k) = 0 and < v (k) , d (k) > 0, then set s (k) := d (k)
and go to step 2.7; 7-take a line search along the direction s (k) to determine the step length γ suth that

f (p, x (k) + γs (k) ) f (p, x (k) ) -γρ < d (k) , s (k) > and < ▽f (p, x (k) + γs (k) ), s (k) > -σ < d (k) , s (k) >; where f (p, x) = 1 2 || F (p, x)|| 2 8-set x (k+1) := x (k) + γs (k)
and go to next iteration.

Numerical examples

In this part, we consider some examples to test our method. The results of Fixed Point and using vector divisions methods for these examples are presented here for comparison purposes. The results and expected solutions for each example have been presented on the Tables 1 and2.

Example 4 : Consider the following linear complementarity problem:

Find vector z in IR n satisfying z T (M z + q) = 0, M z + q 0, z 0,

where M =     4 -1 0 0 -1 4 -1 0 0 -1 4 -1 0 0 -1 4     and q =     -4 3 -4 2     .
The exact solutions is x * = (1, 0, 1, 0) T .

We apply the fixed point and using vector divisions methods to solve this example with the initial approximation

x (0) = (1.1, 0.1, 1.2, 0.2) T .
The solution of this problem with six significant digits is presented in Ta-ble1.

Iteration z 1 z 2 z 3 z 4 k=01
0,0000000 0,0000000 0,0000000 0,0000000 k=05 0,7883251 0,0000000 1,3448593 0,0000000 k=10 1,0197946 0,0000000 0,9884737 0,0000000 Fixed k=15 0,9985643 0,0000000 1,0012907 0,0000000 point k=20 1,0001030 0,0000000 0,9999377 0,0000000 method k=25 0,9999918 0,0000000 1,0000058 0,0000000 k=30 1,0000005 0,0000000 0,9999997 0,0000000 k=33 0,9999999 0,0000000 1,0000001 0,0000000 k=34 1,0000001 0,0000000 1,0000000 0,0000000 k=35 1,0000000 0,0000000 1,0000000 0,0000000 Using vector k=01 0,0000000 0,0000000 0,0000000 0,0000000 divisions k=02 4,0000000 0,0000000 4,0000000 0,0000000 method k=03 1,0000000 0,0000000 1,0000000 0,0000000 Table 1: The results of different methods for example1.

Example 5 : Let's solve the following linear complementarity problem Find vector z in IR n satisfying z T (M z + q) = 0, M z + q 0, z 0,

where M =     8 -1 0 -5 1 5 -1 0 2 -1 6 -1 6 0 -1 7     and q =     1 -2 -3 4     .
The exact solutions is x * = (0, 15 29 , 17 29 , 0) T . We apply the fixed point and using vector divisions methods to solve this example with the initial approximation x (0) = (-1, -2, -3, -4) T .

The solution of this problem with six significant digits is presented in Ta-Y. ELFOUTAYENI and M. KHALADI ble2.

Iteration

z 1 z 2 z 3 z 4 k=01 0,0000000 0,0000000 0,0000000 0,0000000 k=05 0,1115059 0,6300237 0,3146258 0,0000000 k=10 0,0000000 0,4906849 0,6581657 0,0000000 k=15 0,0000000 0,5309163 0,5863067 0,0000000 k=20 0,0000000 0,5192743 0,5936312 0,0000000 k=25 0,0000000 0,5188339 0,5869623 0,0000000 k=30 0,0000000 0,5173795 0,5862876 0,0000000 Fixed k=35 0,0000000 0,5171712 0,5859293 0,0000000 point k=40 0,0000000 0,5171411 0,5860432 0,0000000 method k=45 0,0000000 0,5171911 0,5861363 0,0000000 k=50 0,0000000 0,5172239 0,5861902 0,0000000 k=55 0,0000000 0,5172388 0,5862079 0,0000000 k=60 0,0000000 0,5172428 0,5862107 0,0000000 k=65 0,0000000 0,5172428 0,5860930 0,0000000 k=70 0,0000000 0,5172421 0,5862079 0,0000000 k=75 0,0000000 0,5172416 0,5862071 0,0000000 k=79 0,0000000 0,5172424 0,5862069 0,0000000 k=01 0,0000000 2,0000000 3,0000000 0,0000000 k=02 0,0000000 0,0000000 0,4367816 0,0000000 Using vector k=03 0,0000000 2,6264367 0,5000000 0,0000000 divisions k=04 0,0000000 0,6983749 0,6163958 0,0000000 method k=05 0,0000000 0,5172414 0,5862069 0,0000000 k=06 0,0000000 0,5172414 0,5862069 0,0000000 

Conclusion:

In this paper we have used that the linear complementarity problem is completely equivalent to solving nonlinear equation F (x) = 0 with F is a function from IR n into itself defined by F (x) = (M + I)x + (M -I)|x| + q; for solving this equation we have used the Shi's method, this method uses vector divisions with the secant method; based on that, we have proposed a globally convergent hybrid algorithm for solving this equation; to do so, we had to build a sequence of functions F (p, x) ∈ C ∞ which converges uniformly to the function F (x); and we have shown that finding the zero of the function F is completely equivalent to finding the zero of the sequence of the functions F .

  Therefore, w * := |x * | -x * and z * := |x * | + x * define the unique solution of the LCP (M, q).

FF

  (x) := (M + I)x + (M -I)|x| + q and let's consider the sequence of functions F : IN * ×IR n → IR n defined by F (p, x) := (M + I)x + 1 p (M -I) ln(e 0 + e px + e -px ) + q Proposition 1 : F (p, x) converges uniformly to F (x) when p → +∞. Proof. : To show that we can start by 1 p ln(e 0 + e px + e -px ) -|x| = 1 p [ln(e 0 + e px + e -px ) + ln(e -p|x| )] = 1 p ln[e -p|x| * (1 + e px + e -px )] = 1 p ln(e -p|x| + e p(x-|x|) + e -p(x+|x|) ) then we have 0 1 p ln(e 0 + e px + e -px ) -|x| 1 p ln(3) so 1 p ln(e 0 + e px + e -px ) is uniform convergence to |x| when p → +∞; Moreover, the operator (M -I) is linear then we have 1 p (M -I) ln(e 0 +e px +e -px ) converges uniformly to (M -I)|x| as p → +∞ and from the expression of the sequence of the functions F and the function F we have F (p, x) converges uniformly to F (x) when p → +∞. Theorem 2 : Let x * (p) be a solution of the equation F (p, x) = 0, then x * (p) is an approximation solution of F (x) = 0 for p is large enough. Proof. :To show that, we use proposition(1) wich we can interpret as ∀ǫ > 0, ∃ p * > 0 such that for all p > p * we have ||F (x * (p))|| = ||F (x * (p)) -F (p, x * (p))|| ǫ then we have for any ǫ > 0, x * (p) is the approximation solution of

whereF

  (p, x) := (M + I)x + 1 p (M -I) ln(e 0 + e px + e -px ) + q; J(p, x) := (M + I) + (M -I)E(p, x) and E ij (p, x) := δ ij e pxi -e -pxi 1 + e pxi + e -pxi ; we racall that δ ii = 1 and

Table 2 :

 2 The results of different methods for example2.
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